EXECUTIVE SUMMARY

BACKGROUND

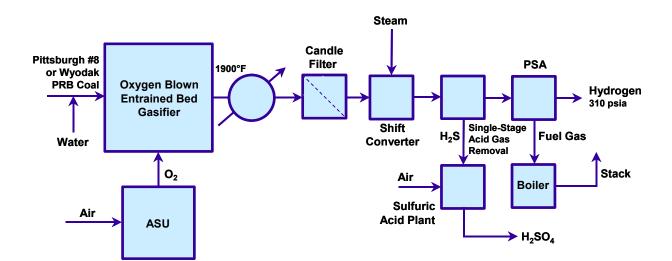
In 1999, both Parsons Infrastructure & Technology Group (Parsons) and the National Renewable Energy Laboratory (NREL) prepared conceptual plant designs and cost estimates for producing hydrogen from coal gasification. Parsons' approach to producing hydrogen focused on integrating high-temperature ceramic membranes with coal gasification to both shift and separate hydrogen from the syngas.¹ Parsons also prepared a base case design for hydrogen from coal gasification utilizing conventional technology. The NREL approach to plant design focused on advanced and conventional technology for hydrogen production with high-temperature gas cleanup, shift, and PSA purification, augmented with various concepts to sequester CO₂ and increase hydrogen production.² These concepts consisted of a base case design for production of hydrogen from coal gasification accompanied by CO₂ sequestration in coal seams, reforming extracted methane, and producing power from extracted coal seam methane. The base case cost for producing hydrogen from coal gasification was reported by Parsons to be \$5.57/MMBtu, while NREL reported the base case cost for hydrogen from coal gasification to be \$18.97/MMBtu.

The primary differences in the cost of hydrogen from the Parsons and NREL plants can be realized from the Total Plant Investment (TPI). The TPI for the NREL plant per unit of hydrogen production is 2.3 times that of the Parsons plant.

Due to the wide differences in reported costs for capital and the need to provide a baseline cost for hydrogen production, NETL has tasked Parsons to review its prior plant design and cost estimate for producing hydrogen from coal gasification utilizing commercial technology. The key benefit of utilizing commercial technology is the obtaining of credible cost estimates for the plant, with a minimum of process contingency. The results of this effort are intended to prepare a basis from which to utilize individualized financial parameters in the U.S. Department of Energy (DOE) Integrated Gasification Combined Cycle (IGCC) Cost Estimating Model to arrive at a selling price for hydrogen.

Focus of the plant design will be from a common thermal gasifier throughput. Two coals will be reviewed, Pittsburgh No. 8 and PRB Wyodak. Hydrogen costs from these coals will be prepared to quantify the differing plant characteristics associated with bituminous coal or sub-bituminous coal.

¹ "Decarbonized Fuel Production Facilities/Base Case Comparisons," Letter Report, U.S. DOE, June 1999.


² Spath, Pamela and Amos, Wade, "Technoeconomic Analysis of Hydrogen Production from Low-Btu Western Coal Augmented with CO₂ Sequestration and Coalbed Methane Recovery Including Delivered Hydrogen Costs," NREL, September 1999.

INTRODUCTION

The objective of this task was to prepare capital and operating cost data to be used to arrive at a plant gate cost for hydrogen produced from coal gasification. The two coals used in this study are Pittsburgh No. 8 bituminous and Wyodak Powder River Basin (PRB) sub-bituminous. Hydrogen cost was determined by first preparing two plant designs for hydrogen production, based on currently available process technology, and meeting current permitting regulations for environmental compliance. These baseline plants will not capture CO₂.

To arrive at a cost estimate for hydrogen, the design included commercially available process technology obtained from verifiable sources. The plants utilized commercially available technology including a Wabash River-scale Destec (E-GasTM) gasifier, conventional gas cooling, commercial shift conversion and acid gas cleanup, commercial sulfuric acid technology, and commercial pressure swing adsorption (PSA). The E-GasTM gasifier is the gasifier of choice for this study since it has been operated on both bituminous and sub-bituminous coals. Figure ES-1 is the block flow diagram for the plant.

