
3.9 OTHER CONCLUSIONS AND RECOMMENDATIONS

3.9.1 Opinions andComments

In general, and for each liquefaction technology, most panel members

expressed the opinion that the processes that will eventually be

commercialized are not those currently under development. In the words

of one panel member, “we haven’t yet invented the chemistry that will

ultimately be commercialized.” This thinking is reflected in the

highest-priority recommendations, many of which are for fundamental or

applied research that will lead to new processes.

On the other hand, the panel recognized that DOE must continue to

develop the current processes as a major short-term objective. Process

development units (PDUS), although expensive to operate, are necessary to

perform this function as proof-of-concept units (POCS), They also serve

to test equipment and instrumentation, and provide information for

economic evaluations. Most important, these large units are necessary to

maintain preparedness for commercialization. Thus , the highest-priority

recommendations are relatively balanced between fundamental research and

process development\applied research.

Much of the recommended fundamental research is applicable to more

than one technology. A prime example is research on coal structure,

which applies equally to direct liquefaction, pyrolysis, coprocessing,

and bioliquefaction. The list of recommendations contains several other

research areas that cut across technology boundaries. Nevertheless,

funding for these investigations is included in the budget for a

particular technology, and understanding this, the panel has placed each

fundamental research recommendation into one of the technologies to which

it applies. The reader should understand that many of these fundamental

programs should not be limited to the technology category in which they

have been placed. Also, fundamental programs may be divided into two

areas: supportive (or evolutionary) research, which provides basic

3-55

information for processes under development, and explorative (or

revolutionary) research, which lays the foundation for new and better

processes.

Opinions expressed by individual panel members at the final meeting

in McLean, Virginia, on July 13-14, 1988, that disagreed with the

consensus of the panel are as follows:

o The area of alternative liquefaction chemistries is not
adequately represented in this document because these
chemistries are not in the current processing schemes and
research on them is not being funded by DOE.

o The DOE liquefaction program lacks the means to test new basic
findings at the next scale of development. Without such a
capability, research in fundamental ameas is dead-ended and
will be unable to modify significantly the current processes
under development.

o Commercialization of pyrolysis depends on utilization of the
char. It is a mistake to fund pyrolysis under liquefaction
because the liquefaction community will not address the char
utilization problem.

o Direct conversion of methane should be included among the high-
priority recommendations because of its potential impact on
fuels production.

3.9.2 DOE Procedures and Policies

The panel offered and received recommendations that relate to DOE

procedures and policies. These recommendations, if implemented, could

have a profound effect on the liquefaction program.

A major concern is that the DOE solicitation procedure channels

research and thereby stifles new ideas. This results from the RFP

procedure that request research in areas specified by DOE. New ideas in

liquefaction, or which can be applied to liquefaction but which are not

anticipated by the RFP, would be considered as not responsive. Instead,

many of the proposals are for “me too” research in the belief ‘that such

work will be funded.

3-56

Therefore, the panel recommended that DOE increase funding for

unsolicited proposals to encourage and fund research on new liquefaction

chemistries.

Other recommendations concerning DOE procedures are:

o DOE should establish standardized procedures to evaluate new
chemistries and process concepts in order to weed out programs
of limited potential and make the best use of the available
funds in programs of high potential.

o Establish a standardized procedure for communication or linking
of basic and applied/process development research so that each
understands the significant findings or needs of the other.
This will speed the application of basic research to process
development.

o One panel member recommended that universities should
participate in each large development program, such as at
LaPorte or Wilsonville. The universities could provide support
in such areas as microautoclave tests, catalyst screening, and
analyses. In this way, the university becomes familiar with
the development program, and graduate students get first-hand
experience in industrial programs.

The Wilsonville PDU is the largest-scale unit in operation in the

direct liquefaction program. It is the unit that tests the best

process under development, and it does so in continuous -flow,

integrated, steady-state runs of several weeks duration, and at

conditions most closely approximating commercial operation. A concern

was voiced about the lack of accessibility of many contractors to

fundamental information and materials from this program. There was also

an underlying feeling that more information is obtainable than is now

being generated at Wilsonville. Consequently, the following

recommendations were made to more closely coordinate the laboratory

programs with the Wilsonville operation:

o Establish a Wilsonville data and sample bank from which DOE
contractors can obtain materials produced at PDU scale and at
well-documented conditions. The quantities produced at
Wilsonville are sufficiently large to supply several
contractors with the identical materials, if necessary,

3-57

eliminating many of the problems associated with interpreting
results from laboratories that use different solvents, many of
which are not representative of streams produced during
liquefaction.

o This data/sample bank should be administered by an organization
other than the Wilsonville operations, so that its sole
responsibility will be the collecting of samples, documenting
the run conditions that produced the samples, disseminating
information regarding the samples available, and responding to
requests for samples.

o More extensive analyses should be performed on the Wilsonville
streams (product and internal) to obtain more fundamental
understanding of what is happening in the direct liquefaction
process. These analyses should be performed by a group with
strong organic chemistry expertise.

3-58

3.10 PEER REVIEWERS’

A draft of this

COMMENTS

report was sent to ten outside reviewers who were

chosen for their extensive experience in coal-liquefaction research and

development. The following people served as peer reviewers of this

report:

1. Mr. Seymour Alpert, Electric Power Research institute
2. Dr. Raymond Anderson, National Institute for Petroleum and

Energy Research
3. Dr.
4. Dr.
5. Dr.
6. Mr.
7. Dr.
8. Dr.
9. Dr.

10. Dr.

In most

David Gray, MITRE Corporation
Gerald Huffman, University of Kentucky
Alex Mills, University of Delaware
Eric Reichl, Consultant
George Roberts, Air Products and Chemicals
David Schmalzer, Argonne National Laboratory
Howard Stephens, Sandia National, Laboratory
Duayne Whitehurst, Mobil Oil

instances peer reviewers’ comments were incorporated within

this report, particularly those which dealt with corrections or specific

changes. Opposing and supporting viewpoints, and comments of a general

nature are included in Appendix F. Numerous comments were received from

the reviewers that this report provides a comprehensive and authoritative

review of the status of coal liquefaction science and technology. The

report was also considered to be generally well written by knowledgeable

individuals. The choice of panel members was considered excellent and

ensured that the total status of coal liquefaction technologies would be

exhaustively reviewed. The reviewers also thought that the major

advances of recent years are described in a clear manner, including the

reasoning underlying individual developments. By and large, the

reviewers expressed their agreement with the panel’s recommendations and

priorities.

The most important oPDosing comments

in the next sections, with replies by the

of these opposing views concern statements

9.

3-59

are abstracted and summarized

principal investigator. Some

made in the review chapters 4-

.-. .—
3.10.1

a.

b.

c.

d.

e.

f.

g“

3.10,2

a.

General (Opposing) Comments

There are fundamental problems in the DOE program that
virtually assure the failure of basic research finding their
way into process development. These problems include the
absence of adequate resources at the process development and
demonstration level. The panel, therefore, over-emphasized the
need for and value of basic research given the inadequate
resources provided for meaningful utilization of the products
of basic research.

