The following summarizes the technical achievements for the first six months of the first project year.

Task 1. Pilot-Scale Fuel Production at PARC (G. Wilson (PARC)

Subtask 1.1 LCO and RCO procurement

Light cycle oil (LCO) was procured from United Refining Company in Warren, PA. Refined chemical oil (RCO) was procured from Koppers, Inc., Harmarville, PA. These materials were blended to provide a feedstock RCO/LCO blend that was upgraded by deep hydrotreatment and fractionated in subsequent tasks. Simulated distillation (D2887) of LCO and RCO samples is shown in **Table 1**.

SAMPLE	LCO PR 1244 PI		1 RCO :LCC PR 1251
Instrument IBP 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95%	485 516 533 553 570 593 618 651 684 705	5880 335 390 429 433 435 437 438 451 500 545 598 650	5880 341 396 431 436 440 486 534 551 577 625 667 704
FBP	771	894	813
 % at 356F (180C) % at 518F (270C) % at 572F (300C) 	31.2	1.91 74.0 85.1	1.36 45.5 68.1

Table 1 United LCO and Koppers RCOSimulated Distillations

Subtask 1.2 Catalyst Preparation

Catalyst, necessary for the deep hydrotreating of total liquid product (TLP), was obtained in this task. In previous work [1, 24], PARC has identified a Criterion Syncat-3 cobalt-molybdenum or Syncat 37, nickel-molybdenum catalysts as effective in converting the coal-based blend to a deeply hydrotreated total liquid product. This product has been found to be rich in hydroaromatic components and as a result the jet fuel is thermally very stable. These catalysts must be activated by presulfiding after drying in a flow of hydrogen. The SYNCAT catalyst is received by PARC pre-impregnated with a sulfur compound, however, PARC employs a treatment with kerosene containing 0.25 wt% dimethyldisulfide to ensure proper sulfiding prior to use.

Subtask 1.3 Hydrotreatment of Blended Product

Production of deeply hydrotreated total liquid product (TLP) to provide material for other tasks in this project by large-scale production of TLP is necessary. In this subtask, the blended RCO/LCO was catalytically hydrotreated at a rate necessary to produce a target LHSV of 0.85 at 710°F using high purity hydrogen. The non-jet-fuel components co-produced with the jet fuel was isolated by fractional distillation for further characterization and testing at Penn State University.

Since the best conditions for hydrotreatment and the optimum ratio of RCO/LCO is still being assessed, this subtask is being studied on a smaller scale than will eventually be used to produce production quantities. Subtask 1.4 describes work at smaller scale to isolate gasoline, diesel and fuel oil range products for evaluation.

Subtask 1.4 Fractionation into Refinery Product Slate

The total liquid product produced in Task 1.3 was distilled to provide fractions corresponding to gasoline, diesel, and fuel oil range refinery product streams. These materials will be used in many of the remaining tasks of the proposal. Distillation of the composite total liquid product is directed at evaluation of all non-jet fuel range material. The total liquid product was distilled in PARC's 150-gallon still using "narrow cut" techniques. This is the same still used in PARC's distillation of jet fuel range product as

a part of our AFOSR contract. Standard D2887 simulated distillation analysis were performed on lower boiling fractions to insure that the boiling range of the fractions correspond to conventional refinery stream specifications. These materials were transferred to Penn State University for further evaluation.

Parametric Study for Coal-Tar Processing Approach

This work is focusing on a parametric study to define optimum hydrotreating conditions, and how varying operating conditions can affect the performance features of each of the fractions that will need to be integrated into an existing refinery.

PARC Technical Services studies involved the procurement of starting materials and the hydrotreating and distillation of refinery products from the hydrotreated total liquid products. RCO and LCO were blended in ratios of 1:1, 2:1 and 3:1 by weight. These materials were then hydrotreated under a variety of hydrotreating conditions aimed at providing a range of low, intermediate and high levels of naphthalene conversion. The extent of hydrotreating severity was followed by measuring the degree of naphthalene conversion and the extent of desulfurization.

These materials were shipped to Penn State for evaluation as part of the various tasks depending on the boiling range of the product. A summary of the yield structure for fractional distillation cuts from the hydrotreated blends is shown in **Table 2**.

