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EXECUTIVE SUMMARY

The April 1990 Alternative Fuels Proposal to the Department of Energy (REP #RP22-
90PC90018) involved the development of new technology, based on the liquid phase
process, for conversion of coal-derived synthesis gas to oxygenated hydrocarbon fuels,
fuel additives, and fuel intermediates. The objective of this work was to develop a slurry
reactor based process for the dehydration of isobutanol to isobutene. The isobutene can
serve as a feedstock for the high octane oxygenated fuel additive methyl tertiary-butyl

either (MTBE).

Alumina catalysts were investigated because of their wide use as a dehydration catalyst.
Four commercially available alumina catalysts (Catapal B, Versal B, Versal GH, and Al-
3996R) were evaluated for both activity and selectivity to the branched olefin. All four
catalysts demonstrated conversions greater than 80% at 290°C, while conversions of near
100% could be obtained at 330°C. The reaction favors low pressures and moderate to
low space velocities.

A yield of 0.90 mole isobutene per mole reacted isobutanol or better was obtained at
conversions of 60-70% and higher. From 75 to 98% conversion, the four catalysts all
provide isobutene yields ranging from 0.92 to 0.94 with the maximum occurring around
90% conversion. At low conversions, the concentration of diisobutyl either becomes
significant while the concentration of linear butenes is essentially a linear function of
isobutanol conversion. y

Doping the catalyst with up to 0.8 wt % potassium showed a modest increase in isobutene
selectivity; however, this increase was more than offset by a reduction in activity.
Investigations using a mixed alcohols feed (consistent with isobutanol synthesis from
syngas) demonstrated a small increase in the C4 iso-olefin selectivity over that observed
for a pure isobutanol feed.
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