Process development and large pilot plant activities must
receive greater resources than DOE has provided in recent years
if there is to be any substantial likelihood of commercially
deployable liquefaction technology.

DOE should have a few continuous-flow units in operation for
process screening and process parameter studies. These units
should range in scale from 0.5 to 2 tons/day to a fully
integrated pilot plant of 100 to 200 tons/day that will be of a
commercial process configuration.

PI Reply: The need for screening units and scale-up facilities
has been recognized by DOE. Design and construction of two
PDUS will begin in 1989. A direct liquefaction PDU will have a
capacity of 200 pounds of coal per day. The indirect
liquefaction PDU will have a capacity of one barrel per day.
This latter unit will have two independent reactor systems--
one Fischer-Tropsch and the other to produce oxygenates.

CO/H2 are produced more economically from natural gas, leading
industry toward a concentrated R&D effort in CO/H2 conversion.
There is no need for DOE to interfere with these private-sector
efforts.

Generally, R&D needs to be more “exploratory” and less
“programmatic”.

More importance should be given to innovative research.

Not enough consideration was given to measurement and control
instrumentation.

Comments re: Direct Liquefaction

The research recommendations do not address the need for the
data required for engineering design i~nd process scale-up. In
particular there is a lack of thermodynamic data. The panel
placed too much emphasis on kinetic data.

3-60

b.

c.

d,

e.

f.

~.

h.

i.

j.

Even if the (current) catalytic reactors were eliminated, the
cost of product would not drop very much. To make further

advances implies the discovery of some new approach which might
allow operation in the 250-500 psig range.

An additional need for the operation of an integrated pilot
plant is the development of meaningful environmental, safety,
and health information.

The statement on Page 4-50, paragraph 3, asserts that the U.S.
liquefaction processes use high surface-area supported
catalysts operating at lower pressure than European (e.g.,
German) developers, This is inconsistent with the fact that
processes developed in the 1970’s included SRC-11, which used
native coal minerals as catalyst and SRC-1, which was a thermal
process.

PI reply: The statement referred to recent process
developments. In the 1980’s all liquefaction processes under
development in the U.S. have used commercially-produced
promoted hydrotreating catalysts.

A clarification of the liquid yields claimed in Tables 4-9 and
4-11 is needed. Does this include coal feed to the gasifier to
generate hydrogen.

PI reply: These yields reflect the current processing
philosophy of squeezing maximum liquid production out of the
feed to the liquefaction process. These yields do not include
the feed to the gasifier. Hydrogen can be produced by one of
several methods, including gasification of coal.

An environmental issue not addressed is the restrictions on
aromatic content in gasoline, such as the 0.8 percent benzene
limit in California.

The analytical section of Chapter 4 should contain references
to XAFS studies, variable angle spinning (VASS) and depolar
dephasing. Low-temperature ashing, followed by x-ray
diffraction or FTIR, is not a good way to study mineral matter.

More work is needed on the relationship of catalyst structure
to catalyst performance.

Homogeneous catalysts used in the past, such as ZnC12, had
great activity and deserve renewed attention.

Section 4.2.2, although informative, should not be used to
present a comprehensive view of research in the chemistry and
the mechanism of liquefaction reactions.

3-61

—

3,10.3 Comments re: Indirect Liquefaction

a. The review is narrowly limited to the conversion of CO/H2, an
area that is highly developed and well covered by R&D in
private industry. The recommendations will do little to
improve the economics of indirect coal liquefaction. The two
major reasons are that coal gasification represents 4/5 of the
total cost and that the CO/H2 reaction is so efficient that
further improvements will be irrelevant. The important
subjects in indirect liquefaction are gasification and gas
clean-up.

b. A more extensive evaluation of indirect liquefaction based on
sulfur-resistant catalysts for the CO/H2 conversion step should
be recommended.

c. A somewhat more uncertain reduction in the cost of synthesis
gas might be found in the use of air in lieu of oxygen.

d. Significant reduction in the cost of indirect liquefaction
requires lower-cost synthesis gas, wlhich probably means higher
sulfur-content and, possibly, air-blown gas.

e. Given the excellent performance, long life, and low cost of
methanol catalysts, there is little economic incentive for
developing homogeneous liquid-phase catalysts.

f. The report should have placed greater emphasis on oxygenates,
because of the surge in their use in transportation fuels.

g. Chapter 9 does not review overseas developments in indirect
liquefaction.

3.10.4 Comments re: Pyrolysis

a. Major recommendations should be What can be done with the tar
and char” and “How is the reactor to be scaled up to get this
same yield as obtained in small-scale. equipment.”

b. The swelling or “caking” tendency of coal is increased
enormously by hydrogen, which simply fuses coal when in a dry
state. Therefore, one can not be optimistic about the
potential of hydropyrolysis.

c. Catalytic hydropyrolysis may simpl~y be a new buzzword and
should really be treated as part of the wider subject of
innovative catalysts for hydrogenaticm at lower temperature.

3-62

ymid = yp (pp) + d3y
call velfind(upr vp, cell, xmid, ymid, vxr vy, dxr dy, nx,&

ny, nmax)
d4x = dt * Up

d4y=dt*vp
dxp = (dlx + d2x + d2x + d3x + d3x + d4x) / 6.0d+O0
dyp = (ally+ d2y + d2y + d3y + d3y + d4y) I 6.Od+OO

else
dxp = zero
dyp = zero

end if
Xp(pp) = Xp(pp) + dxp

YP(PP) = YP(PP) + dyp
Upp(pp) = dxp / dt
vpp(PP) = dyp / dt

end do
end if

! Calculate the number particles and the age of the grout in each
! model cell and update the yield stress array.
ybl = sum(dy)
do i = 1, ny

yb2 = ybl
ybl = yb2 - dy
xb2 = zero
do j = 1, nx

xbl = xb2

xb2 = xbl +
if (cell(i,:

pc(irj) = O
if (np > O) then

i)

dx(j)

) /= O and. h(i,j) > delta) then

tsum = zero
do pp = 1, np

flag = (xp(pp) > xbl and. xp(pp) <= xb2)
flag = flag and. (yp(pp) > ybl)
flag = flag and. (yp(pp) <= yb2)
if (flag) then

pc(i,j) =pc(i,j) + 1
tsum = tsum + tp(pp)

end if
end do

end if

if (pc(i,j) > O) then
age(i,j) = time - tsum / dble(pc(i,j))

else
age(i,j) = zero

end if
else

age(i,j) = zero
pc(i,j) = O

end if
yldstr(i,j) = yield + stiffrate * age(i,j)
yldstr(i,j) = dminl(yldstr(i, j), ultimt)

end do
end do

! Determine if the rooms have been completely filled.

