4.2.4 SULFURIC ACID PLANT

Key to the double-absorption contact sulfuric acid plant process is use of an intermediate absorber in the four-pass converter developed by Monsanto. The reaction from SO₂ to SO₃ is an exothermic reversible reaction. Using a vanadium catalyst, a contact plant takes advantage of both rate and equilibrium considerations by first allowing the gases to enter over a part of the catalyst at about 800°F, and then allowing the temperature to increase adiabatically as the reaction proceeds. The reaction essentially stops when about 60 to 70 percent of the SO₂ has been converted, at a temperature in the vicinity of 1100°F. The gas is cooled in a waste heat boiler and passed through subsequent stages until the temperature of the gases passing over the last portion of catalyst does not exceed 800°F. The gases leaving the converter, having passed through two or three layers of catalyst, are cooled and passed through an intermediate absorber tower where some of the SO₃ is removed with 98 percent H₂SO₄. The gases leaving this tower are then reheated, and flow through the remaining layers of catalyst in the converter. The gases are then cooled and pass through the final absorber tower before discharge to the atmosphere. In this manner, more than 99.7 percent of the SO₂ is converted into SO₃ and subsequently into product sulfuric acid.

4.2.5 HYDROGEN SEPARATION/CONVENTIONAL TURBINE EXPANDER

The HSD design retains the previous concept to promote the shift reaction by product extraction at the membrane surface. The scenario is based on the gas proceeding along the membrane surface in turbulent flow. Hydrogen product partial pressure is both maintained and extracted at the membrane surface. CO continues to react with steam until the CO-steam equilibrium is reached. The remaining gas then passes from the membrane without further reaction. To ensure the shift reaction going to completion, the membrane path was increased 25 percent above theoretical.

The hydrogen product diffusing through the HSD is 99.5 percent pure on a weight basis, and is comprised of a stream having 95 percent of the original syngas fuel value. The syngas continues with an exothermic shift to hydrogen and CO_2 on the membrane surface until reaching an equilibrium at 600°C (1112°F).

The retentate gas, which is separated from the hydrogen, leaves the HSD at 950 psia and 1112°F, and has a fuel value of about 15 Btu/scf. A conventional expansion turbine is utilized to extract the energy from the gas stream by producing power and steam. The gas stream is fired with oxygen in the combustor, resulting in conversion of CO and hydrogen to CO₂, and water vapor, resulting in a turbine inlet temperature of 1711°F. The turbine expander reduces the gas pressure to 20 psia and its temperature to 814°F, while generating 55 MW power. The gas then passes through a HRSG where it is cooled to 250°F, while raising high-pressure steam. This steam is combined with additional steam from cooling the hydrogen product to produce an additional 28 MW. In-plant auxiliary power requirements and transformer losses amount to 69 MW, resulting in export power sales of 14 MW. The CO₂ product is cooled to 100°F, dried, and sent offsite. Table 4-5 identifies the overall water balance for the plant.

Water Source	
Makeup Water	100,979 lb/h
Recycled from Stack Condenser	86,514 lb/h
Water Consumption Point	
Boiler Blowdown	74 lb/h
Gasifier Coal Slurry Preparation	114,009 lb/h
HSD Inlet Cooler/Saturator	72,481 lb/h
Sulfuric Acid Water	929 lb/h

Table 4-5Plant Water Balance

4.2.6 EFFECTIVE THERMAL EFFICIENCY

For comparative purposes and to arrive at a figure of merit for the plant design, an ETE was derived for the plant performance based on HHV thermal value of hydrogen produced and offsite power sales, divided by the fuel input to the plant. The formula is:

ETE = <u>(Hydrogen Heating Value + Electrical Btu Equivalent)</u> Fuel Heating Value (HHV) ETE = <u>33,336 lb H₂/h x 61,095 Btu/lb + 13,900 kW x 3,414 Btu/kWh</u> 283,833 lb coal/h x 8,630 Btu/lb + 31,537 lb sawdust/h x 5,165 Btu/lb ETE = 79.8%

4.3 COST ESTIMATE

For this economic analysis, the capital and operating costs for the biomass/Wyodak feedstock plant result from a proportional adjustment from the baseline 600°C hydrogen plant which operates on Pittsburgh No. 8 coal. Whereas the cost of Pittsburgh No. 8 coal was \$1.00 per MMBtu, the cost of the Wyodak/biomass blend is assumed to be \$0.65/MMBtu, followed with a sensitivity case of \$0.50/MMBtu. The approach to the cost estimate was the same as before and detailed in Section 2.7. The financial parameters were the same as detailed in Table 1-2 and Table 2-19 except for the type and cost of the coal.