Table 2 - Summary of Composition	n of HDT Blends	s of 1:1, 2:1 and 3:	1 RCO/LCO
1:1 FEED			

1:1 FEED															
	Х	864 (P67	7-64-1)	X	865 (P67	7-64-2)	Х	866 (P67	'-64-3)	Х	867 (P67	'-64-5)	Х	868 (P67	-65-1)
	Cha	ge Sulfur (p	pm): 1750	Char	ge Sulfur (p	om): 2000	Cha	rge Sulfur (p	pm): 929	Cha	irge Sulfur (p	opm): 780	Cha	irge Sulfur (p	opm): 41
		Nitrogen	(ppm): 1200		Nitrogen	(ppm): 1800		Nitrogen	(ppm): 403		Nitrogen	(ppm): 130			(ppm): 11.6
	cut1	cut2	btms	cut1 cut2 btms			cut1	cut2	btms	cut1	cut2	btms	cut1	cut2	btms
	OP-180C	180-270C	270C+	OP-180C	180-270C	270C+	OP-180C	180-270C	270C+	OP-180C	180-270C	270C+	OP-180C	180-270C	270C+
wt %	6.9	56.5	31.8	4.7	57.6	36.7	5.5	58.9	35.3	4.6	63.2	31.9	5.6	64.7	29.2
vol %	7.8	56.9	30.6	5.4	58.3	35.3	6.3	65.9	33.8	5.2	63.8	30.6	6.2	65.7	28
Nitrogen (ppm)	227	967	915	277	1500	937	22	205	984	3	16	428	1	1	55
Sulfur(ppm)	28	160	3700	78	68	3400	4	23	2800	12	61	1400	4	1	155
Sim.Dist (D2287)	OP-356F	356-518F	518-572F	OP-356F	356-518F	518-572F	OP-356F	356-518F	518-572F	OP-356F	356-518F	518-572F	OP-356F	356-518F	518-572F
IBP (%off)	180	357	503	176	335	485	176	308	484	176	277	467	178	288	468
5	213	410	532	185	374	517	184	355	519	184	346	521	185	365	516
10	228	419	544	216	417	534	215	389	538	215	371	540	216	375	531
20	266	423	562	240	423	552	235	391	558	234	390	561	250	383	551
30	375	426	573	274	427	569	273	393	577	269	392	578	274	415	570
40	295	431	588	278	434	581	277	394	589	276	393	591	286	426	582
50	313	438	601	288	440	598	290	395	606	287	395	607	312	430	598
60	327	461	618	311	460	615	312	401	622	310	406	620	330	435	610
70	341	483	636	323	481	633	328	433	640	328	438	637	345	459	626
80	343	501	659	342	502	658	344	458	663	344	459	658	357	489	649
90	354	520	687	374	521	685	347	476	690	356	478	687	360	517	681
95	382	536	711	353	536	708	357	491	713	360	494	711	368	530	711
EP	390	566	896	392	565	837	391	521	833	474	525	846	460	562	863
Key GC Comp															1
cyclohexane	3.00	0.05	0.00	4.06	0.29	0.00	4.67	0.03	0.00	5.73	0.04	0.00	6.47	0.00	0.00
ETBenzene	6.56	0.12	0.00	6.00	0.02	0.00	5.90	0.00	0.00	5.84	0.04	0.00	3.67	0.04	0.00
xylenes	14.54	0.03	0.00	20.80	0.17	0.00	18.12	0.62	0.00	17.03	0.45	0.00	11.80	0.67	0.00
tetralin	4.89	36.86	0.00	1.62	31.25	0.00	1.33	40.85	0.00	1.48	39.16	0.00	1.77	34.68	0.00
naphthalene	0.25	11.63	0.00	0.14	16.75	0.00	0.00	5.73	0.00	0.00	1.76	0.00	0.00	2.41	0.00
subst. naph.	0.00	9.66	66.92	0.00	11.11	66.66	0.00	9.24	67.30	0.00	10.72	67.02	0.00	6.03	61.74
Unidentified	70.76	41.65	33.08	67.38	40.41	33.34	69.98	43.53	32.70	69.92	47.83	32.98	76.29	56.17	38.26