97

fillflag = true.
do ksweep = 1, active

i = isweep(ksweep)
j = jsweep(ksweep)

fillflag = fillflag and. (h(i,j) >= ceil(i,j))
if (not. fillflag) exit

end do

if (fillflag) then
write (out,*)
write (out,*) ‘Mine has been completely filled with grout.’

write (out,*)
end if

! Write the restart file.
restart = time - trestart > trst - dtmin * l.Od-01
restart = restart or. time > tmax – dtmin * l.Od-01

restart = restart or. fillflag or. divergent

if (restart) then

trestart = time

call hms(tstring, time)
open (unit=rst, file=trim(jobnam)//’.rst’, status=’unknown’)
write (rst,cfrmt) ‘! Restart file for job: ‘ // trim(jobnam)

write (rst,cfrmt) ‘! Simulation time: ‘ // trim(tstring)
write (rst,cfrmt) ‘! Note:’
write (rst,ifrmt) ‘! nmax = ‘, nmax
write (rst,ifrmt) ‘! ncl = ‘, ncl
write (rst,ifrmt) ‘! nqn = ‘, nqn
write (rst,ifrmt) ‘! npp = ‘, npp
write (rstr*)
write (rst,cfrmt) ‘&fdgrid’
write (rst,ifrmt) ‘nx = ‘, nx
write (rst,ifrmt) ‘ny = ‘, ny
if (uniform) then

write (rstrcfrmt) ‘uniform = true. ‘
write (rst,rfrmt) ‘dx = ‘, dx(l)
write (rst,rfrmt) ‘dy = ‘, dy(l)

else
write (rst,cfrmt) ‘uniform = false. ‘
write (rst,rowfrmt) ‘dx = ‘, (dx(j), j = 1, nx)
write (rst,rowfrmt) ‘dy = ‘, (dy(i), i = 1, ny)

end if
if (cellopen) then

write (rst,cfrmt) ‘cellopen = true. ‘
write (rst,cfrmt) ‘checker = false. ‘

else if (checker) then
write (rst,cfrmt) ‘checker = true.’
write (rst,cfrmt) ‘cellopen = false. ‘

else
write (rst,cfrmt) ‘byrw = false. ‘
write (rst,cellfrmt) ‘cell = ‘, cell

end if
write (rst,cfrmt) ‘/’
write (rst,*)
write (rst,cfrmt) ‘&simtime’
write (rst,rfrmt) ‘time = ‘, time
write (rst,rfrmt) ‘tmax = ‘, tmax
write (rst,rfrmt) ‘dtmax = ‘, dtmax

98

write (rst, rfrmt) ‘dtmin = ‘, dtmin

write (rst, rfrmt) ‘dtfact = ‘, dtfact

write (rst, rfrmt) ‘omega = ‘, omega

write (rst,rfrmt) ‘work = ‘, work
write (rst,rfrmt) ‘rest = ‘, rest

write (rst,cfrmt) ‘/’
write (rst,*)

write (rst,cfrmt) ‘&converg’
write (rst,rfrmt) ‘hcvmx = ‘, hcvmx

write (rst,rfrmt) ‘vermx = ‘, vermx
write (rst,rfrmt) ‘cnl = ‘, cnl
write (rst,ifrmt) ‘itermax = ‘, itermax
write (rst,ifrmt) ‘itermin = ‘, itermin

write (rst,cfrmt) ‘/’
write (rst,*)
write (rst,cfrmt) ‘&output’
write (rst,rfrmt) ‘trst = ‘, trst

write (rst,rfrmt) ‘thin = ‘, thin
write (rst,rfrmt) ‘trep = ‘, trep

if (clr) then
write (rst,cfrmt) ‘clr = true.’

else

write (rst,cfrmt) ‘clr = false.’
end if
write (rst,rfrmt) ‘tlog = ‘, tlog
write (rst,rowfrmt) ‘cl = ‘, cl

if (vflag) then

write (rst,cfrmt) ‘vflag = true.’
else

write (rst,cfrmt
end if
if (cnflag) then

write (rst,cfrmt
else

write (rst,cfrmt
end if
if (pflag) then

write (rst,cfrmt
else

write (rst,cfrmt
end if
write (rst,cfrmt)

write (rst,*)
write (rst,cfrmt)
write (rst,rfrmt)
write (rst,rfrmt)
write (rst,rfrmt)

write (rst,rfrmt)
write (rst,ifrmt)

write (rst,rfrmt)
write (rst,rfrmt)

write (rst,cfrmt)

write (rst,*)
write (rst,cfrmt)

write (rst,rfrmt)
write (rst,rfrmt)
write (rst,rfrmt)

‘vflag = false.’

‘cnflag = true. ‘

‘cnflag = false, ‘

‘pflag = true.’

‘pflag = false.’

‘/’

‘&material’
‘rho = ‘, rho
Rg= ~,g

‘yield = ‘, yield
‘r = 1, r

‘cr= ‘, cr

‘tharden = ‘, tharden
‘ultimt = ‘, ultimt

‘/’

‘&geometric’

‘hmax = ‘, hmax
‘delta = ‘, delta
‘eps = ‘, eps

99

write

write

write

write
write

write

write

writ e
write

write
write

rst, ifrmt) ‘slot = ‘, slot

rst, rfrmt) ‘hflg = ‘, hflg

rst, browfrmt) ‘bott = ‘, bott
rst, browfrmt) ‘ceil = ‘, ceil

rst,cfrmt) ‘/’
rst, *)

rst,cfrmt)

rst,rfrmt)
rst,rowfrmt
rst,rowfrmt
rst,rowfrmt

&initial’
hs = ‘, hs
Vh= ~,h

‘Vx= ‘, Vx
‘Vy= ‘, Vy

write (rst,cellfrmt) ‘rows = ‘, (rows (iq), iq = 1, nq)

write (rst,cellfrmt) ‘COIS = ‘, (cols(iq), iq = 1, nq)
write (rst,rowfrmt) ‘tqn = ‘, (tqn(iq), iq = 1, nq)
write (rst,rowfrmt) ‘qqn = ‘, (qqn(iq), iq = 1, nq)
write (rst,ifrmt) ‘nq = ‘, nq

write (rst,cfrmt) ‘/’
write (rst,*)
write (rst,cfrmt) ‘&particles’

write (rst,rfrmt) ‘tintro = ‘, tintro
write (rst,ifrmt) ‘np = ‘, np
write (rst,ifrmt) ‘update = ‘, update

if (np > O) then
write (rst,rowfrmt) ‘xp = ‘, (xp(pp), pp = 1, np)

write (rst,rowfrmt) ‘yp = ‘, (yp(pp), pp = 1, np)
write (rst,rowfrmt) ‘tp = ‘, (tp(pp), pp = 1, np)

end if

write (rst,cfrmt) ‘/’
close (rst)

end if

! Write report output file.

globvolerr = volume - totalsource - original
globvolerr = globvolerr / (original + totalsource)
numglobvolerr = numvolume - totalsource - original
numglobvolerr = numglobvolerr / (original + totalsource)

report = time - trepprev > trep - dtmin ‘ l.Od-01
report = report or. time > tmax - dtmin * l.Od–01
report = report or. fillflag or. divergent
if (report) then

trepprev = time

! Calculate the time string and write the numerical arrays.
call hms(tstring, time)
write (its, ‘(ilO)’) iterate
its = adjustl(its)
write (*,tprt) ‘time = ‘,trim(tstring), ‘iterate = ‘,trim(its),&

