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7. EXPERIMENTAL VALIDATION OF A MATHEMATICAL MODEL FOR
FIXED-BED DESULFURIZATION

7.1. Introduction

The tendency of various metal oxides to react with sulfur-containing compounds is
used to remove such species (primarily H>S) from coal-derived gas at high temperatures.
Several supported or unsupported oxides, in single or mixed form, have been studied
experimentally in the literature as candidate sorbents for hot coal gas desulfurization
(for example, see studies by Caillet and Harrison (1982), Yumura and Furimsky (1985),
Tamhankar et al. (1986), Gangwal et al. (1989), and Efthimiadis and Sotirchos (1991)). In
most cases ZnQO has been used as one of the active components of the sorbent, since many
studies have shown that its use leads to very low equilibrium H,S concentrations in the exit
stream of the desulfurization reactor. Coal gas desulfurization is carried out in fixed-bed
reactors, but other reactor configurations, such as moving and fluidized-bed reactors, are
currently under study and development (Jain et al. (1990) and Lee et al. (1990)). Fixed-
bed reactors are also used, almost exclusively, in experimental studies of the performance
of coal gas desulfurization sorbents.

Mathematical models for fixed-bed reactors are very useful in design and scale-up
studies, especially if they are capable of predicting the behavior of these units for different
conditions from those at which they were tested and validated. They are also indispens-
able for the analysis of expériméntal data from lab-scale fixed-bed reactors employed in
laboratory studies since, because of the very high rate of reaction of metal oxides with
H, S, it is practically impossible to achieve differential operation of such reactors. Desul-
furization in fixed-beds is a complex process requiring consideration of a large number
of subprocesses for its description. One has to consider mass transport in the particles,
mass transport through the product layer formed in the interior of the particles, reaction
at the unreacted- reacted solid interface, and evolution of the physical microstructure of
the reacting particles. Since the concentrations of sulfur-containing pollutants in coal gas

streams are typically low, small amounts of heat are released during the reaction, and

consequently, consideration of heat transport is not necessary for the description of the
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process. A mathematical model for a fixed-bed desulfurization reactor, therefore, consists
of three submodels, one for describing mass transport and reaction in the bed. another for
mass transport and reaction in the particles, and a third for local reaction and structure
evolution within the particle or pellet.

The equations for mass transport and reaction in the fixed-bed are relatively well-
defined. Thus, what really differentiates one fixed-bed model from another is the submodel
used to describe the behavior of the individual sorbent pellets or particles in the bed. If one
wants to avoid the complication of developing a theoretical single pellet model and testing
it, the only available alternative is to use experimental data for single pellets or differential
reactors to develop an experimental single pellet model, that is, a correlation for the
dependence of the average reaction rate of the pellets (or particles) on solid conversioﬁ,
temperature, and reactant concentration. Of cour'se, such a model will be useful only
if the conditions used in the operations of the fixed-bed are within the range used to
develop the experimental model. Such an approach was taken, among others, by Park et
al. (1984) in their study of the oxidation of reduced iron oxide with water vapor, a problem
fundamentally similar to that of metal oxide sulf-dation.

The performance of a mathematical model for coal gas desulfurization in fixed beds
1s examined in this study. The mathematical model is developed along the lines of fixed-
bed desulfurization model by- Sotirchos and Zarkanitis (1989). The random pore and grain
models of Sotirchos and Yu (1985, 1988) for gas-solid reactions with solid product were used -
by Sotirchos and Zarkanitis to describe the behavior of individual pellets, but in our model,
we will make use of the generalized random pore model of Yu and Sotirchos (1987), a model
for reaction and structure evolution in porous media of pore-network structure undergoing
a gas-solid reaction with solid product. Past studies on the sulfidation of two zinc oxide
sorbents in a thermogravimetric analysis system (Efthimiadis and Sotirchos, 1991) showed
that this structural model can successfully describe the behavior of single particles over
a broad range of operating conditions. The fixed-bed desulfurization model is evaluated
using experimental data for sulfidation of ZnO sorbents in a fixed-bed reactor, obtained
in our laboratory at various combinations of operating conditions using the same two

sorbents used in our past studies. No adjustable parameters are used in the comparison of
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model predictions and experimental data since all parameters needed for the description
of individual particles using the generalized random pore model have been determined

imndependently from thermogravimetric analysis data.

7.2. Materials

 The sorbents used in this study were mixtures of metal oxides with ZnO being the
main constituent and other compounds (41,03, Si0,, CaQ, and M gO) being present in
smaller amounts. The fresh materials were obtained from United Catalysts in the form of
3/16" extrusions with the commercial names: catalysts G-72D and C7-2. The unreacted
materials showed some weight loss during the heat-treatment under nitrogen flow, most
probably caused by removal of volatile compounds (binder solid and humidity). For this
reason, the unreacted solids were heat-treated for 30 min at 600°C before each sulfidation
experiment. The compositional analyéis of the two .sorbents showed that 89% of sample
G-72D and 78% of sample C7-2, on a weight basis (after heat treatment), was zinc oxide.
The rest was mainly alumina and silica in sample C7-2 and alumina in sample G-72D. The

extrusions were crushed and divided into particle size ranges using mechanical sieving.

Zinc Oxide Sample G-72D .| C7-2 C7-2x
Total Pore Volume (Hg porosimetry), em®/g 0.178 0.289 0.275
BET Surface Area, m?/g 26.57 27.72 25.52
Most Probable Radius (Hg Porosimetry), A 115 200 200
Most Probable Radius (N, Adsorption), A 125 180 200

Table 7.1: Physical properties of the unreacted heat-treated sorbents. (*=Second batch
of sorbent C7-2).

Particles of 297-350 um were used in the characterization of the pore structure of the
solids. In Table 7.1 we summarize the physical properties of the unreacted heat-treated

materials. Pores in the range of 10,000-20 A were accounted for in the estimation of the

pore volumes of Table 7.1 that were obtained from the mercury porosimetry data. The
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physical properties of the micropores (pores of radius less than 20 A) were computed
using the t-method (De Boer et al., 1965). The small micropore volume and surface area
of both materials and the pore size distributions of the solids (to be presented later in
Figs. 7.13 and 7.14) showed that the pore space of both samples consists primarily of
mesopores (pores with radius in the range 20-500 A) and macropores (pores with radius
larger than 500 A).The BET surface area of the two sorbents is almost the same, but there
is a significant difference in their pore volumes and most probable pore radii. (The most
probable radius is the value where the slope of the cumulative pore volumes vs. pore radius
curve has its maximum value). Sample C7-2* corresponds.to a different batch of catalyst
C7-2. It can be seen from the Table 7.1 that there are negligible differences between the
physical properties of the two batches of sample C7-2. Moreover, when samples of the two
batches were sulfided under identical reaction conditions, the conversion vs. time curves
were, within experimental error, identical. A detailed investigation of the pore structure
of unreacted sorbents G-72D and C7-2 and their sulfides was carried out in another study

by Efthimiadis and Sotirchos (1991).

7.3. Apparatus and Procedure

Sulfidation experiments were carried out isothermally in a fixed-bed reactor system,
which is shown in Fig. 7.1. The reactor was a quartz tube of 1.5 or 0.75 ¢cm LD. mounted
vertically in a 3-zone furnace, which maintained a uniform temperature profile in the
reactor. The sorbent was placed in the quartz tube between two zones of spherical quartz
beads (1 mm in diameter) of about 2 ¢m in height each. The sorbent bed was supported
by quartz wool placed at the bottom of the lower zone of quartz beads and at the top of
the upper zone. The configuration of the reactor allowed the measurement of the reactor
temperature using two thermocouples, one introduced through the upper fitting of the
tube, as shown in Fig. 7.1, and the other through the fitting at its bottom. In a typical
experiment, the thermocouple tips were placed outside the bed at a distance of a few mm
from the quartz wool. However, in two runs the upper thermocouple was placed in the
middle of the sorbent bed in order to measure the variation of the temperature in the

sorbent bed during the reaction. The temperature difference between the indication of
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this thermocouple and that at the entrance of the reactor was less than 3°C at all times,
implying that small amounts of energy were released by the exothermic reaction at the
reaction conditions of our study.

The fixed-bed reactor of Fig. 7.1 was loaded with particles of 210-250, 297-350, and
710-830 pm. The bed voidage was computed from the dimensions of the sorbent bed, the
weight of the solid, and the bulk density of each sorbent (2.7 g/cm?® for sample G-72D and
2.0 g/cm? for sample C7-2), the latter determined from the skeletal density and porosity
of the unreacted materials. It was found that the bed voidage was approximately 40% for -
the two reactor tubes and for all particles sizes used in this study. This value agrees with
the experimental data of Dixon (1988) on the dependence of the void fraction in fixed-beds
on the particle to tube diameter ratio.