Based on financial assumptions typically used by Parsons for IGCC, the cost of hydrogen was estimated for Pittsburgh No. 8 coal and for Wyodak PRB coal at the plant gate. The results of these two cases were imported into the DOE IGCC financial model. Using the financial model, sensitivities of the effect of financial parameters can easily be determined. When different financial parameters are defined, the impact can be quantified.

Figure ES-1 Block Flow Diagram Conventional Hydrogen Plant

Table ES-1 lists the plant design criteria and site conditions.

Hydrogen Production Plant Parameter	Hydrogen Production Plant Design Basis				
Ambient Conditions	14.7 psia, 60°F, river water access				
Coal Feed	Pittsburgh No. 8/PRB Wyodak				
Gasifier	Oxygen-blown E-Gas [™] with second stage adjusted for 1900°F output				
Coal Feed Rate	2,500 tpd dry basis				
Hot Gas Temperature	~1900°F				
Gasifier Outlet Pressure	450 psia				
Gas Quench/Cooling	625°F				
Metallic Candle Filter	Following quench/cooling				
CO-Shift	Single-stage high-temperature, sulfur-tolerant				
Desulfurization	Proprietary amine				
Sulfur Recovery	Sulfuric acid byproduct				
CO ₂ Recovery	None				
Hydrogen Purification	Pressure swing adsorption (PSA)				
PSA Retinate Gas	Fired in auxiliary boiler				
CO ₂ Product Pressure	N/A				
Hydrogen Utilization	315 psia at plant gate				
Auxiliary Power Block	Steam turbine generator				
Plant Size	Maximum hydrogen production from 2,500 tpd dry coal feed				
Plant Capacity Factor	90 percent				

Table ES-1Design Criteria for Conventional Hydrogen Production Plant

Process Selection

Gasifier. The E-GasTM gasifier is selected for these plants because of the wide differences in the coals to be compared. The E-GasTM two-stage design has resulted in successful operation on both bituminous and sub-bituminous coals. By comparison, the Texaco gasifier with its single-stage entrained slurry feed reaches operational limitations with high-moisture coals, e.g., sub-bituminous and lignite.

Shift Reactor Catalyst. For this plant design the CO converter was located upstream of the acid gas removal (AGR) unit. The CO shift catalyst selected for these plants is the Haldor-Topsoe SSK Sulfur Tolerant CO Conversion Catalyst. The plant will utilize a single-stage high-temperature shift, resulting in a CO conversion of greater than 80 percent. The SSK catalyst also promotes COS hydrolysis, thereby resulting in an acid gas consisting of all H₂S.

Acid Gas Removal. The traditional approach to acid gas removal is with regenerable amines. Other methods include removal of H_2S with membranes systems or with molecular sieves. Regenerable amines are by far the most popular means of removal of acid gas from all types of gaseous streams. Therefore, the AGR process selected for these plants is a proprietary amine with an H_2S concentrator on the regenerated acid gas. The gas from the AGR process, concentrated in H_2S , will be used as a feed for a Monsanto H_2S -fired sulfuric acid plant.

Hydrogen Purification. The three main processes for hydrogen purification are the pressure swing adsorption, the selective permeation process using polymer membranes, and the cryogenic separation process. Each of these processes is based on a different separation principle, and the process characteristics differ significantly. The PSA system was selected based on the ability to produce high purity (99.9 percent) hydrogen, low amounts of CO and CO₂, ease of operation, and a single system.

PITTSBURGH NO. 8 COAL

This section is dedicated to the design and cost estimate for a hydrogen plant fed with Pittsburgh No. 8 bituminous coal. This coal is characterized having high volatility, low ash and moisture content, and high as-received heating value. The high sulfur content results in a significant value-added from the sulfuric acid byproduct.

