Hydrogen Production Facilities Plant Performance and Cost Comparisons

Final Report, March 2002

Compilation of Letter Reports from June 1999 to July 2001

Prepared for:

The United States Department of Energy National Energy Technology Laboratory

under:

Contract No. DE-AM26-99FT40465 between the National Energy Technology Center (NETL) and Concurrent Technologies Corporation (CTC)

> Subcontract No. 990700362 between CTC and Parsons Infrastructure & Technology Group Inc. Task No. 50802

> > DOE Project Manager: James R. Longanbach

> > > Project Manager: Michael D. Rutkowski

Principal Investigators: Michael G. Klett Jay S. White Ronald L. Schoff Thomas L. Buchanan

PARSONS INFRASTRUCTURE AND TECHNOLOGY GROUP INC. Reading, Pennsylvania

TABLE OF CONTENTS

<u>Section</u>		<u>Title</u>	Page
	List of Tables		iii
	List of Figures		v
	List of Acr	conyms and Abbreviations	vi
	EXECUTIV	E SUMMARY	ES-1
1	INTRODUC	TION	1-1
2	HYDROGE	N FUEL FROM COAL PLANTS	2-1
	2.1 Hydro	gen Separation Device Process Design	2-1
	2.1.1	Updated Assumptions for HSD Design	2-2
	2.1.2	HSD Design	2-3
	2.2 Hydro	gen Fuel Plant – 1402°F (761°C) Membrane	2-3
	2.2.1	Process Description	2-9
	2.2.2	Effective Thermal Efficiency	2-11
	2.3 Hydro	gen Fuel Plant – 1112°F (600°C) Membrane	2-12
	2.3.1	Process Description	2-13
	2.3.2	Effective Thermal Efficiency	2-16
	2.4 Hydro	gen Fuel Plant – 572°F (300°C) Membrane	2-16
	2.4.1	Process Description	2-17
	2.4.2	Effective Thermal Efficiency	2-21
	2.5 Hydrogen Fuel Plant – 1112°F (600°C) Membrane and 80 Percent Hydrogen Transport		2-21
	2.5.1	Process Description	2-22
	2.5.2	Effective Thermal Efficiency	2-26
	2.6 Cost E	Estimating	2-26
	2.6.1	Approach to Cost Estimating	2-26
	2.6.2	Production Costs (Operations and Maintenance)	2-28
	2.6.3	Cost Results	2-29
	2.7 Summ	ary and Conclusions	2-33
3	Hydroge	N FROM COAL AND NATURAL GAS-BASED PLANTS	3-1
	3.1 Cases 1, 2, and 3 – Hydrogen from Natural Gas Without and With CO ₂ Recovery		3-1
	3.1.1	Natural Gas Conditioning	3-1

<u>Section</u>		Title	<u>Page</u>
	3.1.2	Natural Gas Reformer/Boiler	3-2
	3.1.3	Water-Gas Shift Reactor	3-3
	3.1.4	Acid Gas Removal	3-3
	3.1.5	Hydrogen Purification	3-3
	3.2 Cases or with	4 and 5 – Hydrogen from Conventional Coal Gasification without $h \operatorname{CO}_2$ Removal	3-10
	3.2.1	Gasifier	3-10
	3.2.2	Air Separation Unit	3-10
	3.2.3	Particulate Removal	3-10
	3.2.4	Shift	3-11
	3.2.5	Sulfur Removal/Hydrogen Purification	3-11
	3.3 Summ	ary and Conclusions	3-16
4	Hydroge	N FUEL FROM WYODAK COAL/BIOMASS BLEND	4-1
	4.1 Introd	uction	4-1
	4.2 Proces	ss Description	4-4
	4.2.1	Gasifier	4-5
	4.2.2	Air Separation Unit	4-5
	4.2.3	Hot Gas Cleanup System	4-5
	4.2.4	Sulfuric Acid Plant	4-7
	4.2.5	Hydrogen Separation/Conventional Turbine Expander	4-7
	4.2.6	Effective Thermal Efficiency	4-8
	4.3 Cost Estimate		4-8
	4.4 Summary and Conclusions		4-11
5	Reference	CES	5-1