The gas distribution system involved a system of on /off and metering valves, arranged
to control the flow rate and composition of the gas stream entering the reactor. The
reactive gas was a mixture of 10,500 ppm H,S in nitrogen, which could be further diluted
with nitrogen as shown in Fig. 7.1. Standard correlations for flow through particle beds
were used to estimate thé pressure drop in the bed; it was found to be negligible for all
particle sizes and conditions used in our studies. The gas stream leaving the reactor was
divided into two streams. The first (about 90-95% of the main stream) was sent to- the
vent, while the second was used for gas analysis by sending it through the sampling loop
of the injection system of a chromatograph. The injection system consisted of a 6-port
valve attached to an electric actuator. A programmable integrator (Chromjet of Spectra
Physics) was used for automatic injection and analysis of gas samples every 3 min. The
same reactor configuration could also be used for fluidized-bed experiments. Much larger
flow rates were used to fluidize the particles during such experiments. The cyclone in
Fig. 7.1 was used to separate and collect the fines produced by attrition of the sorbent
particles during fluidization.

The gas chromatograph was a Varian 3300 equipped with FPD and TCD detectors.
The analysis was carried out isothermally at 90°C with helium as the carrier gas. Prelim-

inary experiments showed that there was a linear relation between the square root of the

integrated H» S peak and the concentration of the injected samples when the H,S content
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Figure 7.1: Schematic of the fixed-bed reactor and the gas analysis system.




—

200

.of the stream was lower than 2 ;000 ppm. Thus, low H,S concentrations were detected by
the FPD, while higher H,S concentrations were measured by the TCD, which could also
detect nitrogen and water vapor. The weight of the sulfided sorbent was measured at the
end of the experiment, and its difference from the initial sorbent weight (after the loss of
the volatile compounds) was used to estimate the average conversion of the sorbent in the
bed. This value was, within 1% error, in agreement with the average conversion deter-
mined from the variation of the HyS concentration of the eflluent stream of the reactor‘
with time. Samples of reacted material were collected from different parts of the bed and
were analyzed by mercury porosimetry and gas adsorption (N, at 77 K) A Mlcromer—
itcs Autopore II 9220 mercury porosimeter and a Quantachrome Autosorb 1 volumetric

adsorption unit were used for the characterization of the samples.

7.4. Single Particle Behavior

Gas-solid reactions of the form Solid + Gas — Solid + - - -, with --- denoting other
gas species participating in the reaction, were modelled by Yu and Sotirchos (1987) in
the so-called generalized random pore model. This model accounts for structural changes
in the interior of the porous solid, diffusion of the gas species in the pore space and in
the product layer, and chemical reaction at the interface between the unreacted and the
sulfided solid. The pore space of the solid is assumed to consist of cylindrical pore segments
arranged in the form of a three-dimensional lattice. The population of pores is described
using the experimentally determined pore size distribution of the unreacted solid (from
mercury intrusion data). The equations describing structural changes in the interior of the
solid reactant with the progress of the reaction and variation of the intraparticle diffusion
coefficient with the local conversion in the particle can be found in the Works of Yu and
Sotirchos (1987) and Zarkanitis et al. (1990).

The equations that describe diffusion of a gaseous species in a spherical porous par-

ticle and reaction with the solid are written using dimensionless quantities as follows:
Owpepyp) _ 11 8 (p2 9
ot <I>2 o2 Op
o¢ 1
07 - (1— eo),ﬁcvyp

( “vp)) — VAKRvYp (7.1)

(7.2)
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yp is the concentration of the reactive gas, p is the radial distance in the particle, 6¢ is
the effective diffusivity, s, is the volume-based reaction rate constant, ¢y and ¢, are the

porosities of the unreacted and reacted particle, respectively, £ is the local conversion of the

particle, v4 is the stoichiometric coefficient of the reactive gas, and 7, is the time. Eqs. 7.1

and 7.2 are written for a first-order reaction with respect to the gaseous reactant, since

this was found to be the case for the reaction of sorbents G-72D and C7-2 with H, S in our '
previous studies (Efthimiadis and Sotirchos, 1991). The boundary and initial conditions

for Egs. 7.1 and 7.2 are:

Ay She 9y
Fp’i = 0fp=0; 5_6(1 —Yp) = ‘5§|p=1 (7.3a,)

yp=0and {=0at 7, =0 (7.4a,b)

The dimensionless quantities shown in Eqs. 7.1-7.4 are defined by the equations:

r Cp De ke
—_ = L. € = - v = ; = VsCp; 7- -
P=i = D¢’ Ko = 15 wp = 4Gy (7.5a — ¢)
/ koS, k
= v,k @2 = g2280. gpe — Kol 7.6a —
Tp = Vs ,Sgojcbdt, a Ds S Dt (7.6a —c)

The symbols used in Egs. 7.5 and 7.6 are explained in the notation section of this paper.

| Experimental data obtained during the sulfidation of G-72D and C7-2 particles of
53-350 pm were used in previous studies (Efthimiadis and Sotirphos, 1991) to test the
applicability of the generalized random pore model to zinc oxide sulfidation. Excellent
agreement was found to exist between model predictions and experiment. However, in
some of the fixed-bed experiments, the C7-2 particles were larger than those used in our
previous sulfidation studies. Therefore, additional sulfidation experiments were performed
in the thermogravimetric analysis system using particles of 600-710 and 710-850 um. C7-2
samples of about 3 mg were reacted with 0.5% H,S diluted in nitrogen at 200 ml/min
flow rate (at standard conditions). Details about the TGA reactor are given elsewhere
(Efthimiadis and Sotirchos, 1991). The TGA experimental data were successfully repro-
duced by the generalized pore model without using any adjustable parameters since the

two parameters needed for the application of the mathematical model (diffusion coefficient
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in the product layer and coordination number of the pore network (i.e., average number
of pores per node)) had been determined in previous studies (Efthimiadis and Sotirchos,
1991) by fitting the model predictions to the experiméntal data for particles in the size
range 53-350 pm. Experimental and predicted conversion vs. time curves for sulfidation
at 600°C of C7-2 particles in the size range 210-850 um are shown in Fig. 7.2.

In the sulfidation of ZnO sorbents, as well as in most gas-solid reactions, the time
associated with structural changes in the interior of the particles is much larger than the
time associated with the establishment of the steady state profile of the reactive gas con-
centration in the particles (pseudosteady-state approximation). As a result, the transient
term in Eq. 7.1 can be set equal to zero. The average reaction rate per unit of particle
volume, R, is then related to the concentration of H,S in the surrounding gas phase (i.e.,

in the bed) by the equation:
Ry = ky(€)cy (7.7)

The average conversion of a particle (£) and the average volumetric reaction rate constant
in a particle (ko(£)) can be computed from the local conversion (¢) and reaction rate

constant (k,()) using the equations:

. |
= [¢£dp® (7.8)
/

Fo€) = [ ku(&)yp dp® (1.9)

S .

Shown in Fig. 7.3 is the variation of the volumetric reaction rate constants with
the conversion at 600°C for various particle sizes of the two sorbents used in our experi-
ments. The evolution of the average volumetric reaction rate with the average conversion
in particles sulfided at 500°C was similar to that of Fig. 7.3. The volumetric reaction rate
constants in Fig. 7.3 were normalized with respect to the initial volumetric reaction rate
constant in the absence of intraparticle diffusional limitations (kwo = ksSp). Therefore,

the initial value of k,(£)/kyo is equal to the initial effectiveness factor, and as a result, in

the absence of initial intraparticle diffusional limitations it should be unity. Increasing the
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Figure 7.2: Comparison of the reactivity data obtained in a differential reactor at 600°C
with the mathematical model predictions.
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particle size intensifies the intraparticle diffusional limitations and leads to lower average
reaction rate for the same average conversion in the particle. According to the results of
Fig. 7.3, the average reactivity of sorbent G-72D not only is lower than that of sorbent
C7-2 (same size particles) but decreases faster with the conversion as well. As the results
of Table 7.1 show, sample G-72D has less pore volume per unit mass and smaller most
probable radius than sample C7-2. Moreover, it was found from the analysis of the single
particle sulfidation data that the effective diffusivity of H,S in its pore space is smaller and
decreases faster with the conversion than that in sample C7-2 (Efthimiadis and Sotirchos,

1991).

