REACTOR HYDRODYNAMICS

Report for the

TECHNICAL DATA ANALYSIS PROGRAM

by

The Pittsburg & Midway Coal Mining Co-1720 South Bellaire Street Denver, CO 80222

July 1984

Prepared for the Department of Energy under Contract No. DE-AC22-82 PC50046

			TABLE OF CONTENTS	Page	
Sum	mary			1	
1.0	0 Introduction				
2.0	Phase	Holdup		6	
	2.1	Summar	y of Open Literature	6	
	2.2 SRC-II Design Data		8		
		2.2.1	University of Pittsburgh Cold Flow Studies	8	
		2.2.2	Gulf Science & Technology Cold Flow Studies	11	
		2.2.3	Ft. Lewis Dissolver Radiotracer Tests	11	
	['] 2.3	Impact	s of Gas Holdup on Reactor Design	14	
3.0	Backn	nixing		19	
	3.1	Bubble	Column Flow Model	19	
	3.2	2 SRC Experimental Programs		22	
		3.2.1	GS&TC Bubble Column Tests	22	
		3.2.2	Ft. Lewis Radiotracter Tests	24	
		3.2.3	University of Pittsburgh Bubble Column Studies	28	
	3.3	Modeli	ng Studies	31	
	3.4	Impact	of Backmixing on Reactor Design	32	
<u>4.0</u>	Mass	Transfer		40	
5.0	Solids	Settling		44	
6.0	Effec	t of Hyd	rodynamics on the Demonstration Plant Dissolver Design	45	
			ta Needs	48	
	3.0 Conclusions				
	le ferences			52	

LIST OF TABLES

Number	Title	Page
Table I	Comparison of System Physical Properties	16
Table II	Summary of Data From Radiotracer Injections at Reactor Inlet-February 1981	17
Table III	Inlet Gas Tracer Injection Results	18
Table IV	Liquid Phase Dispersion in GS&TC Bubble Column	35
Table V	Ft. Lewis Dissolver Liquid Phase Radiotracer Injections- February 1981 Results	. 36
Table VI	Effect of Baseline on Interpretation of Liquid Phase Radiotracer Data	37
Table VII	Ft. Lewis Dissolver Gas Phase Radiotracer Injections- February 1981 Results	38
Table VIII	Properties of Liquids Used in University of Pittsburgh Bubble Column Tests	39
Table IX	Impact of High Gas Holdup on Slurry Residence Time	47

List of Figures

Number	Title	Page
Figure 1	Gas holdup for various aqueous solutions	55
Figure 2	Gas holdup for dilute alcohol solutions	56
Figure 3	Effect of surface tension on gas holdup for dilute alcohol solutions	57
Figure 4	Effect of liquid phase superficial velocity on gas holdup	58
Figure 5	Concentration curves for axial dispersion model in an "open vessel" system	59
Figure 6	Representation of churn turbulent flow with internal recirculation cells in a cocurrent upflow bubble column	60
Figure 7	Possible flow models for an SRC-II dissolver	61
Figure 8	Ft. Lewis dissolver radiotracer detector locations	62
Figure 9	Top detector response to a liquid phase radiotracer injection at the dissolver inlet	63
Figure 10	Smoothed liquid phase radiotracer concentration curve	64
Figure 11	Alternate baselines for liquid phase radiotracer concentration curve	65
Figure 12	Predicted concentration curve for Baseline A	66
Figure 13	Predicted concentration curve for Baseline B	67
Figure 14	Predicted concentration curve for Basline C.	68
Figure 15	Predicted concentration curves for a dispersion number of 4.375.	69
Figure 16	Top detector response to a gas phase radiotracer injection at the dissolver inlet	70
Figure 17	Flow regime transition for dilute alcohols	71
Figure 18	Flow regime transition for different concentrations of electrolyte	72
Figure 19	Flow regime transition for different degrees of viscoelasticity	73

Number	Title	
Figure 20	Flow regime transition for different degrees of pseudoplastic behavior	74
Figure 21	Relationship between dispersion coefficient and flow regime	75
Figure 22	Simplified SRC reaction model	76
Figure 23	Heat of reaction based on P-99 heat balances	77
Figure 24	Comparison of P-99 dissolver temperature profile for the 10 ft and 20 ft tall reactors	78
Figure 25	Comparison of observed and estimated hydrogen consumption for A-1 mass transfer tests	79
Figure 26	Fractional decrease in hydrogen consumption (f) as a function of specific mixing power (P/V)	80
Figure 27	Effect of mass transfer coefficient on fractional decrease in hydrogen consumption	81