The results of the cost estimating activity are summarized in Table 4-6 and Table 4-7.

Table 4-6Capital Estimate and Revenue Requirement Summary\$0.65/MMBtu Feedstock

CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY				
Case: Hydrogen Fu	el Facility (Wy/Bio Blen	d) w/600C H	ot Gas De	sulfurization
Plant Size:	400.0 H2 TPD	HeatRate:		(Btu/kWh)
Primary/Secondary Fuel(type):	Wyodak/Bion	Cost:	0.65	(\$/MMBtu)
Design/Construction:	2.5 (years)	BOOKLIRE:	2005	(years)
Capacity Factor:	2000 (Jan.) 80 (%)	IFI ICal.	2005	(Jan.)
CAPITAL INVESTMENT		\$x1000	\$2	1000/H2TPD
Process Capital & Facilities		297,459		743.6
Process Contingency		6 169		15.4
Project Contingency		33,242		83.1
	\$265 660	\$365,662		914.1
AFDC	\$23,446			
TOTAL PLANT INVESTMENT(TPI)	\$20,110	\$389,109		972.7
Royalty Allowance Preproduction Costs		0 220		23.1
Inventory Capital		2,304		5.8
Initial Catalyst & Chemicals(w/equip.)		,	. •	
Land Cost		150		0.4
TOTAL CAPITAL REQUIREMENT(TCR)	\$400,792		1001.9
		\$x1000	\$ <u></u> 2	1000/H2TPD
OPERATING & MAINTENANCE COSTS (2000 D	ollars)	0.074		0.7
Operating Labor		3,871		9.7
Maintenance Material		3,906		9.8
Administrative & Support Labor		1,619		4.0
TOTAL OPERATION & MAINTENANCE	i i	\$12,000		30.0
FIXED O & M				24.00
VARIABLE O & M				6.00
CONSUMABLE OPERATING COSTS,less Fuel	2000 Dollars)	\$x1000		\$/T.H2-yr
Water		88		0.75
Chemicals Other Consumables		1,066		9.13
Waste Disposal		603		5.17
	OPTE	\$1 757		15.04
	0313	\$1,757 (\$4.054)		26.20
BY-PRODUCT CREDITS (2000 Dollars)		(\$4,251)		-30.39
FUEL COST (2000 Dollars)		\$11,900		101.87
	1st Year (2005 \$)	Levelize	d (Over Bo	ok Life \$)
PRODUCTION COST SUMMARY	\$/T_H2-yr		\$/T H2-yr	
Fixed O & M	82.18		82.18	0.6725696
Variable O & M Consumables	5.00		15.00	0.0490976
By-product Credit/Penalty	-36.39		-36.39	-0.29785
Fuel	98.85		90.17	0.7379375
TOTAL PRODUCTION COST	165.68		157.00	1.2848532
LEVELIZED CARRYING CHARGES(Capital)			480.35	3.931157
LEVELIZED(Over Book Life)COST/Ton of H2 Equivalent \$/MMBtu	4		637.34 5.22	