7.5. Mathematical Model for a Fixed-Bed Reactor

The development of a mathematical model fér a fixed-bed reactor is facilitated greatly
by assuming that the concentration in the bed changes negligibly within a distance equal
to the particle or pellet size. The average local reaction rate and conversion at any point
in the bed are then equal to the average reaction rate and conversion of a particle, which
experiences ambient conditions identical to those at the same point of the bed. The average
local reaction rate and conversion in the bed are given by Eqgs. 7.8 and 7.9, and as a result,
it is necessary to solve the structural and particle model equations at every point in the
bed in order to determine their values. For a first-order reaction — as it is the case here —
it is not necessary to solve these two models simultaneously with the bed equations if the
pseudosteady-state approximation is used for diffusion in the product layer and diffusion
and reaction in the pore space. The structural model is solved first to create a database
for the particle problem, which is then solved to create a database (for the variatiqn of k,
with £) for the bed model. This approach was used by Sotirchos and Zarkanitis (1989) in
their fixed-bed desulfurization model.

The equations that describe the material balances of the gas and the solid reactant

are in dimensionless form:

9y % Oy =,z -
6(,57—_-—5;—]365;—@ (ﬁ)y (110)
% = wd?(f)y (7.11)
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y 1s the concentration of the reactive gas in the bed, z is the axial distance in the bed, €
is the bed voidage, k,(£) is the volumetric reaction rate, Pe is the Peclet number, and 7
the reaction time. The symbols in Egs. 7.12 and 7.13 are given in the notation section of

this paper. The boundary and initial conditions used for Egs. 7.10 and 7.11 are:

9y S
—5p = Pell-y) atz=0 (7.14)
Jy
_6_.;_0 atz =1 (7.15)
y=0andé=0 at7=0 (7.16a,b)

The numerical procedure followed for the solution of the above equations is described in
detail by Sotirchos and Zarkanitis (1989).

Before we proceed with the presentation of the model predictions, we will briefly
discuss some of the assumptions made in the development of the mathematical model for
the bed. No energy balance was included in the bed model since the reactor was assumed
to operate isothermally. As mentioned previously, the temperature rise in the bed was
too small (less than 3°C) to justify use of a nonisothermal model. It is assumed that the
bed voidage (&) remains constant during the sulfidation reaction. Even though the solid
product occupies more space than the solid reactant, this assumption is not unreasonable
because reaction mainly occurs in the interior of the porous particles. The ratic of the
internal surface area of the solids to the geometrical external surface area is about 4,000
for particles of 200 um and larger for the other particle sizes used in this work. The axial
dispersion coeflicient, D, was estimated from the formula Dy = eyDfn forn = 2. Dis
the binary diffusion coefficient of H.S in Ny, and 7 is the tortuosity factor of the bed.
We chose to work with this value of axial dispersion coefficients on the basis of the pulse

chromatographic studies of Krishnan and Sotirchos (1990) for bedsipacked with zinc oxide

particles of the same sizes as the ones used in our experiments.
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The predictions of the mathematical model were found to be strongly influenced by
the type of sorbent, size of sorbent particles, and residence time of reactive mixture in the
sorbent bed. Fig. 7.4 presents simulation results for the reaction of 210-250 and 297-350
pm particles of samples G-72D and C7-2 with a mixture of 10,500 ppm H,S in nitrogen
at 600°C. The reaction times were normalized with respect to the minimum time required
for complete conversion of the bed (#y). The space velocity for all the cases of Fig. 7.4 was
20,000 Ar~! (based on the volume of empty bed at standard conditions), and the reactor
diameter and length were 0.75 and 3.40 cm, respectively. For small HyS concentration
in: the exit stream, t/¢; gives a direct measure of sorbent utilization (sorbent used/initial
bed load) in the bed. According to the results of Fig. 7.4, the sorbent utilization decreases
with increasing particle size for a given breakthrough concentration. Moreover, it takes
less time to get a certain concentration at the exit of the reactor when the reactor is loaded
with G-72D particles.

The conversion profiles in the reactor for the four cases of F ig. 7.4 are shown in
Fig. 7.5 at reaction times 0.3, 0.6, and 0.9 (t/to). Because of the high value of space
velocity used to obtain the results of Fig. 7.4, the contribution of the axial dispersion term
in the mass balance in the bed is negligibly small. As a result, with the exception of the
early stages of the reaction, the concentration profiles in the bed are identical to those of
Fig. 7.5. The behavior of the results of Figs. 7.4 and 7.5 for the breakthrough curves are in
agreement with those of Fig. 7.3 for the variation of the volumetric reaction rate constant.
(The ko values for the two sorbents do not differ significantly.) The sorbent utilization for
a certain breakthrough concentration varies in the same order as the average reactivity of
the particles, and the spread of the conversion profile in the bed increases with decreasing
particle reactivity.

The performance of a sorbent bed loaded with 297-350 #m particles at 600°C', under
different reactive gas flow rates corresponding to space velocities (S.V.) of 20,000, 10,000,
and 2,000 ~7~! (at standard conditions) is examined in Fig. 7.6. The dimensions of the
sorbent bed are the same as those in Fig. 7.4. Large residence times (small reactive gas
flow rates) tend to reduce the spread of the conversion profile in the reactor and, hence,

increase the utilization of the sorbent at the breakthrough point. Obviously, there is a




208
10000 | ,
§ — Sorbent G-72D
R — Sorbent C7—2
g
L, 6000 210250 um
= 297350 um
<
U?\‘ 4000 |-
X
€ 2000 |
&
0 — ' . 1 ) . .
0 0.3 0.6 0.9 12 15
NORMALIZED TIME, t / to
* Figure 7.4: Breakthrough curves predicted by the mathematical model for sulfidation at

600°C of sorbent beds loaded with zinc oxide particles.




209

LOCAL CONVERSION IN THE REACT: OR, ¢

0 02 0.4 0.6 0.8 1
DIMENSIONLESS DISTANCE IN THE REACTOR, x

Figure 7.5: Conversion profiles in the sorbent bed at different reaction times for the cases
presented in Fig. 7.4. : G-72D, 297-350 pm; — — —: G-72D, 210-250 pum; - - - :
C7-2, 297-350 pm; — - —: C7-2, 210-250 pm.




10000
3 — _ Sorbent G-72D
L
ﬁ 8000 f  -ceeemeeeeee. Sorbent C7-2
5 i
'L"u" 6000 S.V. = 20000 hr™
= . S.V. = 10000 hr™
5 4000 - S.V. =2000 hr™!
T
E 2000 |-
&
o . 1 N ] ) N i ] N
0 0.3 0.6 0.8 12 1.5

NORMALIZED TIME, t / 1o

. Figure 7.6: Effect of the space velocity (S.V.) of the reactive gas on the model predictions
for sulfidation of 297-350 um particles at 600°C.




211

trade-off between gas throughput in the reactor and sorbent utilization. Therefore, the
conditions for optimal operation depend not only on the « ‘rbent but on the economics of

the overall process (sulfidation and regeneration) as well.

7.6. Sulfidation Experiments in a Fixed-Bed Reactor and Model Predictions

In this section, we present and discuss the breakthrough curves that were measured in
our experiments and compare them with the predictions of the mathematical model. The
application of the model involves no unknown parameters. The parameters of the sorbent
- bed (particle diameter, weight of the unreacted solid, and bed length and radius) and the
| operating conditions (temperature and reactive gas flow rate and composition) are directly
measured. On the other hand, the parameters for the particle model (diffusion, reaction,
and structure ev<?lution equations) — which are needed to determine k,(£) (using Eqs. 7.8
and 7.9) — are found from the analysis of the single-particle TGA reactivity data. Table
7.2 summarizes the reaction conditions for the various fixed-bed experiments discussed in
this section. The reactive mixture was 1.05% H,S in N, for all experiments, with the
exception of run FB209; where a mixture containing 0.509% H,S was used.

It should be pointed out that in addition to the particle sizes listed in Table 7.2, ex-
pefiments were also carried out.with 53-62 and 88-105 um particles under various reaction
conditions. It was observed that particles in these size ranges tended to agglomerate in
the fixed-bed reactor, leading to significant pressure drop in the reactor. Problems of this
kind were not encountered in beds loaded with particles larger than 200 um.