2:1 FEED

	X	871 (P67	(-66-1)	X	872 (P67	(-66-3)	X	873 (P67	(-66-4)	X	874 (P67	(-66-5)
		rge Sulfur (p		Chai	ge Sulfur (p		Cha	rge Sulfur (p			irge Sulfur (p	
	cut1 OP-180C	cut2 180-270C	btms 270C+									
wt %	7.2	64.8	27.1	5.7	60.5	31.7	6.7	63.8	27.3	9.9	59.7	21.6
vol %	8.1	65.2	25.8	6.5	61.1	30.2	7.7	64.3	25.8	11.1	59.7	20.7
Nitrogen (ppm)	1	3.6	295	319	1000	2000?	8.5	18.6	518	68	9	94.7
Sulfur(ppm)	1	3.4	423	4.7	38.6	935?	1	101	444	5.5	3.4	94.1
Sim.Dist (D2287)	OP-356F	356-518F	518-572F									
IBP (%off)	177	312	490	177	352	480	177	282	491	167	338	493
5	186	355	523	215	400	525	184	346	528	183	356	525
10	217	373	540	232	440	540	201	359	542	187	362	539
20	259	390	560	273	445	558	228	289	563	219	390	558
30	375	393	578	277	449	571	257	392	578	268	392	571
40	279	394	591	288	457	588	274	393	592	277	383	584
50	305	395	607	312	464	602	278	394	609	307	395	599
60	317	397	623	327	468	623	303	397	627	320	397	611
70	338	418	639	343	493	636	317	403	643	340	424	627
80	345	444	662	345	527	662	342	439	668	347	449	650
90	356	470	695	347	547	693	355	466	706	358	472	685
95	359	486	723	356	567	720	358	482	748	362	487	713
EP	392	518	910	459	697	862	397	515	959	427	518	860
Key GC Comps	5											
cyclohexane	4.71	0.00	0.00	1.90	0.00	0.00	7.65	0.06	0.00	9.60	0.00	0.00
ETBenzene	4.88	0.00	0.00	5.54	0.00	0.00	6.84	0.03	0.00	4.12	0.00	0.00
xylenes	17.62	0.10	0.00	20.62	0.00	0.00	17.63	0.36	0.00	11.96	0.00	0.00
tetralin	0.93	45.30	0.00	1.58	33.66	0.09	1.07	40.94	0.00	2.35	40.81	0.00
naphthalene	0.00	5.13	0.00	0.12	29.06	0.09	0.07	10.28	0.00	0.14	4.91	0.00
subst. naph.	0.00	7.74	66.68	0.00	9.99	67.92	0.00	8.43	67.70	0.00	3.46	65.29
Unidentified	71.86	41.73	33.32	70.24	27.29	31.90	66.74	39.90	32.30	71.83	50.82	34.71

3:1 FEED												
	Х	875 (P67	'-67-1)	Х	876 (P67	'-67-2)	X	877 (P67	'-67-4)			
	Cha	rge Sulfur (p Nitrogen	pm): 206 (ppm): 50	Cha	rge Sulfur (p Nitrogen	pm): 196 (ppm): 474	Charge Sulfur (ppm): 629 Nitrogen (ppm):m14					
	cut1 OP-180C	cut2 180-270C	btms 270C+	cut1 OP-180C	cut2 180-270C	btms 270C+	cut1 OP-180C	cut2 180-270C	btms 270C+			
wt %	10.2	68.2	19.8	8.6	61.5	25.9	6.1	64.4	29.2			
vol %	11.6	67.7	18.8	9.8	61.8	24.5	7	65	27.9			
Nitrogen (ppm)	6.4	18.2	276	54.5	162	1500	0	64	2000			
Sulfur(ppm)	15.4	18.5	81.4	112.1	9	631	906	1100	2100			
Sim.Dist (D2287)	OP-356F	356-518F	518-572F									
IBP (%off)	167	320	477	172	334	487	176	320	491			
5	183	357	528	183	367	529	183	361	530			
10	187	386	542	196	389	542	215	389	543			
20	219	390	560	234	391	562	235	391	562			
30	267	392	573	374	393	579	274	394	580			
40	276	393	582	278	394	591	277	396	590			
50	293	394	599	306	395	609	285	400	608			
60	315	396	610	318	399	629	311	401	628			
70	335	408	627	341	402	644	327	402	644			
80	345	440	648	346	433	668	344	432	665			
90	356	464	683	358	463	706	346	462	698			
95	359	480	716	389	480	732	349	479	722			
EP	390	517	880	459	516	936	399	516	854			
Key GC Comps												
cyclohexane	9.60	0.00	0.00	6.01	0.00	0.00	3.96	0.03	0.00			
ETBenzene	4.31	0.00	0.00	0.04	0.00	0.00	7.54	0.00	0.00			
xylenes	14.35	0.00	0.00	1663	0.33	0.00	22.18	0.06	0.00			
tetralin	1.05	46.38	0.00	6.52	46.17	0.06	1.40	31.53	0.00			
naphthalene	0.00	6.08	0.00	0.62	16.01	0.04	0.17	31.95	0.00			
subst. naph.	0.00	5.23	65.75	0.00	8.10	66.72	0.00	9.57	66.47			
Unidentified	45.60	36.37	34.01	47.30	24.13	32.95	41.25	22.17	33.14			