‘depth error = ‘, hconv, ‘num vol error = ‘, numvolerr
if (single) then

duml = ‘Total Depth at Time = ‘ // trim(tstring)
call matprn(out, trim(duml), h, cell, h, nx, ny, ceil, delta,&

nmax, ‘f’, ‘d’)
else

duml = ‘Incremental Depth at Time = ‘ // trim(tstring)
call matprn(out, trim(duml)r h, cell, h, nx, ny, ceil, delta,&

nmax, ‘f’, ‘d’)
duml = ‘Total Depth at Time = ‘ // trim(tstring)

100

ht = h + bott - datum
call matprn (out, trim(duml) ,ht, cell, ht, nx, ny, top~delta, &

nmax, ‘f’, ‘d’)

end if

flag = false.
doi = 1, ny

doj=l, nx
if (cell(i,j) == O) then

p(i,j) = hflg
else

phead = h(i,j) - ceil(i,j)
if (phead

p(i,j)
flag =

end if
end if

end do

end do
if (flag) then

> zero) then

= phead * rho * g
true.

call matprn(out, ‘Pressure at Time = ‘ // trim(tstring), p, &
cell, h, nx, ny, ceil, delta, nmax, ‘e’, ‘n’)

end if

if (vflag) then
call matprn(out, ‘X-Velocity at Time = ‘//trim(tstring), VX, &

cell, h, nxt nyr ceil, delta, nmax, ‘e’, ‘x’)
call matprn(out, ‘Y-Velocity at Time = ‘//trim(tstring), vy, &

cell, h, nx, ny, ceil, delta, nmax, ‘e’, ‘y’)

end if
if (cnflag) then

call matprn(out, ‘X-Courant at Time = ‘//trim(tstring), cnx, &
cell, h, nx, ny, ceil, delta, nmax, ‘f’, ‘x’)

call matprn(out, ‘Y-Courant at Time = ‘//trim(tstring), cny, &
cell, h, nx, ny, ceil, delta, nmaxr ‘f’, ‘y’)

end if

! Calculate and write the flow regimes for each model cell.
write (out,*)

write (out,*) ‘Flow Regime at Time = ‘ // trim(tstring)
do i = 1, ny

do j = 1, nx
if (cell(i,j) == O) then

regime(j) = ‘Xxxxxxxxxx‘
else if (h(i,j) < delta) then

regime(j) = ‘ ‘
else

ipl = min(i + 1, ny)
iml = max(i - 1, 1)

jpl = min(j + 1, nx)
jml = max(j - 1, 1)

vbx = dabs (vx(i,jml) + vx(i,j)) / two
vby = dabs (vy(iml,j) + vy(i,j)) / two

if (vbx > vby) then

aj = area(h(i,j), dy(i), delta, ceil(i,j), eps, slot)
if (i == 1) then

rj = Wp(h(i,j), h(i, j), ceil(i,j),ceil(i, j),dy(i),&

dx(j), dx(j), eps, intl(0), cell(ipl,j), &
intl(0), cell(ipl,j), slot)

101

else if (i == ny) then

rj = w(h(i,j),h(i,j),ceil(i,j),ceil(i,j).dy(i), A
dx(j), dx(j), eps, cell (iml,j) ,intl (0), &
cell(iml,j), intl(0), slot)

else

rj = wp(h(i,j),h(i

dx(j),dx(j
cell(iml,j

end if
rj = aj / rj

else

ai = area(h(i,j), dx(:

if (j == 1) then

j),ceil (i,j),ceil(i,j), dy(i),s
,eps,cell(iml,j),cell(ipl,j),&

,cell(ipl, j),slot)

), delta, ceil(i,j), eps, slot)

ri = wp(h(i, j),h(i,j),ceil (i,j),ceil(i,j),dx(j),&
dy(i),dy(i), eps,intl(0) ,cell(i,jpl), &
intl(0), cell(i,jpl), slot)

else if (j == nx) then

ri = wp(h(i, j),h(i,j),ceil (i,j),ceil(i,j),dx(j),&

dy(i),dy(i), eps, cell(i,jml), intl(0), &
cell(i,jml), intl(0), slot)

else

ri = wp(h(i, j),h(i,j),ceil (i,j),ceil(i,j),dx(j),&
dy(i),dy(i), eps,cell(i, jml), cell(i,jpl),&

cell (i,jml),cell(i,jpl) ,slot)
end if

ri = ai / ri
end if

if (vbx * rj > vby * ri) then
vbar = vbx
rh = rj

else

vbar = vby

rh = ri
end if
re = 4.Od+OO * rh * vbar * rho / r
he = 1.6d+Ol * rh * rh * yield * rho / r

call critical(rec, he)
if (re == zero) then

regime(j) = ‘ Static ‘
else if (re > ret) then

regime
else

regime
end if

end if
end do

j)=! Trblnt ‘

j)=! Lami.nr ‘

write (out,echofmt(6)) (regime(j), j = 1, nx)
end do

! If there are any system particles, write the number of
! particles in each model cell and the grout age.

if (np > 0 and. pflag) then
write (out,*)

duml = ‘Particle Distribution at Time =’

write (out,*) trim(duml) // ‘ ‘ // trim(tstring)
ybl = sum(dy)
do i = 1, ny

102

yb2 = ybl

ybl = yb2 - dy(i)

xb2 = zero

doj=lrnx

xb 1 = xb2
xb2 = xbl + dx (j)
if (cell (i,j) == O) then

regime(j) = ‘Xxxxxxxxxx‘
else if (h(i, j) < delta) then

regime(j) = ‘ ‘
else

regime(j) = ‘ ‘
if (pc(i,j) > O) then

write (duml,*) pc(i,j)
duml = adjustl(duml)
cc = len_trim(duml)
ca= (10 - cc) / 2 + 1

if (mod(cc,2) == 1) ca = ca + 1

cb = ca + CC- 1
regime(j) (ca:cb) = trim(duml)

end if
end if

end do
write (out,echofmt(6)) (regime(j), j = 1, nx)

end do

duml = ‘Grout Age at Time =’
call matprn(out, trim(duml)//’ ‘//trim(tstring), age, cell, &

h, nx, ny, ceil, delta, nmax, ‘e’, ‘n’)
end if
if (pflag) then

call matprn(out, ‘Yield Stress at Time = ‘//trim(tstring), &

yldstr, cell, h, nxr ny, ceil, delta, nmax, ‘e’, ‘n’)
end if

! Write the volume balance figures.

write (duml,’) rowinject
duml = adjustl(duml)

write (dum2,*) colinject
dum2 = adjustl(dum2)
duml = repeat(’ ‘,12 - len_trim(duml) - len_trim(dum2)) // &