Heat and Material Balance

The heat and material balance for the IGCC plant is based on the maximum hydrogen production from 2,500 tons per day of dry coal. Ambient operating conditions are indicated in the plant design basis. The pressurized entrained flow E-GasTM two-stage gasifier uses a coal/water slurry and oxygen to produce a medium heating value fuel gas. The syngas produced in the gasifier first stage at about 2450°F (1343°C) is quenched to 1900°F (1038°C) by reacting with slurry injected into the second stage. The syngas passes through a fire tube boiler syngas cooler and leaves at 1300°F (704°C). A second gas cooler in series cools the gas further to 645°F (341°C). High-pressure saturated steam is generated in the syngas coolers and is joined with the main steam supply.

The gas goes through a series of additional gas coolers and cleanup processes including a scrubber. Slag captured by the syngas scrubber is recovered in a slag recovery unit.

The syngas stream from the syngas scrubber enters the high-temperature shift converter, which contains a bed of sulfided shift catalyst. The shift reaction converts over 80 percent of the CO to hydrogen and CO_2 and hydrolyzes COS to H_2S . Following the shift converter, the cooled gas stream passes through a proprietary amine acid gas removal process, which removes H_2S and some of the CO_2 . The clean gas stream then passes through the PSA for final purification of the hydrogen. Regeneration gas from the PSA contains fuel value, and is fed to the heat recovery steam generator (HRSG). Regeneration gas from the AGR plant is fed to a sulfuric acid plant.

The cryogenic oxygen plant supplies 99 percent purity oxygen to the gasifiers at the rated pressure. A dedicated air compressor provides air supply for the oxygen plants.

The steam cycle is based on maximizing heat recovery from the gasifier cooler and HRSG, as well as utilizing steam generation opportunities in the shift process.

Overall performance for the entire plant is summarized in Table ES-2, which includes auxiliary power requirements. The net plant output power, after plant auxiliary power requirements are deducted, is nominally 38 MW_e. The overall plant thermal effective efficiency (thermal value of hydrogen and power produced) is 62.3 percent, on an HHV basis.

8
312.6 (112.2)
2,500 tpd
90%
57.7%
62.3%
78.5 MW
40.9 MW
37.6 MW

Table ES-2Performance SummaryHydrogen Production from Pittsburgh No. 8 Coal

<u>Capital Cost</u>

The total plant cost for the plant producing 313 tons of hydrogen per day from Pittsburgh No. 8 coal is \$376.1 million in 2001 dollars. The capital cost summary is included in Table ES-3.

Consumables

Shift Catalyst:

- Change-out every 3 years
- 0.0045 pound of catalyst per 1,000 standard cubic feet of hydrogen
- 250 tons initial charge
- 85 tons per year annual cost

Proprietary Amine:

- 12 pounds per hour
- 100,000 pounds per year

	Client: Project:	DEPARTMEN NETL H2 Pro	duction Fac	ility		~~~~			Report Dat	е: 03-Jun-2002 01:19 РМ	
	Case:	Bituminous I				SUN	MMARY				
	Plant Size:		H ₂ TPD		mate Type:	Conce	ptual	Cos	t Base (Dec) 2001	(\$X1000 & \$X1	.000/TPD
Acct		Equipment	Material				Bare Erected	Eng'g CM	Contingencies	TOTAL PLAN	IT COST
No.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process Project	\$	\$/TPD
1	COAL & SORBENT HANDLING	5,354	1,099	3,955	277		\$10,686	855	1,15	4 \$12,694	41
2	COAL & SORBENT PREP & FEED	8,987	1,307	4,905	343		\$15,542	1,733	1,72	8 \$19,003	61
3	FEEDWATER & MISC. BOP SYSTEMS	4,506	1,339	2,679	187		\$8,711	697	94	1 \$10,348	33
4.2 4.3	GASIFIER & ACCESSORIES Gasifier, Syngas Cooler & Auxiliaries (E Syngas Cooling ASU/Oxidant Compression Other Gasification Equipment <i>SUBTOTAL</i> 4	51,616 w/4.1 29,284 6,881 <i>87,78/</i>		21,976 w/ 4.1 w/equip. 4,811 26,787	1,538 w/ 4.1 337		\$75,130 \$29,284 \$17,720	9,016 w/ 4.1 2,343 1,447	8,41 w/ 4.1 3,16 1,91	3 \$34,789 7 \$21,084	296 111 67
5	HYDROGEN SEPARATION/GAS CLEAN		4,205	20,787	<i>1,875</i> 1,482		\$122,134 \$85.999	<i>12,805</i> 10.111	<i>13,49</i> 9,61		<i>475</i> 338
	COMBUSTION TURBINE/ACCESSORIES Expander Turbine/Generator Combustion Turbine Accessories SUBTOTAL 6							-			
	HRSG, DUCTING & STACK Heat Recovery Steam Generator HRSG Accessories, Ductwork and Stack SUBTOTAL 7	4,533 561 <i>5,094</i>	209 <i>209</i>	551 335 <i>886</i>	39 23 <i>62</i>		\$5,123 \$1,129 <i>\$6,251</i>	410 90 500	55. 12: <i>67</i>	\$1,341	19 4 24
	STEAM TURBINE GENERATOR Steam TG & Accessories Turbine Plant Auxiliaries and Steam Pip SUBTOTAL 8	7,612 3,470 <i>11,082</i>	106 <i>106</i>	1,061 1,611 <i>2,672</i>	74 113 <i>187</i>		\$8,747 \$5,300 <i>\$14,047</i>	700 424 1,124	94) 57: 1.51	\$6,296	33 20 <i>53</i>
9	COOLING WATER SYSTEM	2,375	1,163	1,901	133		\$5,572	446	60:	2 \$6,619	21
10	ASH/SPENT SORBENT HANDLING SYS	5,147	653	2,196	154		\$8,150	888	904	\$9,941	32
11	ACCESSORY ELECTRIC PLANT	5,029	2,077	4,075	285		\$11,467	917	1,238	\$13,623	44
12	INSTRUMENTATION & CONTROL	5,292	1,257	3,903	273		\$10,725	858	1,158	\$12,741	41
13	IMPROVEMENTS TO SITE	1,566	900	2,593	182		\$5,241	419	566	\$6,226	20
14	BUILDINGS & STRUCTURES		2,663	2,711	190		\$5,564	445	603	\$6,610	21
	TOTAL COST	\$201,347	\$22,671	\$80,439	\$5,631		\$310,088	\$31,798	\$34,189	\$376,074	1203

 Table ES-3

 Capital Cost Summary – Hydrogen Production from Pittsburgh No. 8 Coal

PSA Sorbent:

• Periodic change-out with scheduled maintenance

SO₂ Conversion Catalyst:

• Periodic change-out with scheduled maintenance

Byproduct Credits

The production of 229 tons of sulfuric acid per day is taken as a byproduct credit at \$75 per ton.

WYODAK PRB COAL

This section is dedicated to the design and cost estimate for a hydrogen plant fed with Wyodak PRB sub-bituminous coal. This coal is characterized having low volatility, high ash and moisture content, and a lower as-received heating value. The low sulfur content results in a lesser value-added from the sulfuric acid byproduct.

Heat and Material Balance

The heat and material balance for the IGCC plant is based on the maximum hydrogen production from 2,500 tons per day of dry coal. Ambient operating conditions are indicated in the plant design basis. The pressurized entrained flow E-GasTM two-stage gasifier uses a coal/water slurry and oxygen to produce a medium heating value fuel gas. The syngas produced in the gasifier first stage at about 2450°F (1343°C) is quenched to 1900°F (1038°C) by reacting with slurry injected into the second stage. The syngas passes through a fire tube boiler syngas cooler and leaves at 1300°F (704°C). A second gas cooler in series cools the gas further to 645°F (341°C). High-pressure saturated steam is generated in the syngas coolers and is joined with the main steam supply.

The gas goes through a series of additional gas coolers and cleanup processes including a scrubber. Slag captured by the syngas scrubber is recovered in a slag recovery unit.