No H3S was detected by the FPD (flame photometric detector) before the break-
through poiﬁt in all our experiments, implying that the H»S concentration in the exit
stream of the reactor was below the detection limit of the detector (about 1 ppm). The
equilibrium concentration for the reaction of ZnO with 10,500 ppm H,S in nitrogen at
500 and 600°C was calculated using thermodynamic data from Barin and Knacke (1973).
In accordance to our gas analysis measurements, lower H,S concentrations than our de-

tection limit (for example, 0.4 ppm at 600°C) were estimated from the thermodynamic

calculations.
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Run |Sorbent | Particle Size | Reactor I.D. | Reactor Length | Temp. |Space Vel.
() (em) (cm) o) | )
FB107 | G-72D 297-350 0.75 2.8 500 5120
FB105 | C7-2 297-350 0.75 2.8 500 4920
FB104 | G-72D 297-350 0.75 2.5 600 5395
FB101 C7-2 297-350 0.75 2.8 600 4880
FB102 | C7-2 210-250 0.75 2.8 600 4790
FB209 | G-72D | 210-250 1.5 2.5 600 | 14620
FB108 | G-72D 297-350 0.75 2.5 600 1995
FB106 | C7-2 297-350 0.75 2.5 600 2070
FB212 | G-72D 297-350 1.5 5.4 600 1850
FB211 C7-.2 297-350 1.5 2.5 600 16120
FB301 C7-2 710-850 1.5 9.4 600 3050
FB302 | C7-2 710-850 1.5 8.7 600 3320

Table 7.2: Reaction conditions used in the sulfidation experiments.

The experimental and the theoretical results of Fig. 7.7 give breakthrough curves for
samples G-72D and C7-2 at 500 and 600°C. The experimental data (the H,S concentra-
tions measured by GC analysis) are given by distinct points, while the model predictions
 are presented as continuous curves. (The results will be presented in the same way in all
the other figures we will discuss in this section.) The experiments of Fig. 7.7 were per-
formed using particles of 297-350 um and space velocities of about 5,000 hr~!. Very good
agreement, both qualitative and quantitative, appears to exist between model and experi-
ment in Fig. 7.7. This was found to true for all cases considered in our study, a remarkable
result considering that all model parameters were determined from independent experi-
ments. Relatively large deviations between the theoretical and experimental results were

observed only for small breakthrough concentrations, i.e., in the vicinity of the ‘elbow’ of

the breakthrough curve. Even if the data for small concentrations were as reliable as those
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for large concentrations, this behavior should not surprise us. The sulfidation of zinc oxide
1s a reversible reaction, and it is thus possible its actual kinetics for small concentratlon
values to be much different from the irreversible, linear kinetics used in the mathematical
model.

The results of Fig. 7.7 indicate that the reaction temperature has almost no effect
on the experimental and theoretical data. This is in agreement with the weak effect of A
desulfurization temperature on the behavior of single C7-2 and G-72D particles that we
observed in our TGA studies (Efthimiadis and Sotirchos, 1991). Weak influence of desul-
furization temperature on the experimental data was also seen in fixed-bed experiments of
other desulfunzatlon studies such as the study of Yumura and Furimsky (1985) with zinc
oxide sorbents and Gangwal et al. (1989) with zinc ferrite sorbents. We did not cover a,
larger temperature range in our experiments, because at temperatures hi‘gher than 600°C
we may have sintering and zinc loss (above 650°C according to Tamhankar et al. (1986)
and Gangwal et al. (1989)), whereas at temperatures below 500°C reactivity results may
be corrupted by sulfur chemisorption in the sorbents (Efthimiadis and Sotirchos, 1991).

Since the residence time of the reactive mixture in the sorbent bed has strong effects
on sorbent utilization (Fig. 7. 6), experiments were carried out in the fixed-bed reactor of
Fig. 7.1 overa broad range of space velocities (about 2,000-15,000 hr— 1). The experimental
data and the model predictions for a bed loaded Wlth particles of the G-72D sample and
sulfided at 600°C are shown in Fig. 7.8. Particles of 210-250 pm size were used in the
FB209 run, while in all the other runs the reactor was loaded with 297-350 um particles.
The dependence of the breakthrough response of the fixed-bed desulfurization reactor on
particle size and space velocity may also be seen in Fig. 7.9 for beds loaded with sample
C7-2, but for a much broader range of particle size than for sample G-72D (Fig. 7.8). In
agreement with the theoretical predictions of Fj 1gs. 7.4 and 7.6, the results of Figs. 7.8 and
7.9 show that an increase in the particle size or in space velocity increases the spread of
the breakthrough curve and leads to lower sorbent utilization. It is interesting to note
that a combination of smaller particle size and higher space velocity in run FB209 relative
to the values used in run FB104 produces a breakthrough curve similar to that obtained

in the latter case. The H,S concentration used in run FB209 is half the value used in all
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other experiments but since the reaction is of first order with respect to the concentration
of H,S. results for different H3.S concentration can be compared with each other. Direct
inspection of the fixed-bed model equations (Egs. 7.10-7.16) reveals that the breakthrough
curve expressed as y vs. t/{q is independent of the H,S concehtration at the inlet of the
reactor.
It is clear from the comparison of model predictions and experimental data in
Figs. 7.7-7.9 that the mathematical model successfully predicts the behavior of fixed-bed
reactors loaded initially with fresh (unreacted) particles. In order to examine the ability
of the model to describe the behavior of a fixed-bed reactor when desulfurization starts
with a nonuniform conversion profile in the bed, we carried out experiments using beds
loaded with partially reacted sorbents. Speciﬁcally,'we stopped the reaction in runs FB301
and FB302 after significant H,S concentration was detected at the outlet of the reactor (a
few hundred ppm, as it can be seen in Fig. 7.9 for run FB302) by passing N, through the
reactor. We then reversed the direction of flow in the bed and continued the sulfidation
process under the reaction conditions used in the first step of the experiment. The ex-
perimental results obtained from these experiments are shown in F ig. 7.10, with the solid
markers used for the concentrations measured during the first step of the experiments. In
presenting the resiﬂts, the start time for the second part of the experiments was set equal
to the actual time when the first sulfidation step was stopped, t* (7* in dimensionless
form). The model predictions of Fig. 7.10 given by solid curves are for the first step of
the experiments and were obtained by integrating the fixed-bed model equations with the
Initial conditions given by Eqgs. 7.16a,b. The dashed curves give the model predictions for
the second part of the experiment and were obtained by integrating the model equations
with initial conditions: _
y=0and £ =£*(z) at 7= 7* (7.16'a,b)
with £*(z) being the concentration profile in the inverted bed at the end of the first part
of the experiment, i.e., £*(z) = (1 - z,7*). Good agreement is ag:in observed to exist
between model predictions and experimental results, especially in the most important part
of the breakthrough curve, namely, that corresponding to low H,S concentration in the

outlet stream. The tendency of the mathematical model to predict sharper breakthrough
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curves in the high concentration region and, hence, faster completion of the reaction is

due to overprediction of the reaction rate at high conversions by the particle model (see

Fig. 7.2).

7.7. Analysis of the Pore Structure of the Sulfided Sorbents

The pore structure of the sulfided sorbents was characterized using mercury
‘porosimetry and nitrogen adsorption at 77K Samples of reacted particles were collected
from the top, bottom, and middle section of the bed. N, pycnometry measurements, made
in the adsorption unit were used to estimate the skeletal densities of the unreacted and
fully sulfided solids. Heat-treated samples of samples G-72D and C7-2 had skeletal den-
sities of 5.4 and 4.8 g/cm?, respectively. Lower densities were measured for the sulfided
forms of the two sorbents (4 and 3.8 g/cm? for sorbents G-72D and C7-2, respectively).

The pore volumes of the fully sulfided sorbents agreed well with those predicted
from the porosities and compositions of the unreacted (heat-treated) samples under the
assumption that there was no change in the overall dimensions of the particles during the
reaction. This finding was used to determine the average conversion of the partially reacted
samples using the pore volumes obtained from the mércury porosimetry data. The average

conversion £ of a sample collected between points z; and z; in the bed is obviously equal

to
. 1 T2 _
£ = / £dz (7.17)
T2 — Ty Jg,
é is related to the average porosity £ of the sample by the equation:
o €p — é -
= 7.18
¢ (1-e0)(Z2-1) (7.18)

where Z is the volume of fully reacted solid phase per unit volume of unreacted solid
phase. Z is équal to 1.56 and 1.38 for samples G-72D and C7-2, respectively. The average
conversion for the partially reacted samples that were collected from the top, middle, and
bottom parts of the bed are shown by dashed straight lines in Figs. 7.11 and 7.12 for
samples G-72D (run FB209) and C7-2 (run FB211). Each dashed line extends over the

portion of the bed, in terms of distance, that each average conversion represents. The

continuous solid curves give the conversion profile predicted by the mathematical model at
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the time the sulfidation reaction was stopped. We see that in both figures the experimental
average conversion histogram is in very good agreement with the theoretical conversion
profile.