‘(’ // trim(duml) // ‘,’ // trim(dum2) // ‘)’
write(out, *)
write(out,*) ‘Volume Balance at Time = ‘ // trim(tstring)

write(out,’) ‘Original Volume = I
real(original)

write(out,*) ‘Functional Incr. Volume Error =’, real(volerr)
write(out,+) ‘Functional Total Volume Error =’, real(globvolerr)

write(out,*) ‘Functional Previous Volume = ‘r real(previous)

write(out,’) ‘Functional Present Volume = ‘, real(volume)
write(out,*) ‘Numerical Incr. Volume Error = ‘, real(numvolerr)
write(out,*) ‘Numerical Total Volume Error = ‘,real(numglobvolerr)

write(out,*) ‘Numerical Previous Volume = ‘, real(numprevious)
write(out,*) ‘Numerical Present Volume = 1, real(numvolume)

write(out,’) ‘Incremental Net Injection = ‘, real(source)
write(out,*) ‘Injection Model Cell = ‘ // trim(duml)
write(out,*) ‘Total Net Injection = 8, real(totalsource)
write(out,*) ‘Present Time Step = 1, real(dt)

write(out, *)

103

if (np > O) then

write (duml,’ (ilO)’) np

duml = ‘Number of Particles = ‘ // trim(adjustl (duml))
dun-d = trim(duml) // ‘ at Time = ‘ // trim(tstring)

write (out,*) trim(duml)
write (out,*)

duml = ‘ pp XP(PP) YP(PP) Upp (pp) VPP (PP
write (out,*) trim(duml)
do pp = 1, np

write (out,ppfrmt) pp, xp(pp)~ yp(pp)~ UPP
end do
write (out,*)

1

PP)J VPP(PP)

end if
write (out,*)

end if

! Write binary output file.

binary = time - tbinprev > thin - dtmin * l.Od-01
binary = binary or. time > tmax - dtmin * l.Od–01
binary = binary or. fillflag or. divergent

if (binary) then
tbinprev = time

write (bin) realtime), iterate
write (bin) real(volerr) , real(globvolerr), np

ht = h + bott - datum
write (bin) ((real (dminl(ht(i,j) ,top(i, j))),j=l,nx), i=l/nY)

write (bin) ((real(vx(i,j)), j = 1, nx), i = 1, ny)

write (bin) ((real(vy(i,j)), j = 1, nx), i = If ny)
if (np > O) then

write (bin) (real(xp(pp
write (bin) (real(yp(pp

write (bin) (real(tp(pp

end if
write (bin) ((pc(i,j), j =
write (bin) ((real(age(i,j

), PP=l, np)
), pp=l, w)
),pp=l, np)

1, nx), i = 1, ny)

), j=l, nx), i=l, ny)
write (bin) ((real (yldstr(i,j)) , j = 1, nx),

end if

! Store results of calculations.

previous = volume
numprevious = numvolume
ho=h

! Exit loop, if goal has been reached.
if (time > tmax - dtmin * l.Od-01 or. fillflag

i = 1, ny)

exit

! Write message and exit loop, if calculation has diverged.
if (divergent) then

write (out,’) ‘Calculations have diverged.’
write (log,*) ‘Calculations have diverged.’

write (*,*) ‘Calculations have diverged.’
exit

end if
end do

! Write the stopping and elapsed time.
call stoping(out, scsec)

104

! Close output

close (out)
close (bin)

close (log)
stop
end

files and end program.

function area(h, b, delta, hmax, eps, slot)

! Area is designed to return the flow area.
! Jim Stiles, 08/09/1997.
implicit none

integer*4 slot
real*8 h, b, delta, area, hmax, eps
if (slot == 1) then

if (h >= hmax) then

area = hmax * b + eps * b ‘ (h – hmax)

else

area = dmaxl(h, delta) * b
end if

else

area = b * dminl(chnaxl(hr delta), hmax)
end if

return
end

subroutine js(q, sf, area, hyradius, rho, g, yield, r)
! Js is designed to calculate the discharge under the specified
! uniform conditions. Js will automatically determine if the
! flow is turbulent or laminar. Js uses equations derived from
! the Bingham fluid equations presented by Steffe’s (1996) book on

! food rheology. Jim Stiles, 09/12/1997.
implicit none
real*8 q, sf, area, hyradiusr rho, g, yield, r, rer he, v, f, &

recriticalr gamma, hyradius2, small, fp, c, chezy
data small /1.Od-05/

! Calculate the flow using the laminar uniform flow equation.
gamma = rho * g

hyradius2 = hyradius * hyradius
v = 2.0d+O0 * gamma * hyradius2 / (3.Od+OO * r)
v = v * (sf - yield / (gamma * hyradius))

q=v *area

! Calculate the Reynolds’s and Hedstrom’s numbers.
re = 4.Od+OO * hyradius * v * rho / r
he = 1.6d+Ol * hyradius2 * yield ‘ rho / r

! Calculate the critical Reynolds’s numbers.
call critical (recritical, he)

! If the flow is laminar, then the calculated laminar flow is

! the correct discharge to return to the calling program.
if (re <= recritical) return

! Since the flow is turbulent, calculate the darc~
! friction factor using the laminar value of the friction factor

105

! ~~ an initial guess.

f = 6.4d+Ol * (6.Od+OO * re + he) / (6.Od+OO * re * re)

c = l.Od+OO - yield / (gamma * hyradius * sf)
do

fp=f
f = 2.265d+O0 * dloglO(c * re * dsqrt(fp)) - 2.982d+O0
f = l.Od+OO / (f ‘ f)

chezy = dsqrt(8.0d+O0 * g / f)

v = chezy * dsqrt(hyradius * sf)
re = 4.Od+OO * hyradius * v * rho / r

if (dabs(f - fp) < small) exit
end do

! Calculate the discharge and return to calling program.
q=v ’area
return
end

subroutine critical (recritical, he)
! Critical is designed to calculate the critical Re number for

! a Bingham fluid flow. Jim Stiles, 09/21/1997.

real*8 recritical, he, cl, c2, small, cc, hem
data small /1.Od-05/

cl = small
C2 = l.Od+OO – S-11
do

CC = 0.5d+O0 * (c1 + c2)

if (c2 - cl < small) exit
hem = l.Od+OO – cc
hem = hem * hem * hem

hem = 1.68d+04 * cc / hem
if (hem > he) then

C2 = cc
else

cl = cc
end if

end do

recritical = -4.Od+OO * cc + cc * cc * cc * cc
recritical = l.Od+OO + recritical / 3.Od+OO

recritical = recritical * he / (8.Od-tOO * cc)
return
end

subroutine starting(out, scsec)

! Starting is designed to write the present time to the output file.

! Jim Stiles, 12/12/1997.
implicit none

integer*l out
integer*4 csec, first, last, scsect value(8), hour, daysofmonth(12)
character mon*36, cdate*8, ctime*lo, czone*5, dummy*24

logical flag, leap
data mon /’JIiItFEB-PmYJUNJULAUGSEpOCTNOWEC’ /

data daysofmonth /31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31/
call date and time(cdate, ctime, czone, value)
first = 3–’ (;alue(2) - 1) + 1

last = first + 2
csec = int(real (value(8)) * 10CI.)