The syngas stream from the syngas scrubber enters the high-temperature shift converter, which contains a bed of sulfided shift catalyst. The shift reaction converts over 80 percent of the CO to hydrogen and CO_2 and hydrolyzes COS to H_2S . Following the shift converter, the cooled gas stream passes through a proprietary amine acid gas removal process, which removes H_2S and some of the CO_2 . The clean gas stream then passes through the PSA for final purification of the hydrogen. Regeneration gas from the PSA contains fuel value, and is fed to the HRSG. Regeneration gas from the AGR plant is fed to a sulfuric acid plant.

The cryogenic oxygen plant supplies 99 percent pure oxygen to the gasifiers at the rated pressure. A dedicated air compressor provides air supply for the oxygen plants.

The steam cycle is based on maximizing heat recovery from the gasifier cooler and HRSG, as well as utilizing steam generation opportunities in the shift process.

Overall performance for the entire plant is summarized in Table ES-4, which includes auxiliary power requirements. The net plant output power, after plant auxiliary power requirements are deducted, is nominally 42 MW_e. The overall plant thermal effective efficiency (thermal value of hydrogen and power produced) is 59.7 percent, on an HHV basis.

Plant Size, tons H ₂ /day	259.2			
(MMscfd) @ 346 psia	(93.1)			
Coal Feed (dry basis)	2,500 tpd			
Plant Availability	90%			
Cold Gas Efficiency	54.2%			
Equivalent Thermal Efficiency, HHV	59.7%			
Gross Power Production	81.5 MW			
Auxiliary Power	39.6 MW			
Net Power	41.9 MW			

Table ES-4Performance SummaryHydrogen Production from Wyodak Coal

<u>Capital Cost</u>

The total plant cost for the plant producing 313 tons of hydrogen per day from Wyodak PRB coal is \$364.6 million in 2001 dollars. The capital cost summary is included in Table ES-5.

	Client: Project:	DEPARTMEN NETL H2 Pro	duction Fac	ility					Report Date	: 03-Jun-2002 03:16 РМ	
	Case: Plant Size:	Sub-Bitumine 259.2		t w/o CO2 (T COST Capture mate Type:			Cos	t Base (Dec) 2001	(\$X1000 & \$X1	000/TPD
Acct No.	h (B) - 1'	Equipment	Material				Bare Erected		Contingencies	TOTAL PLAN	
NO.	Item/Description	Cost	Cost	Direct	Indirect	Tax	Cost \$	H.O.& Fee	Process Project	\$	\$/TPD
1	COAL & SORBENT HANDLING	6,242	1,282	4,611	323		\$12,457	997	1,345	\$14,799	57
2	COAL & SORBENT PREP & FEED	10,581	1,539	5,776	404		\$18,299	2,040	2,034	\$22,373	86
3	FEEDWATER & MISC. BOP SYSTEMS	4,259	1,253	2,561	179		\$8,253	660	891	\$9,804	38
4.2 4.3	GASIFIER & ACCESSORIES Gasifier, Syngas Cooler & Auxiliaries (E Syngas Cooling ASU/Oxidant Compression Other Gasification Equipment <i>SUBTOTAL 4</i>	54,709 w/4.1 29,814 7,665 <i>92,188</i>		23,270 w/4.1 w/equip. 5,067 28,336	1,629 w/ 4.1 355 <i>1,984</i>	-	\$79,607 \$29,814 \$18,829 <i>\$128,250</i>	9,553 w/ 4.1 2,385 1,538 /3,476	8,916 w/ 4.1 3,220 2,037 <i>14,173</i>	\$35,419 \$22,404	378 137 86 <i>602</i>
5	HYDROGEN SEPARATION/GAS CLEAN	46,572	3,701	16,976	1,188		\$68,437	8,005	7,644	\$84,086	324
	COMBUSTION TURBINE/ACCESSORIE: Expander Turbine/Generator Combustion Turbine Accessories SUBTOTAL 6										
	HRSG, DUCTING & STACK Heat Recovery Steam Generator HRSG Accessories, Ductwork and Stack SUBTOTAL 7	4,533 496 <i>5,029</i>	185 <i>185</i>	551 296 <i>847</i>	39 21 <i>59</i>		\$5,123 \$997 <i>\$6,120</i>	410 80 <i>490</i>	553 108 <i>661</i>	\$1,185	23 5 28
	STEAM TURBINE GENERATOR Steam TG & Accessories Turbine Plant Auxiliaries and Steam Pip SUBTOTAL 8	7,843 3,567 11,409	109 109	1,094 1,656 <i>2,749</i>	77 116 <i>192</i>		\$9,013 \$5,447 \$14,460	721 436 1,157	973 588 1,562	\$6,471	41 25 66
9	COOLING WATER SYSTEM	2,438	1,193	1,951	137		\$5,719	458	618	\$6,795	26
10	ASH/SPENT SORBENT HANDLING SYS	4,322	559	1,845	129		\$6,855	745	760	\$8,360	32
11	ACCESSORY ELECTRIC PLANT	4,974	2,052	4,028	282		\$11,335	907	1,224	\$13,466	52
12	INSTRUMENTATION & CONTROL	5,045	1,199	3,720	260		\$10,224	818	1,104	\$12,146	47
13	IMPROVEMENTS TO SITE	1,465	842	2,425	170		\$4,902	392	529	\$5,824	22
14	BUILDINGS & STRUCTURES		2,630	2,702	189		\$5,521	442	596	\$6,559	25
	TOTAL COST	\$194,524	\$22,285	\$78,527	\$5,497		\$300,832	\$30,586	\$33,142	\$364,560	1407