The cumulative pore volume vs. pore diameter curves for the partially reacted sam-
ples of Figs. 7.11 and 7.12, determined from mercury intrusion porosimetry data, are given
in Figs. 7.13 and 7.14, respectively. Shown in the figures are also the pore volume dis-
tribution curves for the unreacted sorbent (solid curves). The results of Figs. 7.13 and
7.14 show that the total pore volume decreases with increasing conversion, while the most
probable pore radius of the pore volume distributions shifts toward larger pore sizes. The
decrease in the total pore volume is expected since the reactlon involves a solid product
(ZnS) which occupies more space than the oxide from which it results. This cannot be
said, however, about the displacément of the pore size distribution toward large pores. If
the pore structure of the sorbents evolves only because of the reaction of HoS with Z nQ0,
the size of each pore should become progressively smaller as Zn0 is replaced by ZnS and
the pore volume distribution should move toward smaller pores. Shift of the pore size
distribution toward larger pores was also observed by Grindley (1988), who performed
mercury porosimetry measurements on sulfided and regenerated zinc ferrite pellets in a
fixed-bed reactor.

The behavior of the pore volume distribution curves of Figs. 7.13 and 7.14 is in
disagreement with the results we obtained in another study (Efthimiadis and Sotirchos,
1991) on the evolution with the conversion of the pore volume distribution of partially
reacted samples of the same sorbents prepared in a fluidized-bed reactor. Pore volume
distribution curves for partially reacted and fully sulfided samples of sorbent C7-2 from
that study are shown in Fig. 7.15. These samples were prepared using the experimental
arrangement of Fig. 7.1 with the fixed-bed replaced by a fluidized-bed reactor. Specifically,
about 5 g of 710-850 um particles were sulfided up to four different conversion levels using
1.05% H,S in N, flowing at 3.5 i /min (standard temperature and pressure). The pore
volume distribution of the unreacted sorbent and of the fully sulfided sorbent in the fixed-

bed reactor (see Fig. 7.14) are also shown in Fig. 7.15 for comparison. As the results of

Fig. 7.15 show there is no shift of the pore volume distribution of the samples prepared in
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the fluidized-bed reactor toward larger pores. Actually, all samples appear to have similar
cumulative pore volume distributions in the region of large pores.

All particles in a fluidized-bed reactor experience, on the average, the same reaction
conditions, and as a result, partially reacted samples prepared in such a reactor consist of
particles of the same conversion. Samples collected from a fixed-bed reactor, on the other
hand, cover a range of conversion levels, which may be rather broad depending on the part
of the bed they were taken from (see Figs. 7.11 and 7.12). This difference is important
when comparing the pore volume distributions of partially reacted samples of the same -
conversion from the two reactors, but it alone cannot explain the observed shift of the
pore volume distribution of the fixed-bed samples toward large pores. However, since no
mixing takes place in the fixed-bed reactor, with the exception of the layer of particles
located at the entrance of the reactor, all other particles see the reactive mixture for the
first time afte;‘ they spend some time — which is roughly proportional to their distance
from the entrance in the reactor — exposed to the product stream of the reaction, namely,
a stream containing a% H,O for a reactive mixture containing a% H»S. Analysis of the
pore structure of C7-2 paﬂ:icles (710-850 pm) exposed at 600°C to a stream containing
1% H»O for 2 hr showed shifting of the pore size distribution towards larger pores, though
to a less extent than in Fig. 7.13. In view of this finding, it was postulated that the
displacement of the pore size distributions of the fixed-bed samples toward large pores is
caused by structural changes occurring because of the exposure of the sorbent particles .
to water vapor. Water vapor is also present in the fluidized-bed reactor, but since the
internal surface of all particles is covered by a progressively thicker layer of sulfided phase,
the occurring structural changes are less extensive.

The initial pore size distributions used in the application of the mathematical model
(solid curves of Figs. 7.13 and 7.14) give pore surface areas 22 and 23 m?/g, for sorbent
G-72D and C7-2, respectively (pores greater than 50 A in radius). These values are close
to the BET surface areas of the unreacted materials (see Table 7.1). BET surface areas
of fully sulfided samples of the two sorbents are listed in Table 7.3. The generalized pore
model predicts that the surface area of the fully sulfided G-72D and C7-2 sorbents should be

16 and 18 m?/g, respectively. The smaller experimental values of internal surface area for
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the sulfided sorbents are not unexpected considering the displacement of the experimental
pore volume distributions toward larger pores. Another reason for this discrepancy may
be the use of the pore size distribution extracted from mercury intrusion data in the
mathematical model. This distribution corresponds to the true pore size distribution only
for an ideal structure of infinitely long cylindrical pores. For an arbitrary structure, it gives
a measure of the distribution of feeder pores through which mercury invades the interior
of the sorbent, and as a result it is narrower and located at smaller pore sizes than the .

actual pore size distribution of the solid.

Material Experiment Surface Area
(m?/g)
G-72D FB209 - 94
G-72D FB212 79
C7-2 FB211 13.55
C7-2 FB101 . 15.83
C7-2 FB102 13.62

Table 7.3: BET surface areas of fully sulfided zinc oxide sorbents.

7.8. Summary and Conclusions

Two commercially available zinc oxide sorbents were reacted at high temperatures
using H3S-N, mixtures in a fixed-bed reactor. Particles in i:he size range of 210-850 um
were used in the experiments. Breakthrough curves were determined experimentally by
chromatographic analysis of the stream leaving the reactor. The comparison of experimen-
tal data obtained under the same sulfidation conditions for the two sorbents showed that
the pore structure of the sorbents plays a major role in determining sorbent utilization in
the bed at the breakthrough point. Other parameters having strong effects on the behavior
of the reactor were the size of the particles and the residence time of the reactive mix-

ture in the reactor. Experiments at 500 and 600°C showed that the reaction temperature
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.influenced insignificantly the performance of the two solids as sorbents for H,.S removal.

Samples of fully or partially reacted particles collected from different parts of the
fluidized-bed reactor were analyzed by mercury porosimetry and gas adsorption. The pore
volume distribution of the reacted (partially and fully) samples was found to be shifted
toward larger pores relative to the distribution of the unreacted solids. Such behavior was
not seen in solids sulfided in a fluidized-bed reactor under the same conditions (temper-
ature, pressure, ‘and reactive gas mixture composition) as in the fixed-bed experiments;
Since the particles in a fluidized-bed reactor remain exposed to the product stream of
the reaction until the reaction front reaches them, it is believed that the displacement of
their pore size distribution toward larger pores is caused by structural changes occurring
because of their exposure in the water vapor produced by the sulfidation reaction.

The experimental results (breakthrough curves and pore structure data) were used
to test the predictions of a mathematical model for fixed-bed desulfurization reactors.
The behavior of each particle in the fixed-bed reactor was described using the generalized
random pore model of Yu and Sotirchos (1987). Reactivity evolution data from thermo-
gravimetric analysis experiﬁents had been used in a past study to determine the values
of the various parameters appearing in the generalized random pore model for each of the
sorbents, and as a result, the application of the overall model to the fixed-bed data involved
no unknown parameters. Very good agreement was observed between model predictions
and experimental data for all cases examined in our study. The mathematical model re-
produced successfully both the breakthrough curves and the solid conversion profiles in
the fixed-bed reactor.

It must be pointed that it is not necessary to use adetailed model, like the one em-
ployed in this study, to describe the transport, reaction, and structure evolution processes
in the pellets if our only objective is to use the overall mathematical model to correlate the
experimental data. Since the general shape of the breakthrough curve is weakly influenced
by the detail built into the pellet model, any model would succeed in reproducing the
experimental curves provided that its parameters are allowed to vary from one experiment

to another. For instance, Wang et al. (1990) used the unreacted-core model to describe

the behavior of each pellet and obtained very good agreement between model results and
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experimental data from a bench-scale reactor loaded with zinc ferrite or zinc titanate pel-

lets. However, the the effective diffusivity values that had to be used to obtain good

agreement between model and experiment were much different from those used in another

study (Woods et al., 1991) to reproduce, using the unreacted-core model, sulfidation data

for single pellets of the same sorbents from gravimetric experiments.

7.9. Notation

Symbols that do not appear here are defined in the text.

radius of the particle, cm

reactive gas concentration in the bed, mol/cm?

initial reactive gas concentration in the bed, mol Jem?®
reactive gas concentration in the bulk phase, mol Jem3
reactive gas concentration in the particle, mol Jem?®

bulk diffusion coefficient, cm? /s

axial dispersion coeficient in the fixed-bed, cm?/s

effective diffusion coefficient in the particle, cm? /s

initial effective diffusion coefficient in the particle, em? /s
mass transfer coefficient, cm/s _

reaction rate constant in the particle, cm/s

volumetric reaction rate constant in the particle, s™1

initial volumetric reaction rate constant in the particle, 51
average volumetric reaction rate constant in a particle or in the bed, s!
length of the sorbent bed, cm

Peclet number (see Eq. 7.12¢)

radial distance in a particle, em

average reaction rate per unit of particle volume, mol Jem?/s
initial surface area, cm?/em?