Table 2. Summary of Composition of HDT Blends of 1:1, 2:1 and 3:1 RCO/LCO

The evaluation of the jet fuels, as part of our AFOSR program, will provide guidance for selecting scale-up conditions and evaluating the most relevant non-jet fuel fractions as a part of this program.

Decant Oil Hydrotreating for Co-Coking Approach

Decant oil (Heavy FCC Cycle Oil) was hydrotreated at several different levels of severity to produce feeds for Penn State's co-coking component of the Refinery Integration Study. The Decant Oil was provided by United Refining, Warren Pennsylvania and contained a high level of sulfur (3.5 wt%) and is a heavy oil with a high gravity (1.1203 gm/ml, API -5.2)

PARC's adiabatic hydrotreatment pilot unit, P67 was used for the hydrotreating. The catalysts charges were:

Reactor 1 2148 ml, 2474 gm, Criterion NiMo Syncat-37Reactor 2 2656 ml, 3060 gm, Criterion NiMo Syncat-37Total 4804 ml, 5534 gm

Seven hydrotreated products were produced with a range of sulfur removal from 37.9 to 99.0 wt%.

Pilot unit description

In the configuration used for this study, P67 consists of two reactors operated in series. Three standard quench zones were included in the set up of Reactor 1 which contained catalytically inert quartz glass beads. Reactor 2 is not equipped with quench but heat loss does occur in the transfer line between the two reactors.

Hydrogen was recycled after amine scrubbing to remove H_2S and the purity was maintained at 95 to 98%. Minimum bleed off was used within the constraint of maintaining recycle H_2 purity. Make-up hydrogen is thereby minimized to supplying the hydrogen consumed in the operation plus losses due to the on-line gas chromatograph demand.

The total liquid product was taken as fractionator bottoms after partial stripping of H_2S and ammonia in the fractionation tower. In some cases this operation resulted in small amounts of fractionation tower overhead. In such cases the furnace oil tower overhead was combined with the fractionation tower bottoms. The tower system was operated at atmospheric pressure.

Hydrotreating operation

A sulfiding procedure was provided by the catalyst vendor and was modified to fit PARC's unit. The SYNCAT-37 catalyst was received pre-impregnated with a sulfur compound. A commercial diesel containing 0.25wt% sulfur as dimethyl disulfide in addition too the naturally occurring sulfur in the base diesel (about 300 ppm) was used as the catalyst activation feedstock. The sulfur in the feedstock would ensure that the catalyst had an adequate supply of sulfur during the sulfiding procedure. Catalyst bed temperatures were brought up to Rx1 530°F and Rx 2 545°F prior to switching to run feed.

Operation on run feed -run P67-69-1 through 7

The run feed was set at 5500gm/hr. (about 1 LHSV) and the inlet hydrogen rate at 75 scf/hr. (2,400 scf/bbl). Inlet gas purity was initially targeted at 98 % hydrogen minimum. Unit pressure was maintained at 600 psig for runs 1 through 5 and was increased to 1200 psig for runs 6 and 7.