Table 4-7Capital Estimate and Revenue Requirement Summary
\$0.50/MMBtu Feedstock

CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY				
Case: Hydrogen Fuel	Facility (Wy/Bio Blend)	w/600C Hot	Gae Doe	Uturization
Plant Size:	400.0 Ho TPD	HeatPate:	003 003	(Bhu/k/M/b)
Primary/Secondary Fuel(type):	Wyodak/Biom	Cost	0.50	(\$/MMBhi)
Design/Construction:	2.5 (years)	BookLife:	20	(vears)
TPC(Plant Cost) Year:	2000 (Jan.)	TPI Year:	2005	(Jan.)
Capacity Factor:	80 (%)			
CADITAL INVESTMENT				
Process Capital & Facilities		<u>\$x1000</u>	\$2	C1000/H21PD
Engineering(incl.C.M.H.O.& Fee)		297,409		743.0
Process Contingency		6 169		15.4
Project Contingency		33,242		83.1
TOTAL PLANT COST(TPC)		\$365,662		914.1
AFDC	\$365,662			
TOTAL PLANT INVESTMENT(TPI)	\$Z3,440	\$380 100		972 7
		\$305,105		512.1
Royalty Allowance				
Preproduction Costs		9,160		22.9
Inventory Capital		2,026		5.1
I and Cost		150		0.4
		150		0.4
TOTAL CAPITAL REQUIREMENT(TCR)	ŧ.	\$400,445		1001.0
		\$x1000	\$x	1000/H2TPD
OPERATING & MAINTENANCE COSTS (2000 Do	ollars)			
Maintenance Labor		3,871		9.7
Maintenance Labor		2,004		0.5
Administrative & Support Labor		1,619		4.0
TOTAL OPERATION & MAINTENANCE		\$12,000		30.0
FIXED O & M				24.00
				24.00
				0.00
Water	2000 Dollars)	\$x1000		\$/IH2-yr
Chemicals		1 066		0.75
Other Consumables		1,000		5.15
Waste Disposal		603		5.17
TOTAL CONSUMABLE OPERATING CO	OSTS	\$1,757		15.04
BY-PRODUCT CREDITS (2000 Dollars)		(\$4,251)		-36.39
FUEL COST (2000 Dollars)		\$9,154		78.36
	1st Year (2005 \$)	Levelized	(Over Bo	ok Life \$)
PRODUCTION COST SUMMARY	\$/T H2-yr		\$/T_H2-yr	
	82.18		82.18	0.6725696
Vanable U & M Consumables	6.00		6.00	0.0490976
By-product Credit/Penalty	15.04		15.04	0.1230982
Fuel	-30.39 76.04		69.36	0.5676442
TOTAL PRODUCTION COST	142.87		136.19	1.1145599
LEVELIZED CARRYING CHARGES(Capital)			479,93	3.9277537
I EVELIZED(Over Book Life)COST/Top of He			e1e 10	
Equivalent \$/MMBtu			5.04	

4.4 SUMMARY AND CONCLUSIONS

The purpose of this brief study was to compare the economics of producing hydrogen from a Wyodak/biomass blend against producing hydrogen from bituminous coal in the same sized plant. Table 4-8 is a summary comparison of the performance and cost results. The costs of hydrogen from both feedstocks are approximately equal. This is due to a balance of capital charges, fuel costs, and byproduct credits.

	90% Wyodak 10% Biomass	Baseline Case Pittsburgh No. 8 600°C Membrane
Coal Feed	283,833 lb/h	221,631 lb/h
Biomass Feed	31,537 lb/h	N/A
Oxygen Feed (95%) to Gasifier	186,650 lb/h	165,818 lb/h
Oxygen Feed to Retentate Combustor	25,300 lb/h	58,701 lb/h
Water to Prepare Feed Slurry	114,009 lb/h	94,025 lb/h
Hydrogen Product Stream	33,337 lb/h	35,903 lb/h
CO ₂ Product Stream	575,923 lb/h	582,566 lb/h
Sulfuric Acid Product	5,057 lb/h	19,482 lb/h
Gross Power Production		
Turbine Expander	55 MW	84 MW
Steam Turbine	28 MW	N/A
Auxiliary Power Requirement	(69 MW)	(77 MW)
Net Power Production	14 MW	7 MW
Net Plant Water Makeup	100,979 lb/h	198,150 lb/h
Effective Thermal Efficiency (ETE), HHV	79.8%	80.4%
Capital Cost, \$1,000	\$365,662	\$359,791
Hydrogen Product Cost, \$/MMBtu	\$5.22 (\$0.65 Feedstock) \$5.04	\$5.06
	(au.su reeastock)	

Table 4-8Performance and Cost Summary ComparisonsWyodak/Biomass Blend vs. Pittsburgh No. 8

Total plant costs are roughly equal, resulting from a combination of increased and decreased equipment requirements. The cost adjustments to the hydrogen plant due to the change over to the Wyodak/biomass blend are reflected in increased feedstock handling, increased oxygen plant size due to the higher water content (and associated increase in CO_2 content), and the need for a steam turbine which produces 28 MW from excess low-pressure steam. The capital costs were lower in sulfur control areas because of the low-sulfur feedstock, resulting in only 61 tpd sulfuric acid production from the blend versus 234 tpd from bituminous coal. This resulted in a lowering of byproduct credits.

The cost of biomass was not explored. Rather, two feedstock costs were used, \$0.65 and \$0.50/MMBtu. The higher cost reflects biomass being equal to Wyodak in delivered cost, the lower reflecting essentially free biomass.

The amount of hydrogen produced from the Wyodak/biomass blend is lowered by about 7 percent, primarily due to the higher level of CO_2 produced in the gasifier. This resulted in a lowered amount of reactive syngas (H₂ and CO) available for hydrogen production.