Sherwood number (see Eq. 7.6¢)

time, s




m

to minimum time for the complefe conversion of the sorbent bed, s
u superficial velocity in the reactor. cm/s
Vs volume of the unreacted solid per mol of the solid reactant, crm®/mol
z dimensionless distance in the bed
. z; dimensionless distance of point ¢ in the bed
Yy dimensionless concentration in the bed
Yp dimensionless concentration in the particle
z axial distance in the bed, cm
Zz volume of fully reacted solid phase per unit volume of unreacted solid phase
Greek
¢ dimensionless effective diffusivity
€ porosity of the unreacted particles
€ bed voidage
€p porosity of the reacted particles
€ average porosity of particles located in a segment of the sorbent bed
n tortuosity factor for axial dispersion
Ky dimensionless reaction rate constant in a particle .
va stoichiometric coefficient of the reactive gas
£ local solid conversion in a particle
£ average solid conversion in a particle or in the bed
¢ average conversion of particles located in a segment of the fixed-bed
p dimensionless distance in a particle
T dimensionless time for the fixed-bed reactor (see Eq. 7.13a)
Tp dimensionless time for the particle (see Eq. 7.6a)
. o2 Thiele modulus for the particle (see Eq. 7.6b)
@2 Thiele modulus for the sorbent bed (see Eq. 7.13b)
’ w dimensionless parameter (see Eq. 7.13c)

Wp dimensionless parameter (see Eq. 7.5¢)
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8. A PARTIALLY OVERLAPPING GRAIN MODEL FOR GAS-SOLID RE-
ACTIONS

The reaction of gases with porous solids is among the most frequently encountered
reactive systems in industrial applications. The products of a gas-solid reaction may
consist of gases only (e.g., char combustion and gasification), or formation of other solid
species with different properties from the solid reactant may take place (e.g., reaction of
sulfur-containing gases with metal oxides and deposition of ceramic material in fibrous
preforms). Regardless of whether a gasification or a solid product formation reaction is
considered, a mathematical model must be used to describe the structural changes that
occur in the interior of the porous solid in the course of the chemical reaction. The various
mathematical models presented in the literature for this purpose are usually classified into
two, rather broad, categories (Raniéchandran and Doraiswamy, 1982): models based on the
representation of the pore space of the porous media by a collection of hollow objects (pore
models) and models based on the representation of the solid phase of the porous media by
an assemblage of dense objects (grain models). Hybrid and other abstract representations
of the pore structure of a porous medium are also possible (Bhatia, 1987), but most of the
structural models of the literature fall into either of the above categories.

In a grain model, the pore structure of the reacting solid is typically viewed as
consisting of uniform in size, unconsolidated (nonoverlapping) grains, usually of spherical
shape, which react independently of each other in a shrinking core fashion (Szekely et al.,
1976). Because of the simplicity of the grain model expressions for the variation of the
structural propertieé of a reacting solid with the extent of the reaction, the models that are
most frequently used in the literature for the analysis and interpretation of experimental
data for gas-solid reactions are based on variants of the grain model. Among the most
important modifications of the original formulation of the grain model by Barner and
Mantell (1968) and Szekely and Evans (1970), one could mention the extension of the model
to solids with distributed grain size (Szekely and Propster, 1975), the use of variable size
grains to account for density differences between the solid product and the solid reactant
(Georgakis et al., 1979), and the incorporation in the model of sintering effects on the

structural changes of the solid (Ranade and Harrison, 1981).
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The most important .deficiency of the various versions of the grain model is the
assumption of nonoverlapping grains at all conversion levels and all porosities, which leads
to the prediction of monotonically decreasing reaction surface area with the progress of
the reaction (reacted-unreacted solid interface for reactions with solid product or pore
surface for gasification reactions). Moreover, there is a minimum close packing porosity
for grains of a certain shape, and therefore, the assumption of unconsolidated grains for
pérosities below this threshold ﬁlue 1s physically unrealistic. These shortcomings of the
grain model can be removed by allowing the grains in the structure to overlap. A grain
model for partially sintered spheres was developed by Lindner and Simonsson (1981) who
represented the solid reactant as aggregates of spheres in an initial state of sintering. The
derivation of approximations for the evolution of the structural properties of this structure
with the extent of the reaction was accomplished by considering a sphere with an average
number of nearest neighbors. The structural model of Lindner and Simonsson was modified
by Alvfors and Svedberg (1988) to account for the presence of inert solids in the porous
medium, and the modified model was used to study the sulfation of calcined limestones
and dolomites. The notion of overlapping grains was further pursued by Sotirchos (1987)
and Sotirchos and Yu (1988), who developed structural models for porous media that
can be represented by a population of randomly overlapping grains of distributed size.
Comparison of the predictions of the random grain model (Sotirchos and Yu, 1988) with
those of the corresponding random pore model (Sotirchos and Yu, 1985) showed that grain
structures react in a different manner from capillary structures. Sotirchos and Zarkanitis
(1989) incorporated the random grain model in a design model for fixed-bed desulfurization
reactors and showed that the grain size distribution may have a strong influence on the
breakthrough behavior of the bed.

The assumption of freely overlapping grains makes possible the derivation of exact
analytical expressions for the dependence of the structural properties of the porous medium
on the conversion, but in actual porous media, the extent of grain overlapping should vary
among different solids. For porous media prepared as powder compacts, in particular, the

extent of grain overlapping should be a function of processing conditions and of procedures

used for their preparation. A grain representation of a porous medium that is more flexible
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than that of randomly overlapping grains is obtained when one considers a population of
grains with each having a hard core surrounded by a penetrable soft shell. Only the soft
shells of the grains can overlap with each other, when this population of grains is used to
represent the structure of the porous medium. Obviously. at the limit of zero size of hard
core one obtains the random overlapping grain model, while at the limit of zero thickness
of soft shell, the nonoverlapping grain model results.

A special case of the partially overlapping grain model is obtained when all grains
are assumed to have the same size and the same soft shell thickness or, equivalently,
hard core size. Rikvold and Stell (1985) used the scaled-particle theory of Reiss, Frisch,
and Lebowitz (1959) to develop expressions for the porosity and surface of D-dimensional
partially overlapping spheres of uniform size and uniform hard core radius. (For D = 2, the
obtained structure is that of parallel, partially overlapping cylindrical grains). Tomadakis
and Sotirchos (1991a) used a Monte Carlo simulation scheme to compute the structural
properties of partially overlapping cyvlinders (D = 2) and found that the relations proposed
by Rikvold and Stell (1985b) provided an excellent approximation to the pr ~osity of the
structure in a rather wide range of porosity and cylinder to hard core radius ratio values.
The surface areas predicted by the expression of Rikvold and Stell (1985b) were lower
than the numerically computed values, but the agreement between the analytical results
and the numerically computed values should be deemed satisfactory in view of the large
computational times needed to obtain the latter.

A structure of ﬁartially overlapping spheres, with each sphere having the same radius
and hard core radius, is used as basis in this study for the development of a partially over-
lapping spherical grain model for gas-solid reactions with solid product. The development
of the mathematical model proceeds along the lines of the grain model of Sotirchos and
Yu (1988). The expressions of Rikvold and Stell (1985a) are used to follow the variation
of the porosity and surface area (reaction and pore surface area) with the extent of the
reaction. In order to demonstrate the flexibility of the new model, a detailed parametric
sensitivity analysis of its predictions is carried out, and the results are compared with
those of the randomly overla.ppipg and nonoverlapping grain models. Finally, the model

1s applied to the analysis of some experimental data for the sulfidation of zinc oxide, a
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reaction used to remove sulfur-containing contaminants (primarily HyS) from coal gas at

high temperatures.

8.1. Local Reaction and Structure Evolution Model
Ezpressions for Porosity and Internal Surface Area

We consider a structure consisting of a population of uniformly sized, spherical grains
of radius R. Each grain consists of a hard core of radius R. and a penetrable soft shell. Such
a structure can be obtained from an initial structure of randomly ‘packed’ nonoverlapping
grains of radius R. by letting the grains ‘grow’ from radius R, to radius R. It thus makes
sense to parametrize the system using the porosity of the structure made up of the hard
cores of the grains €. and the grain growth variable §, the latter defined as the ratio of
grain radius to hard core radius.