 Table ES-5

 Capital Cost Summary – Hydrogen Production from Wyodak Coal

Consumables

Shift Catalyst:

- Change-out every 3 years
- 0.0045 pound of catalyst per 1,000 standard cubic feet of hydrogen
- 210 tons initial charge
- 70 tons per year annual cost

Proprietary Amine:

- 12 pounds per hour
- 100,000 pounds per year

PSA Sorbent:

• Periodic change-out with scheduled maintenance

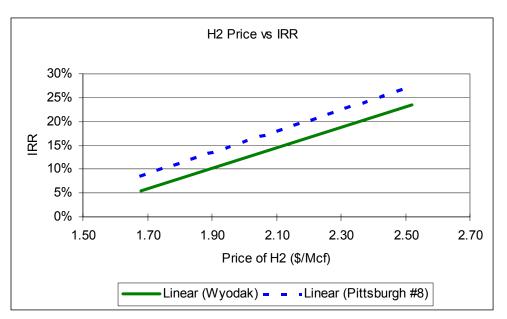
SO₂ Conversion Catalyst:

• Periodic change-out with scheduled maintenance

Byproduct Credits

The production of 61 tons of sulfuric acid per day is taken as a byproduct credit at \$75 per ton.

BASIS OF COST OF HYDROGEN COMPARISONS FOR VARIOUS FINANCIAL ASSUMPTIONS


Based on financial assumptions typically used by Parsons for IGCC (see Table ES-6), the cost of hydrogen was estimated to be \$6.01/MMBtu (\$2.06/Mcf) for Pittsburgh No. 8 and \$6.44/MMBtu (\$2.20/Mcf) for Wyodak PRB coal at plant gate.

The results of these two cases were imputed into the DOE IGCC financial model. Using the financial model, sensitivities of the effect of financial parameters can easily be determined. When different financial parameters are defined, the impact can be quantified. Figure ES-2 shows one such variation, the internal rate of return (IRR) versus the cost of hydrogen.

Levelized capacity factor	90%				
Design/construction period	4 years				
Plant startup date	January 2005				
Land area/Unit cost	100 acres @ 41,500/acre				
Project book life	20 years				
Project tax life	20 years				
Tax depreciation method	Accelerated based on ACRS class				
Property tax rate	1.0% per year				
Insurance tax rate	1.0% per year				
Federal income tax rate	34.0%				
State income tax rate	4.2%				
Capital structure					
Common equity	20% @ 16.50% annum				
Debt	80% @ 6.30% annum				
Weighted cost of capital (after tax)	6.49%				
Sulfur credit	\$75/ton				
Power sales	\$30.00/MWh				

Table ES-6 Financial Parameters

Figure ES-2 Sensitivity of IRR to Hydrogen Costs