LIST OF TABLES

Table <u>No.</u>	<u>Title</u>	<u>Page</u>
ES-1	Performance and Cost Summary Comparisons – Hydrogen Fuel Plants with Alternative HSD Temperatures	ES-2
ES-2	Comparison of Hydrogen Cost from Conventional and Advanced Plant Designs	ES-4
ES-3	Performance and Cost Summary Comparisons – Hydrogen Fuel Plants with Alternative Feedstocks	ES-5
1-1	Consistent Design Parameters (Unless Noted in Text)	1-2
1-2	Consistent Financial Parameters (Unless Noted in Text)	1-2
2-1	Revised Assumptions for Hydrogen Separation Device	2-2
2-2	Hydrogen Separation Device Designs	2-4
2-3	Design Basis for Hydrogen Fuel Production Facility with Conventional Expansion Turbine and Hot Gas Cleanup	2-6
2-4	Performance Summary – Baseline Hydrogen Fuel Plant	2-9
2-5	Auxiliary Power Load – Baseline Hydrogen Fuel Plant	2-9
2-6	Plant Water Balance – Baseline Hydrogen Fuel Plant	2-11
2-7	Design Basis for Baseline Hydrogen Fuel Plant – 1112°F (600°C) Membrane	2-12
2-8	Performance Summary – 1112°F Membrane	2-15
2-9	Auxiliary Power Load – 1112°F Membrane	2-15
2-10	Plant Water Balance – 1112°F Membrane	2-16
2-11	Design Basis for Baseline Hydrogen Fuel Plant – 572°F (300°C) Membrane	2-17
2-12	Performance Summary – 572°F Membrane	2-20
2-13	Auxiliary Power Load – 572°F Membrane	2-20
2-14	Plant Water Balance – 572°F Membrane	2-21
2-15	Design Basis for Baseline Hydrogen Fuel Plant – 1112°F (600°C) Membrane and 80 Percent Hydrogen Transport	2-22
2-16	Performance Summary – 1112°F Membrane and 80% Hydrogen Transport	2-25
2-17	Auxiliary Power Load – 1112°F Membrane and 80% Hydrogen Transport	2-25
2-18	Plant Water Balance – 1112°F Membrane and 80% Hydrogen Transport	2-26
2-19	Estimate Basis/Financial Criteria	2-27
2-20	Capital Investment & Revenue Requirement Summary – Baseline	2-29
2-21	Capital Investment & Revenue Requirement Summary – 600°C	2-30

Table <u>No.</u>	Title	<u>Page</u>
2-22	Capital Investment & Revenue Requirement Summary – 300°C	2-31
2-23	Capital Investment & Revenue Requirement Summary – 600° C with 80% H ₂	2-32
2-24	Performance and Cost Summary Comparisons – Hydrogen Fuel Plants with Alternative HSD Temperatures	2-33
3-1	Composition of Synthetic Gas	3-2
3-2	Performance and Cost Summary – Case 1 – Hydrogen from Natural Gas without CO ₂ Capture	3-5
3-3	Performance and Cost Summary – Case 2 – Hydrogen from Natural Gas with CO ₂ Capture by Amine Process	3-7
3-4	Performance Summary – Case 3 – Natural Gas Partial Oxidation Plant with CO ₂ Capture – 600°C Inorganic Membrane	3-9
3-5	Performance and Cost Summary – Case 4 – Conventional Hydrogen from Coal without CO ₂ Capture	3-12
3-6	Performance and Cost Summary – Case 5 – Conventional Hydrogen from Coal with Maximum CO ₂ Capture	3-14
3-7	Comparison of Hydrogen Cost from Conventional and Advanced Plant Designs	3-16
4-1	Wyodak Coal and Biomass Properties (As Received)	4-1
4-2	Design Basis for Hydrogen Fuel Production Facility with Conventional Expansion Turbine and Hot Gas Cleanup – Biomass/Coal Feed	4-2
4-3	Performance Summary – Wyodak Coal/Biomass Blend	4-4
4-4	Auxiliary Power Load – Wyodak Coal/Biomass Blend	4-4
4-5	Plant Water Balance – Wyodak Coal/Biomass Blend	4-8
4-6	Capital Estimate and Revenue Requirement Summary – \$0.65/MMBtu Feedstock	4-9
4-7	Capital Estimate and Revenue Requirement Summary – \$0.50/MMBtu Feedstock	4-10
4-8	Performance and Cost Summary Comparisons – Wyodak/Biomass Blend vs. Pittsburgh No. 8	4-11
4-9	Performance and Cost Summary Comparisons – 1999 Wyodak Substitution for Pittsburgh No. 8	4-12