106

hour = value(5)
flag = (hour == O and. value(6) == O and. value(7) ‘= O)
flag = flag and. (value(8) == O)

if (flag) then
hour = 24

value(3) = value(3) - 1
if (value(3) == O) then

value(2) = value(2) - 1
if (value(2) == O) then

value(2) = 12
value(1) = value(1) - 1

end if

leap = (mod(value(l) ,100) /= O)
leap = leap or. (mod(value(l) ,400) /= O)
leap = leap and. (mod(value(l) ,4) == O)

leap = leap and. (value(2) == 2)
value(3) = daysofmonth (value(2))

if (leap) value(3) = value(3) + 1
end if

end if
write (durmny(l:2), ’(i2,2)’) hour
dummy(3:3) = ‘:’

write (dummy (4:5), ’(i2.2) ‘) value(6)

dummy(6:6) = ‘:’
write (dummy (7:8) r’(i2.2) ‘) value(7)
dummy(9:9) = ‘.’
write (dununy(lO:ll),’(i2.2) ‘) csec

dummy(12:13) = ‘, ‘
write (dununy(14:15), ’(i2.2)’) value(3)
dummy(16:20) = ‘-’ // mon(first:last) // ‘-’
write (dummy(21: 24), ’(i4.4)‘) value(1)
write (out,*)

write (out, ’(lx,a,t46,a24)’) ‘Simulation Began at:’, dummy
scsec = value(5) * 360000 + value(6) * 6000 + value(7) * 100 + csec
return

end

subroutine stoping(out, scsec)
! Stoping is designed to write the present time and elapsed time to

! the output file. Jim Stiles, 12/12/1997.
implicit none
integer+l out

integer*4 csec, first, last,scsecrvalue (8),hour,daysofmonth (12),diff
real*4 elapsed
character mon*36, cdate*8,ctime*10, czone*5,dummy*24, tstring*20ret*14

logical flag, leap
data mon /’JANFEBUPRMAYJUNJUmUGSEPOCTNOVDEC’/

data daysofmonth /31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31/
call date and time(cdate, ctime, czone, value)

first = 3–* (;alue(2) - 1) + 1
last = first + 2
csec = int(real (value(8)) * 100.)

hour = value(5)
flag = (hour == O and. value(6) == O and. value(7) == O)
flag = flag and. (value(8) == O)
if (flag) then

hour = 24

107

value(3) = value(3) - 1

if (value(3) == O) then

value(2) = value(2) – 1

if (value(2) == O) then
value(2) = 12

value(1) = value(1) - 1
end if

leap = (mod(value(l) ,100) /= O)
leap = leap or. (mod(value(l) ,400) /= O)
leap = leap and. (mod(value(l) ,4) == O)
leap = leap and. (value(2) == 2)
value(3) = daysofmonth (value(2))

if (leap) value(3) = value(3)

end if
end if
write (dummy(l :2), ’(i2.2) ‘) hour
dummy(3:3) = ‘:’
write (durmny(4:5),’ (i2.2) ‘) value(6

dummy(6:6) = ‘:’
write (dummy (7:8), ’(i2.2) ‘) value(7

dummy(9:9) = ‘.’
write (durmny(lO:ll),’(i2.2)’) csec

dummy(12:13) = ‘, ‘

+1

write (dummy(14: 15), ’(i2.2)’) value(3)

dummy(16:20) = ‘-’ // mon(first:last) // ‘-’
write (dummy(21: 24), ’(i4.4) ‘) value(1)

write (out, ’(lx,a,t46,a24)’) ‘Simulation terminated at:’, durmny
cliff = value(5) *360000 + value(6)*6000 + value(7)*100 + csec – scsec
if (cliff< O) cliff = cliff + 8640000
elapsed = real(diff) / 100.0
call hms(tstring, dble(aint (elapsed)))
write (dummy(l:2),’ (i2.2)’) cliff - int4(elapsed) * 100 ,
et = trim(tstring) // ‘.’ // dummy(l:2)
et = adjust

write (out, ’(lx,a,t56,a14)’) ‘Elapsed simulation time:’, et
return
end

subroutine hms(tstring, time)

! Hms transforms the simulation time variable into the hHH:MM:SS
! string format.

! Jim Stiles, 09/29/1997.
implicit none
character tstring*20

real*8 time, t
integer*l hours, minutes, seconds
character forml*40

data forml /’(i3.2,’’:’’,i2,”:”: “,i2.2) ‘/
if (time >= 3.5964d+06) then

tstring = ‘999:00:00’
else

t = dnint(time)

hours = intl(t / 3.6d+03)
t = t - dble(hours) * 3.6d+03

minutes = intl(t / 6.Od+Ol)
t = t – dble(minutes) * 6.Od+Ol

seconds = intl(t)

108

write (tstr’ing,forml) hours, minutes, seconds

tstring = adjustl(tstring)

end if
return

end

subroutine matprn(out, hstring, z, cell, h, nx, ny, ceil, hmin, nmax, &

form, stagger)
! Matprn is designed to write the active part of a specified

! matrix in a form where the reader can easily determine the
! manner in which the grout is moving in the mine.

! Jim Stiles, 11/20/1997.
implicit none
integer*4 nmax, nx, ny, i, j, lt, iml, jml
integer*l cell(nmax,nmax) , out
real*8 z(nmax,nmax)r h(nmax,nmax), ceil(nmax,nmax), hmin, zero, ZZ, two
character hstring* (*), field*lO, total*1000, form*l, stagger*l
logical flag, eflag

data zero /0.Od+OO/, two /2.Od+OO/
write (out,*)

write (out,*) trim(hstring)
doi=l, ny

iml = max(i - 1, 1)
lt=o
do j = 1, nx

jml = max(j - 1, 1)
flag = h(i,j) > hmin or. stagger == ‘b’ or. stagger == ‘B’

if (cell(i,j) == O) then
field = ‘xXXXXXXXXX’

else if (flag) then
if (stagger == ‘x’ or. stagger == ‘X’) then

zz = (z(i,jml) + z(i,j)) / two
else if (stagger == ‘y’ or. stagger == ‘Y’) then

zz = (z(iml,j) + z
else

Zz = z(i,j)
end if

if (ZZ >= zero) then

if (stagger == ‘d’

zz = dminl(ceil
end if

(i,j)) / two

or. stagger == ‘D’ then
(i,j), 22)

eflag = zz > 9.9999d+O0 and. stagger /= ‘b’
eflag = eflag and. stagger /= ‘B’
eflag = eflag or. form == ‘e’ or. form == ‘E’

eflag = eflag or. zz > 9.9999d+02
if (eflag) then

write (field, ’(lpe9.2,1x)’) zz
else

if (ZZ >= l.Od+OO) then
if (stagger == ‘b’ or. stagger == ‘B’) then

write (field, ’(2x,f6.2,2x)’) zz
else

write (field, ‘
end if

else

if (stagger == ‘b’
write (field, ‘

2x,f6.4,2x)r) ZZ

or. stagger == ‘B’) then
3x, ’’o’ ’,f2,3x)x)’) Z.z.