The decant oil was processed for 10 days (Feb 3 through 13, 2004). Feed was processed at nominally seven different conditions representing seven levels of severity. To achieve this reactor temperature and feed rate were varied in the first four runs. The results for the first four runs confirmed our expectation that the decant oil difficult to desulfurize. Since the first drum of product (Run 1) had not achieved the target level of desulfurization it was decided to re-pass it at a reduced feed rate. The desulfurization level achieved was still only 82%. It was therefore decided, in the interest of time, to increase the reactor pressure to 1200 psig rather than reduce the feed rate further to achieve a target of about 95% desulfurization. Runs 5 and 6 achieved desulfurization levels of 88 and 99%, respectively. A decrease in reactor temperature was made in Run 7 to attempt to produce a product with a lower Desulfurization level than the 88% of Run 5. However, the product maintained 99 % Desulfurization in the limited time remaining.

The summary of the daily operating conditions for each run is given in **Table 3** together with the sulfur and nitrogen levels in the feed and the product. This information is further condensed in **Table 4** with the addition of the net weights and volumes of the seven samples shipped to Penn State. The API and specific gravities of the seven products are given in **Table 5**.

CATALYST		CRITERIO	ON SYNCAT-	-37 (PC	-723)																			
	CHARGE	ml	gm		-		Heats On		1100	2/3														
	Rx1	2148	2474				Start Diesel in	n	1100	2/4														
	Rx2	2656	3060				Start Run Fee	ed:	2400	2/4	PR1542													
	Total	4804	5534										Runs 1-5	NOMINAL	RUN PRE	SSURE 60	00 PSIG							
							Pressure Te	st 15	00 psig				Runs 6-7	NOMINAL	RUN PRE	SSURE 12	200 PSIC	2						
Run No	Time	Date	FEED		REACTOR 1				DE	АСТО	D 1	WABT	LHSV Inlet gas	Inlet gas	Quench	Makeup	%H2	HYDROGEN	WT. BAL	PRODUCT	ANALV	FS		
Kun No	Thic	Date	gm/hr	IN		MAX		IN			WABT	COMB	LIISV	SCFB	SCFB			CONSUMP	% (8 HR)	S. wt%	-	Spec Grav	%DES	%D
		2004	8hrAv	114	001	MAA	8HR AVG		001	MAA	WAD1 8HR AVG		8HR AVG	эсгь	эсгь	эсгь	INLET	SCFB	% (8 HK)	S, wt%	N, PPM (1)	gm/ml	70DES	70D
	0000		Started Run	i Feed			onnerie				unit i v u	untitud	Unitered					5015	Feed Drum 1	3.54	1300		-5.2 API	+
								1	1										Feed Drum 3	3.44	1374			+
				-															Feed Drum 3	3.44	13/4			+
				_															r eea Drum 4					+
P67-69-1	1430 grab	2/5	5490	529	594	594	556	545	615	615	581	568	1.02	2440	0	2611	98.2	975	100.9		1300	1 0760	100.0	0.0
1 57-69-1	0800 grab	2/6	5490		596		557	545		614	582	570	1.02	2511	0	1786	98.2	685	99.0		1200	1.0760	100.0	7.
P67-69-1	08-20	2/5-6	Product Dru		570	570	551	545	014	014	562	570	1.02	2511	-	1700	70.2	005	<i>))</i> .0	2.20	1300	1.0700	37.9	0.0
P67-69-2	1600	2/5=0	Increasing ter																	2.20	1500		57.7	- 0.0
107-07-2	04 grab	2/7	5274		666	666	603	577	637	637	610	606	0.98	2598	0	2148	97.7	908	99.0	1.67	1100	1.0679	52.8	+
P67-69-2	20-08	2/6-7	Product Dru		000	000	005	011	057	0.57	010	000	0.70	2000		2110	21.1	,00	,,	1.75	1200	1.0077	50.6	7.2
P67-69-3	0400	2/8	3875		687	687	622	590	651	651	629	626	0.72	3517	0	3428	97.9	1159	99 7	nr	nr	1.0575	2010	
	04 grab	2/9	4144		685		621	590		647	626	624	0.77	3388	0	4879	98.7	1081	99.2	1.16	968	1.0568	67.2	+
P67-69-3	08-04	2/7-9	Product Dru																	1.22	1000		65.5	23.
P67-69-4	0400	2/9	STARTED F		G TE	MPER/	ATURES																100.0	100
	15 grab	2/9	4090			716	668	632	678	678	663	666	0.76	3500	0	5577	97.5	1185	99.3	0.58	917	1.0568	83.6	29.
	08 grab	2/10	3821			712	669	662		692	680	675	0.71	3283	0	2626	95.7	1080	100	0.56	935	1.0583	84.2	28.
P67-69-4	04-16	2/9-10	Product Dru																	0.64	944		81.9	27.
																								1
P67-69-5	1600	2/10	STARTE	D 2NE	PAS	SS OF	Drum No	1																
	08 grab	2/11	2691	607	652	652	634	660	675	675	667	650	0.50	4602	0	1455	95.6	657	99.7	0.49	625	1.0451	86.2	51.
	900	2/11	STARTED F				ATURES																	-
P67-69-5	16-12	2/10-11	Product Drui	m No 5																0.42	678		88.1	47.8
P67-69-6	1345	2/11	STARTED	RAISIN	NG PR	ESSUR	RE TO 1200 P	SIG																
	08 grab	2/12	2745			786	753	716	757	757	744	749	0.51	4020	0	4775	95.2	1268	97.5	0.0087	78	1.0246	99.8	94.
	08 grab	2/13	2745		794	794	754	722	759	759	746	750	0.51	2858	0	4333	95.2	1288	97.1	0.0130	132	1.0239	99.6	89.
	12-08	2/11-13	Product Dru	m No 6																0.0411	179	1.0254	98.8	86.
																				0.0591	185			
	09	2/13	STARTED 1				ARTURE																	
	1600	2/13	2745	655	771	771	735	694	740	740	733	734	0.51	3095	0	4587	97.2	1300	96.5					
	08-12	2/13																		0.0141	137		99.6	89
	12-16	2/13																		0.0254	141		99.3	89.
	16-18	2/13																		0.0368	108		99.0	91.
	08-1800	2/13	Product Can	s for Dr	um No	7														0.0348	147	1.0224	99.0	88.