LIST OF FIGURES

Figure <u>No.</u>	<u>Title</u>	<u>Page</u>
2-1	Hydrogen Separation Device Concept	2-5
2-2	Block Flow Diagram – Baseline Hydrogen Fuel Plant – 1402°F (761°C) Hydrogen Separation Device	2-7
2-3	Process Flow Diagram – Hydrogen Fuel Plant – Hot Gas Desulfurization and Conventional Turbine	2-8
2-4	Block Flow Diagram – Baseline Hydrogen Fuel Plant – 1112°F (600°C) Hydrogen Separation Device	2-13
2-5	Process Flow Diagram – Hydrogen Fuel Plant – 600°C Hydrogen Separation Membrane	2-14
2-6	Block Flow Diagram – Baseline Hydrogen Fuel Plant – 572°F (300°C) HSD	2-18
2-7	Process Flow Diagram – Hydrogen Fuel Plant – 572°F (300°C) Membrane	2-19
2-8	Block Flow Diagram – Baseline Hydrogen Fuel Plant – 1112°F (600°C) HSD at 80 Percent Hydrogen Transport	2-23
2-9	Process Flow Diagram – Hydrogen Fuel Plant – 600°C Hydrogen Separation Membrane and 80 Percent Hydrogen Transport	2-24
3-1	Block Flow Diagram Case 1 – Steam Reforming Natural Gas	3-5
3-2	Block Flow Diagram Case 2 – Steam Reforming Natural Gas with CO ₂ Removal	3-7
3-3	Block Flow Diagram Case 3 – Partial Oxidation Natural Gas with 600°C HSD	3-9
3-4	Block Flow Diagram Case 4 – Conventional Hydrogen Plant without CO ₂ Removal	3-12
3-5	Block Flow Diagram Case 5 – Conventional Hydrogen Plant with CO ₂ Removal	3-14
4-1	Block Flow Diagram – Hydrogen Plant with Wyodak Coal/Biomass Fuel	4-3
4-2	Process Flow Diagram – Hydrogen Fuel Plant with 90% Wyodak Coal/ 10% Biomass – 600°C Hydrogen Separation Membrane	4-6

LIST OF ACRONYMS AND ABBREVIATIONS

AGR	acid gas removal
AR	as received
ASU	air separation unit
ATS	advanced turbine system
C&PS	Office of Coal and Power Systems
¢/kscf	cents per thousand standard cubic feet
CCT	clean coal technology
CH ₄	methane
CO	carbon monoxide
CO_2	carbon dioxide
DOE	U.S. Department of Energy
ETE	effective thermal efficiency
ETTP	Eastern Tennessee Technology Park
FGD	flue gas desulfurization
FY	fiscal year
H_2SO_4	sulfuric acid
HHV	higher heating value
HRSG	heat recovery steam generator
HSD	hydrogen separation device
ID	inside diameter
IGCC	integrated gasification combined cycle
lb/h	pound per hour
MMBtu	million British thermal units
MW	megawatt
N/A	not applicable
NOx	oxides of nitrogen
O&M	operations and maintenance
OD	outside diameter
ORNL	Oak Ridge National Laboratory
PFBC	pressurized fluidized-bed combustion
ppm	parts per millions
PSA	pressure swing adsorption
psia	pounds per square inch absolute
psig	pounds per square inch gage
R&D	research and development
scfd	standard cubic feet per day
SCR	selective catalytic reduction
SF	separation factor
SNCR	selective non-catalytic reduction
SO_2	sulfur dioxide
	Sullui dioAldo
SO_3	sulfur trioxide
SO ₃ TBD	sulfur trioxide to be determined
SO ₃ TBD TCR	sulfur trioxide to be determined total capital requirement