In April 1999 a version of the base case hydrogen plant was prepared in which Wyodak Coal was substituted for Pittsburgh No. 8 coal. A full description of the comparison is not included in this compilation report because the results are not readily comparable, for the following reasons:

- The HSD operates at 1000°C
- Sulfur is recovered with FGD, rather than sulfuric acid
- Plant Capacity Factor is 95%, Book Life is 30 years
- Costs are in 1997 dollars

A summary of the performance and economic results from the Wyodak substitution are shown in Table 4-9. Less hydrogen is produced, but more power from excess plant steam is produced. The cost of hydrogen from the Wyodak substitution is slightly lower than the Pittsburgh No. 8, primarily because of the lower cost of coal.

	100% Wyodak	100% Pittsburgh No. 8
Coal Feed	283,833 lb/h	221,631 lb/h
Oxygen Feed (95%)	220.986 lb/h	252,369 lb/h
Water to Prepare Feed Slurry	109,249 lb/h	94,025 lb/h
Hydrogen Product Stream	29,221 lb/h	34,004 lb/h
Limestone Sorbent to FGD	10,583 lb/h	25,188 lb/h
CO ₂ Product Stream	538,410 lb/h	603,324 lb/h
Net Plant Water Makeup	99,960 lb/h	188,878 lb/h
Gross Power Production		
ATS Turbine Expander	102 MW	120 MW
Steam Turbine	20 MW	N/A
Auxiliary Power Requirement	(67 MW)	(78 MW)
Net Power Production	55 MW	42 MW
Effective Thermal Efficiency (ETE), HHV	80.4%	79.8%
Capital Cost, \$1,000	\$313,597	\$306,605
Hydrogen Product Cost, \$/MMBtu	\$3.91	\$4.05
	(\$0.67/MMBtu	(\$1.00/MMBtu
	Feedstock)	Feedstock)

Table 4-9Performance and Cost Summary Comparisons1999 Wyodak Substitution for Pittsburgh No. 8

5. REFERENCES

- ¹ "Orimulsion: CO₂ Capture in Power Generation: Hydrogen Production; and Methanol Production," IEA Greenhouse Gas R&D Programme, Report No. PH2/11, May 1997.
- ² Final Report, Bellefonte Completion Project Fossil Repowering Phase I Screening Study, TVA Contract TV-96889V, 1997.
- ³ Nitrogen Fixation by Ammonia Synthesis for CO₂ Sequestration, U.S. Department of Energy, Federal Energy Technology Center, Pittsburgh, Pennsylvania, 1997.
- ⁴ Conference call, Parsons Power and Oak Ridge National Laboratory (Rod Judkins, Doug Fain), September 2, 1997.
- ⁵ Decarbonized Fuel Production Facilities/Base Case Comparisons, Letter Report, U.S. DOE, June 1999.
- ⁶ Fain, Douglas E., <u>Research and Development on Hydrogen Separation Technology with</u> <u>Inorganic Membranes</u>, Pittsburgh Coal Conference, 1999.
- ⁷ Rutkowski, M.D. and DeLallo, M.R., <u>Decarbonized Fuel Plants Utilizing Inorganic Membranes</u> for Hydrogen Separation, 12th Annual Conference of Fossil Energy Materials, May 1998.
- ⁸ <u>An Attractive Option for CO₂ Control in IGCC Systems: Water Gas Shift with Integrated</u> <u>H₂/CO₂ Separation</u>, Netherlands Energy Research Foundation.
- ⁹ Badin, J.S., DeLallo, M.R., Klett, M.G., Rutkowski, M.D., Temchin, J.R., *Decarbonized Fuel from Coal, Plant Review*, Pittsburgh Coal Conference 1999.
- ¹⁰ Badin, J.S., DeLallo, M.R., Rutkowski, M.D., et al., *Decarbonized Fuel Production Facility A Technical Strategy for Coal in the Next Century*, 1999 Gasification Technologies Conference, October 1999.
- ¹¹ Badin, J.S., DeLallo, M.R., Rutkowski, M.D., Temchin, J.R., *Decarbonized Fuel Production Facility, A Technical Strategy for Coal in the Next Century, Power-Gen International Conference, December 1998.*
- ¹² Fain, Douglas E., Research and Development on Hydrogen Separation Technology with Inorganic Membranes, Pittsburgh Coal Conference, 1999.
- ¹³ Badin, J.S., DeLallo, M.R., Rutkowski, M.D., Temchin, J.R., *Coal Processing Plant for Hydrogen Production with CO₂ Capture*, 25th International Technical Conference on Coal Utilization & Fuel Systems, March 2000, Clearwater, Florida.