109

else

write (field, ‘(2x, “o’’, f5.4,2x)’) 22
end if

end if

end if
else

if (stagger == ‘d’ or. stagger == ‘D’) then

22 = dminl(ceil(i,j), 22)
end if

eflag = zz < -9.999d+O0 and. stagger /= ‘b’
eflag = eflag and. stagger /= ‘B’

eflag = eflag or. form == ‘e’ or. form == ‘E’

eflag = eflag or. zz < -9.999d+Ol
if (eflag) then

write (field, ’(lpe9.l,lx)’) zz
else

if (ZZ <= -1.Od+OO) then

if (stagger == ‘b’ or. stagger == ‘B’) then
write (field, ’(2x,f6.2,2x)’) zz

else

write (field, ’(2x,f6.3,2x)’) zz
end if

else
if (stagger == ‘b’ or. stagger == ‘B’) then

write (field, ’(3x,”- 0“,f3.2,2x)’) dabs (zz)
else

write (field, ’(2x, “-O’’,f4.3,2x)’) dabs (zz)
end if

end if
end if

end if
else

field = ‘ ‘
end if
total(lt+l:lt+lO) = field
lt=lt+lo

end do
write (out, ‘(lxra)’) total(l:lt)

end do
return
end

subroutine echoinjection (out, rows, COIS, tqn, qqn, nq)
! Echoinjection is designed to echo the grout injection schedule.

! Jim Stiles, 03/22/1998.
implicit none
integer*l out
integer*4 rows(l), COIS(l), nq, iq

real*8 tqn(l), qqn(l)
character tstring*20, fmtl*20, fmt2*20
data fmtl /’(lx,a9,2a10,a14)’/
data fmt2 /’(lx,a9,2i10,1pe14.5)’ /

write (out,*) ‘Injection Schedule:’
write (out,fmtl) ‘Time’, ‘Row’, ‘Col~’, ‘Rate(LA3/T) ‘

do iq = 1, nq
call hms(tstring, tqn(iq))

tstring = adjustl(tstring)

110

write (out, fmt2) tstring(l: 9), rows (iq), cols(iq), qqn(iq)
end do
return
end

subroutine rdnjct(rows, COIS, tqn, qqn, nq, time, row, CO1, qin)

! Rdnjct is designed to read the grout injection schedule
! from an array. The data is assumed to be in stair–step format
! and sorted according to increasing time.

! Jim Stiles, 10/12/1997.
implicit none
integer*4 row, CO1, rows(l), cols(l), iq, nq

real*8 qin, time, tqn(l), qqn(l)
row = 1
Col = 1

qin = O.Od+OO
do iq = 1, nq

if (tqn(iq) <= time) then
row = rows (iq)
CO1 = cols(iq)

qin = qqn(iq)
end if

if (tqn(iq) >= time) exit
end do
return
end

subroutine velfind(up, vpr cell, xp, yp, VX, Vyr dx, dyr nx, ny, nmax)
! Velfind is designed to calculate the x and y velocity at a given
! point in a velocity field via linear interpolation.

! Jim Stiles, 11/12/1997.
implicit none
integer*4 nxr ny, nmax, i, j
integer*l cell(nmax,nmax)
real*8 up, vp, xp, yp, vx(nmax,nmax), vy(nmax,nmax), dx(nmax), &

dy(nmax), yl, y2, zero, xl, x2
logical flag

data zero /0.Od+OO/

! Determine the appropriate model row.
y2 = zero
do i = nyr 1, -1

yl = y2
y2 = y2 + dy(i)
flag = (yp >= yl and. yp < y2) or. i == 1
flag = flag or. (i == ny and. yp < yl)
if (flag) then

x2 = zero

111

! Determine the appropriate model column.
do j = 1, nx

xl = x2

x2 = x2 + dx(j)
flag = (xp >= xl and. xp < x2) or. j == nx
flag = flag or. (j ‘= 1 and. xp < xl)
if (flag) then

! Interpolate the x velocity.

if (j == 1 or. cell(i,j-1) == O) then

up = vx(i,j)

else
up = (xp - xl) * vx(i,j) + (x2 - xp) * vx(i,j-1)

up = up / dx(j)
end if

if (cell(i,j) == O) up = zero

! Interpolate the y velocity.
if (i == l.or. cell(i-l,j) == O) then

vp = vy(i,j)
else

W“(YP - yl) * vy(i-lrj) + (Y2 - yp) * vy(i,j)

VP = VP / dy(i)
end if
if (cell(i,j) == O) vp = zero

! Exit the do loops and return to calling program.
exit

end if
end do
exit

end if
end do
return

end

subroutine velfield(h, VX, Vyr vxold, vyold, cnx, cnyr yldstr, dxr &

dy, dt, rho, g, r, ceil, eps, delta, cell, nx, &
ny, nmax, cr, bott, cflag, slot)

! Velfield is designed to update the velocity arrays from the

! calculated depth array. Jim Stiles, 11/08/1997.
implicit none
integer*4 nmax
integer*l cell(nmax,nmax) , cr

integer’4 i, j, nxml, nyml, ipl, jpl, nx, ny, slot, iml, jml, nbrs
real*8 h(nmax,nmax) , wavespeed, vx(nmax,nmax) , vy(nmax,nmax), two, &

cnx(nmax,nmax) , yldstr(nmax,nmax) , vxold(nmax,nmax) , aj, ai, r, &
vyold(nmax,nmax), fctr, dt, dx(nmax), dy(nmax), hmid, ri, rj, WP, &

cny(nmax,nmax) , sg, sex, soy, yieldmid, syieldr gamma, q, zero, &

area, rho, eps, delta, bott(nmax,nmax), g, cmax, ceil(nmax,nmax)
logical cflag
data zero /0.Od+OO/, two /2.Od+OO/
nxml = nx - 1
nyml = ny - 1
gamna = rho * g
do i = 1, nyml
do j = 1, nxml
if (cell(i,j) ==

! Ensure zero

O) then

velocities for inactive cells.

vxold(i,j) = zero
vyold(i,j) = zero
vx(i,j) = zero
vy(i,j) = zero

cnx(i,j) = zero

112

cny(i,j) = zero

else

! Store the old
vxold(i,j) = vx
vyold(i,j) = vy

! Calculate the

fctr = dt / (dx

ip 1
if
iml
if
jpl
if

jml

=min(i + 1

velocities .

irj)
i,j)

x velocity at i,j+l/2

j) * dy(i))
ny)

cell(ipl,j) == O) ipl = i
. max (i - 1,1)
cell(iml,j) == O) iml = i
= min(j + l,nx)
cell(i,jpl) == O) jpl = j