Start Saving Product 0300, 2/5

(1) 2nd sample after re-mixing drum

Table 3. Hydrotreating Operating Conditions Summary

			Catalyst Run Feed:			Г-37 (РС-723 DECANT OI	·									
				L RUN PRES L RUN PRES												
Drum	Run No	Time	Date	Rx1	Rx2	Rx1+2	LHSV	Inlet gas	H2 Consup	PRODUC	T ANALY	SES			Net Wt.	
No				WABT	WABT	WABT 8HR AV	8HR AV	Nominal SCFB	Nominal SCFB	S, wt%	6 N, PPM (1) 1300	Spec Grav	%HDS	%HDN	in drum	
			2004	8HR A	VG					(1)		gm/ml			lbs	gallon
		0000	2/5	Started Ru	ın Feed					3.54		1.1203	-5.2 API			
										3.44	1374					
1	P67-69-1	08-20	2/5-6	556	582	568	1.02	2500	750	2.20	1300	1.0810	37.9	0.0	26.4	2.9
2	P67-69-2	20-08	2/6-7	603	610	606	0.98	2600	908	1.75	1200	1.0730	50.6	7.7	133.8	15.0
3	P67-69-3	08-04	2/7-9	622	626	624	0.75	3450	1100	1.22	1000	1.0591	65.5	23.1	377.2	42.7
4	P67-69-4	04-16	2/9-10	669	680	675	0.74	3400	1150	0.64	944	1.0575	81.9	27.4	304.2	34.5
	P67-69-5	1600	2/10	STARTI	ED 2ND P	ASS OF D) Drum No	1								
5	P67-69-5	16-12	2/10-11	634	667	650	0.50	4600	657	0.42	678	1.0489	88.1	47.8	91.6	10.5
	P67-69-6	1345	2/11	STARTED	RAISING	PRESSURE	TO 1200 I	PSIG								
6	P67-69-6	12-08	2/11-13	754	745	750	0.51	3000	1268	0.0411	179	1.0254	98.8	86.2	260.8	30.5
										0.0591	185	(1)				0.0
7	P67-69-7	08-1800	2/13	735	733	734	0.51	3100	1300	0.0348	147	1.0224	99.0	88.7	49.9	5.9

(1) 2nd sample after re-mixing drum

 Table 4. Product Drum Analyses