For § < 1, the porosity and _surface area of the porous medium are given by the

expressions for hard (nonoverlapping) spheres, i.e.,

e=1~- %rnRs . (8.1)

S = 4nnR? (8.2)
with n being. the number of grains per unit volume. As § — oo, i.e., R — 0, then
the structural properties of the solid are given by the equations for randomly overlapping

grains, i.e.,

€= exp(—%rnR?’) (8.3)
S = e4mnR? (8.4)

For other values of § and ., we use the expressions derived by Rikvold and Stell (1985),

which in terms of the quantities defined in this study have the form:

€= c.exp [_ (6° — 12(1 - ec)]
X exp [—g)%—)—@(é —1)° +3e.(6 — 1)2)} - (8.5)
S = M[eg(ﬁ + (1 — €)(3(6 — 1)? + 3e.(6 — 1))] : (8.6)

3
Re?




237
Eq. (8.6) follows from differentiation of Eq. (8.5) with respect to R, using the fact that
S = de/dR. For § =1, Egs. (8.5) and (8.6) reduce to those for nonoverlapping grains, i.e.,
(8.1) and (8.2), but they become indeterminate as § — oo, 7

Rikvold and Stell (1985a) derived Eqs. (8.5) and (8.6) by realizing that a structure
of partially permeable spheres is isomorphic to a fluid of hard spheres of radius R, into
which one attempts to introduce a hard solute molecule of radius (R — R.). This problem
forms the basis of the scaled-particle theory for hard sphere fluids of Reiss, Frisch, and
Lebowitz (1959). The porosity of the partially overlapping sphere structure corresponds
to the volume accessible to the center of the solute molecule, while its internal surface
area corresponds to the surface accessible to the center of the solute molecule when it is in
contact with at least one solvent molecule. Reiss et al. (1959) derived exact expressions for
quantities equivalent to € and S in terms of the contact correlation function G, that is, the
radial distribution function of the solvent molecules around a solute molecule on contact
between solvent and solute. Egs. (8.5) and (8.6) are based on a quadratic approximation
of G in terms of the inverse particle separation. This approximation yields exact results
up to the third virial coefficient (Reiss et al., 1959), and it is commonly referred to as the
scaled-particle approximation.

The porosity and surface area of a porous medium can be measured using gas adsorp-
tion and mercury porosimetry. For the case of nonoverlapping or randomly overlapping
spheres, Egs. (8.1) and (8.2) or Egs. (8.3) and (8.4), respectively, may be used to deter- -
mine the values of the two parameters, n and R, that define the population of the spherical
grains. A structure of partially overlapping grains requires, as Eqgs. (8.5) and (8.6) show,
three parameters for its unique characterization, namely, ¢,, R, and ¢, and consequently,
additional information about the pore structure of the porous medium is needed in order
to be able to specify these parameters. For man-made porous media prepared as powder
compacts, the radius of the spherical grains is a known quantity, while for other porous
solids, it may be determined from direct photomicrographic observation of their structure.
Another alternative is to treat one of the three parameters of the partially overlapping
grain model as a free parameter and thus provide the structural model that can be based

on Egs. (8.5) and (8.6) with more flexibility than the corresponding structural model for
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non- or freely overlapping grains. )

Figs. 8.1 and 8.2 present the variation of the porosity, ¢, and dimensionless surface
area, SR, of a structure of partially overlapping spherical grains with the grain growth
variable, &, for various values of hard core porosity. Since the hard cores of the grains cannot
overlap, the hard core porosity can only take values larger than the porosity corresponding
to a structure of ordered close packed spheres, €ocp (= (1 — 7/18/2) 2 0.2595). For § = 0,
the porosity of the grain structure is equal to unity, while its internal surface area is zero
(see Figs. 8.1 and 8.2). For é values less than unity, the solid structure obviously consists
of unconsolidated (nonoverlapping) grains, and the pérosity and internal surface area are

given by Egs. (8.1) and (8.2), which in terms of €., R, and § can be written in the form

e=1-(1- )6 (8.7)
_3(1—e€)8  3(1—e)b?
S=—p—= R (8.8)

As the radius of the grains and, hence, the growth variable increase, the porosity decreases
becoming equal to the hard core porosity at § = 1.

The porosity and internal surface area predicted by Egs. (8.5) and (8.6) become
identically zero only for infinitely large values of the grain growth variable, regardless of
the hard core porosity of the structure, while one would expect this to be the case only for
randomly overlapping grains (¢, = 0). Nevertheless, as Figs. 8.1 and 8.2 show, the porosity
and internal surface area of a partially overlapping grain structure given by Egs. (8.5) and-
(8.6) become practically zero beyond a certain value of grain growth variable — which
Increases with increasing hard core porosity — and consequently, the above limitation of
Eqgs. (8.5) and (8.6) is not expected to influence in any way the predictions of the structural
model we intend to build on them. Since the grains do not overlap for § < 1, the internal
surface area always increases with increasing ¢ in this region. The internal surface area
continues to increase as 6 becomes greater than unity and the soft shells of the grains
start to overlap with each other, but eventually, the loss of surface area because of grain
overlapping offsets the gain caused by grain growth forcing the surface area of the solid to

go through a maximum. For obvious reason, the position of the maximum moves towards

smaller § values with decreasing hard core porosity.
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Figure 8.1. Variation of the porosity, €, with the the grain growth .va.ria.blc (ratio of
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Reaction and Structure Evolution Equations
We are now ready to proceed with the development of the structure evolution model

for gas-solid reactions with solid product. We will consider the general gas-solid reaction
S (solid) + v4A(gas) +--- — vpP (solid) + - - - (8.9)

with --- denoting other gases participating in the chemical reaction. The stoichiometrically
equivalent molar volume of the solid product, vpvp, may be larger or smaller than the
molar volume of the gaseous reactant, vs, leading to decrease or increase, respectively, of
the porosity of the reacting porous medium. Sulfidation and sulfation of metal oxides are
typical examples of reactions accompanied by decrease in the porosity, while the oxidation
of metal sulfides exemplifies reactions producing more open pore structures. An extreme -
example of thg latter type of reactions is the class of gasification reactions, which is also
covered by Eq. (8.9) for vp equal to zero.

We define the stoichiometric volume ratio of the (solid reactant, solid product) pair,
Z, as the ratio of stoichiometrically equivalent volumes of solid product and solid reactant
(Z = vpvp/vs). Z is in general different from unity or zero, and as a result, the internal
structure of the reacting porous medium is characterized by two evolving interfaces, defin- .
ing the react‘ion and pore surfaces of the solid. Each point of the reaction or pore surface
moves with velocity proportional to the local reaction in the direction of the unit vector
that is normal to the surface there. Therefore, each of these two surfaces can be repre-
sented by a population of grains that are concentric to those forming the initial structure
and, hence, have the same hard core radius and hard core porosity.

Let Rq be the initial grain radius, R, the radius of the grains forming the reaction
surface, and R, the radius of the grains forming the pore surface. We express the intrinsic

rate of the reaction, R, in terms of the change in R, as

dR,
dt

= —’vs'R,s(Cr,T) (810)

where ¢; is the concentration of the gaseous species at the reaction surface. Assuming that

the concentration of the gaseous reactant is the same at all points of the product layer,

between R, and R,, that are at the same distance in the radial direction from the pore or
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reaction surface and solving the diffusion equation in the product layer, we find that

cp——cr= Rs(er, T)S, /S(R (8.11)

¢p is the concentration of the gas in the pores, Sr,p is the reaction or pore surface area, Dp
is the diffusion coefficient of the gas in the product layer, and S (R) is the surface area of
the grain structure when the grain radius is R. Obviously, S (Rrp) = S, ,. For a first-order

reaction, combining Eqgs. (8.10) and (8.11) gives

dRr vSksc
- =" T S (812)
1+ 28,55: | 3t
R,

The equation for the change of R, results from a balance on the solid. We have that

dR, _ dR, Sy
== - 1)3;] (8.13)
The initial conditions for Egs. (8.12) and (8.13) obviously have the form:
R.(0) = R,(0) = R (8.14)
In dimensionless form, Egs. (8.12)-(8.14) may be written as
‘3’7' - - | (8.15)
dy
1 +ﬁ(5f/5°)yf (S(R)/59)
dyp dy, (S- /So)
P _ _ 7T - 1
a2 (2 -1 (8.16)
yr(O) = yp(O) = RoSo (817)
= R, Sy f= Xaks (8.18a, b)
yr’p - r,p~0) - DPSO . a,

t

T = vsksSO/cpdt' ‘ (8.19)

to
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. The dimensionless structural model is independent of the reactive gas concentration and
its variation with time, the initial internal surface area of the grain structure, and the
molar volume of the solid reactant. The reaction rate constant, product layer diffusiﬂ'ity,
and initial internal surface area have been grouped into the dimensionless parameter g,
which can be viewed as a measure of the ratio of the magnitudes of the relative rates of
reaction at the solid-solid interface and mass transport in the product layer. For 8 = 0, the
rate of mass transport in the product layer is infinitely fast relative to the rate of reaction.,
and as a result, reaction occurs in the kinetically controlled regime. On the other hand, as
B — oo, the overall rate of reaction becomes controlled by diffusion in the product layer.