= max(j – 1,1)

if (cell(i,jml) == O) jml = j
hmid = (h(i,j) + h(i,jpl)) / two
yieldmid = (yldstr(i,j) + yldstr(i,jpl)) / two
cmax = (ceil(i,j) + ceil(i,jpl)) / two

aj = area(hmid, dy(i), delta, cmax, eps, slot)
rj = Wp(h(i,j), h(i,jpl), ceil(i,j), ceil(i,jpl), dy(i), dx(j), &

dx(jpl), eps, cell(i–l,j), cell(i+l,j), cell(i-l,jpl), &
cell(i+l,jpl), slot)

rj = aj / rj
sox = (bott(i,j) - bott(i,jpl)) * two / (dx(j) + dx(jpl))

sg = two * (h(i,j) - h(i,jpl)) / (dx(j) + dx(jpl)) + sox
syield = yieldmid / (gamma * rj)

if (dabs (sg) > syield) then
if (cr == 1) then

call js(q, dabs(sg) , aj, rj, rho, g, yieldmid, r)
else

nbrs = O
if (ipl == i) nbrs = nbrs + 1
if (iml == i) nbrs = nbrs + 1
call kxw(q,dabs(sg) ,hmid, dy(i),rho,g, yieldmid, r,cmax,nbrs)

end if
else

q = zero
end if
if (sg < zero) q = -q
vx(i,j) =q/aj
hmid = cimaxl(delta, hmid)
wavespeed = dabs(vx(i,j))

if (cflag) wavespeed = wavespeed + dsqrt(hmid * g)
cnx(i,j) = two * wavespeed * dt / (dx(j) + dx(jpl))

! Calculate the y velocity at i+l/2,j

hmid = (h(i,j) + h(ipl,j)) / two
yieldmid = (yldstr(i,j) + yldstr(ipl,j)) / two
cmax = (ceil(i,j) + ceil(ipl,j)) / two
ai = area(hmid, dx(j), delta, cmax, eps, slot)

ri = wp(h(i,j), h(ipl,j), ceil(i,j), ceil(ipl,j), dx(j), dy(i), &
dy(ipl), eps, cell(i,j-1), cell(i,j+l), cell(ipl,j-l)r &
cell(ipl,j+l), slot)

ri = ai / ri

113

soy = two * (bott(ipl,j) - bott(i,j)) / (dy(i) + dy(ipl))

Sg = two * (h(ipl,j) - h(i,j)) / (dy(i) + dy(ipl)) + SOY

syield = yieldmid / (gamma * ri)
if (dabs(sg) > syield and. ipl /= i) then

if (cr == 1) then
call js (q, dabs (sg), ai, ri, rho, g, yieldmid, r)

else

nbrs = O

if (jpl == j) nbrs = nbrs + 1
if (jml == j) nbrs = nbrs + 1
call kxw(q,dabs (sg),hmj.d,dx(j), rho,g,yieldmid, r,cmax,nbrs)

end if

else
q = zero

end if
if (sg < zero) q = -q

VY(i,j) = q / ai
hmid = cknaxl(delta, hmid)
wavespeed = dabs (vy(i,j))
if (cflag) wavespeed = wavespeed + dsqrt(hmid * g)

cny(i,j) = two * wavespeed * dt / (dy(i) + dy(ipl))

end if

end do
end do

return
end

function wp(hl, h2r cl, c2, b, 11, 12, ep, tl, t2, t3, t4, slot)
! Wp is designed to calculate the wetted perimeter of a flow cross
! section between adjacent cells under any and all conditions.

! Jim Stiles, 11/22/1997.
implicit none

real*8 b, 11, 12, ep, wpi, wp, hl, h2, cl, c2, bmep, zero
integer*l tl, t2, t3, t4
integer*4 slot
data zero /0.Od+OO/

if (slot == 1) then

bmep = b - ep
else

bmep = dsqrt(b * b / 4.0d+O0 + ep * ep) / ep
end if
wpi = zero

if (tl == O) then

wpi=wpi+ll*hl
if (hl > cl) then

if (slot == 1) then

wpi = wpi + 11 * bmep
else if (slot == 2) then

wpi=wpi+ll ’(cl-hl)
else

wpi = wpi + 11 * (cl - hl + (hl - cl) ‘ bmep)
end if

end if

end if
if (t2 == O) then

wpi=wpi+ll*hl
if (hl > cl) then

114

if (slot == 1) then
wpi = wpi + 11 * bmep

else if (slot == 2) then

wpi=wpi+ll’(cl-hl)
else

wpi = wpi + 11 * (cl - hl + (hl - cl) ‘ bmep)

end if
end if

end if

if (t3 == O) then
wpi=wpi+12’h2

if (h2 > c2) then
if (slot == 1) then

wpi = wpi + 12 * bmep
else if (slot == 2) then

wpi=wpi+12*(c2-h2)
else

wpi=wpi+12* (c2 - h2 + (h2 - c2) ‘ bmep)
end if

end if
end if

if (t4 == O) then
wpi=wpi+12*h2

if (h2 > c2) then
if (slot == 1) then

wpi = wpi + 12 ‘ bmep
else if (slot == 2) then

wpi=wpi+12*(c2- h2)
else

wpi = wpi + 12 * (c2 - h2 + (h2 - c2) * bmep)
end if

end if
end if

wp=wpi/(ll+12)+b
return
end

subroutine kxw(q, sf, hh, b, rho, g, yield, r, hmax, neighbors)

! Kxw is designed to calculate the discharge under the specified
! uniform conditions. Kxw uses the semi-empirical equations
! presented in Whipple’s (1997) paper on Bingham debris flow.
! Because Whipple’s semi-empirical equations were derived from
[nuerical simulations of one dimensional open channel flow~

! approximate formulas are employed for the more general cases.

! Jim Stiles, 12/19/1997.
implicit none
integer*4 neighbors
real*8 q, sf, b, h, rho, g, yield, r, qn, k, theta, taucrr aa, &

one, bbr cc, gg, hh, yldn, hmax, three, qfact, two, six, ratio
data one /1.Od+OO/, two /2.Od+OO/, three /3.Od+OO/,six /6.Od+OO/

! Determine if the channel cross section is closed at the top.

if (hh >= hmax) then

qfact = two
h = hmax / two

else

qfact = one

115

1
,

h=hh
end if

! Calculate the channel shape factor and determine the

! coefficients for the Whipple model equation.
theta = b / h
select case (neighbors)

case (0)
aa = one / six

bb = one / two
cc = one / three

k = one
ratio = one

case (1)

gg = (2.5d+O0 / theta) ** 1.7d+O0 +
aa = (0.156d+O0 / gg + one / six) /

bb = (0.482d+O0 / gg + one / two) /
cc = (0.326d+O0 / gg + one / three)

k = one
ratio = one / ((1.8d+O0 / theta) **

ratio = (ratio + one) / two

case (2)

aa = 0.156d+O0
bb = 0.482d+O0

CC = 0.326d+O0
ratio = one / ((1.8d+O0 / theta) **

end select

one

two

two
/ two

1.2d+O0 + one)

1.2d+O0 + one)

! Calculate the normalized yield stress.
taucr = ratio * rho * g * h * sf
yldn = yield / taucr

! Calculate the channel discharge.
qn = k * ((aa * yldn * yldn - bb) * yldn + CC)

q= qn * rho * g * sf * b * h * h * h/ r
q = q * qfact
return
end

116

/