With the initial porosity and internal surface area of the solid known, possibly from
physical adsorption or mercury porosimetry measurements, & (= Ro/R.) has to be spec-
ified to complete the description of the system, provided, of course, that values from the
various kinetic and transport parameters are available. Using Egs. (8.5) and (8.6) (for
6o > 1) or egs. (8.7) and (8.8) (for 6 < 1, i.e., an initial structure of unconsolidated
grains), we can compute the values of hard core porosity, €., and initial grain radius, Ry,
for the chosen set of ¢, S'or, and 6y values. Another option is to specify e, and solve the
equations for 8y and Ry. The evolution of the properties of the reaction surface and pore
surface structures, subscripts » and p, respectively, are also followed using Eqgs. (8.5) and
(8.6) or (8.7) and (8.8). Since the grains representing the reaction and pore surface struc-
ture are concentric to those of the original stru.cfure, their hard core porosity and hard
core radius are the same. The grain growth variable, érp that must be used in equations

(8.5) and (8.6) or (8.7) and (8.8) to obtain the porosity and internal surface area is given
by

R.p Yrip
rp = ——— = — 8.20
6 »P RO SORO } ( )

For the dimensionless form of the model, it is necessary to define only the values of ¢y and
o 1n order to obtain a completely described structure. However, it should be kept in mind
that the dimensionless reaction times can be compared to each other only for solids of the
same initial internal surface area.

The mathematical model of Egs. (8.15) and (8.16) is solved as an initial value problem

consisting of three ordinary differential equétions, the third differential equation obtained
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by setting the integral appearing in the denominator of the right-hand side of Eq. (8.15)

Yp
equal to an auxiliary variable g, i.e., by setting ¢ = f 3—(%9/?0. More details on the

solution procedure may be found in the paper by SOtirZilOS and Yu (1988). Notice that

by eliminating dr from Eq. (8.16), a differential equation between y, and y, is obtained,

which can be solved independ:ntly of Eq. (8.15), that is, independently of the processes of

diffusion in the product layer and chemical reaction. The fractional conversion, £, of the .
solid is obtained from the porosity, €,, or the ‘porosity’ of the reaction surface structure,

€r, by using the relationship

€r — €9 eo—ép

?0 - (Z b 1)(1 bl 60)

(8.21a,bd)

which results from an overall mass balance in the solid reactant and solid product. Ac-
cording to Eq. (8.21b), complete pore closure (e¢p = 0) for conversions less than unity may

take place for initial porosities smaller than (Z -~ 1)/Z (obviously, for Z > 1).

8.2. Structural Model Results

The local reaction and structure evolution model developed in the preceding section
suffices for the description of the behavior of a gas-solid reaction process under reaction
conditions controlled by intrinsic kinetics and diffusion in the product layer, that is, in the
abéence of significant concentration gradients in the intraparticle space. Four parameters
are involved in the dimensionless form of the structural model (see Egs. (8.13)-(8.21)):
€o, extent of grain overlapping. (quantified by €, or 6y for partialiy overlapping grains), 5,
and Z. Before proceeding with the presentation and discussion of our numerical results,
we will briefly discuss our choices for the values of these parameters.

The initial porosity of porous media encountered in practical applications usually
varies in the range [0.4, 0.6]. In order to simplify the investigation of the parametric sen-
sitivity of the problem, the initial porosity will be fixed at 0.5 in all the numerical results
that will be presented in our study. Four grain overlapping patterns will be emnloyed in
our analysis: i) the well-known nonoverlapping grain model (NOGM) in whicl .ne area
- and porosities of the pore and reaction surface structures are given at all porosity (or con-

version) levels by Eqgs. (8.1) and (8.2); ii) the randomly overlapping grain model (ROGM)
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of Sotirchos and Yu (1988) in which the porosities and areas are given by Egs. (8.3) and
(8.4); iii) the partially overlapping grain model (POGM) with initially nonoverlapping
grains (8 = 1); and iv) the partially overlapping grain model with bo = 1.2.

The stoichiometric volume ratio, Z, is zero for gasification reactions (vp = 0 in
Eq. (8.9)), but for gas-solid reactions with solid product formation, its value varies widely
depending on the (solid reactant, solid product) pair; for example, Z = 1.62 for (Zn0O,
ZnS), Z = 0.62 for (ZnS, Zn0), Z = 3.09 for (Ca0, CaSO,), and Z = 4.01 for (MgO,
MgS50s4). In our analysis for the parametric sensitivity of the problem, we will work with
Z = 2, the largest Z value that permits complete conversion of the solid reactant for 0.5
initial porosity before complete pore plugging takes place, and Z = 3, a value characteristic
of the sulfation of calcined limestones (see above), a gas-solid reaction of much importance
in the control of SO, emissions from coal-fired power plants. Parameter B, which expresses
how fast the intrinsic reaction is relative to the diffusion of the gaseous reactant through
the product layer, can take any value between zero and infinity depending on the reaction
conditions. We will present results for the two extremes of intrinsic reaction control and
product layer diffusion control (8 = 0 and 8 = o0) and for an intermediate case (B=1)
where both the resistance for reaction and that for diffusion through the solid product are
important.

F ig. 8.3 presents the variation of the internal surface area, normalized with respect
to its initial value, with the porosity for a solid with 0.5 initial porosity for the four
patterns of grain 6verlapping considered in our study. Internal surface area (normalized)
vs. porosity curves for other initial porosities are shown in Fig. 8.4 for the case of partially
overlapping grains with 6 = 1. As it is indicated in Fig. 8.3, the surface areas for porosities
less than the initial correspond to the pore surface areas (Sp) for gas-solid reactions with
Z > 1, while those for porosities greater than the initial describe the evolution of the
reaction surface area (S;) or of the pore surface area for Z < 1. The surface area of the
nonoverlapping grain model increases monotonically with decreasing porosity since the
grains are assumed to react independently of each other (i.e., not to overlap) even for

porosities smaller than the porosity corresponding to the densest ordered close packing of

hard spheres, viz. 0.2595. All other patterns of grain overlapping give zero internal surface
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area for zero and unity porosity, and therefore, they are consistent with the physics of the
problem. It can be shown using Eqs. (8.3) and (8.4) that the maximum surface area for
randomly overlapping grains occurs at € = ¢=(2/3) 2 (.51, In the partially overlapping
grain model, the maximum surface area occurs at porosities smaller than the initial for
60 < 1 (see Figs. 8.2 and 8.4) while for initiallv overlapping grain structures (6o > 1), the
position of the maximum relative to the initial porosity depends on ¢ and §;.

The results of Figs. 8.3 and 8.4 are valid for any value of Z, but in order to follow
the evolution of the pore and reaction surface areas with the conversion, these results must
be used in conjunction with Eq. (8.21). Surface area vs. conversion curves for gas-solid
reactions with Z = 2 and Z = 3 (i.e., the values that we will use in this study), constructed
using Fig. 8.3 and Eq. (8.21), are shown in Figs. 8.5 and 8.6, respectively. For Z = 2,
the porosity becomes exactly zero ‘when complete conversion of the solid takes place, and
as a result, both the pore and reaction surface areas of structures with overlapping grains
(ROGM and POGM) are zero (Fig. 8.5). The maximum conversion that can be reached

before complete pore plugging takes place (€p = 0) for ¢ = 0.5 and Z = 3 (Fig. 8.6) is
€

(1-eo)
structures with overlapping grains is zero at the maximum conversion, as in the case with

equal of 0.5 (€per = (EZ —1y see Eq. (8.21b)). For Z = 3, the pore surface area of
Z = 2, but the reaction surface area is finite because of the presence of unreacted solid in
the particles. For obvious reasons, the reaction surface area of partially overlapping grains
with 6o = 1 evolves in the same fashion as that of nonoverlapping grains.

Gas-solid reactions with Z > 1—_1—5 will have surface area evolution histories similar,
qualitatively, to those for Z = 3 (Fig. 8.6). The reaction surface areas of system, with
Z < -1—_170 will vary in a similar fashion as the corresponding curves of Fig. 8.2, while the
qualitative variation of their pore surface areas ~ which will be finite at € = 1 - will depend
on whether Z is greater or less than unity (see Fig. 8.3). The most interesting observation
from the results shown in Figs. 8.3, 8.5 and 8.6 is that the reaction surface area at a certain
conversion increases with increasing grain overlapping, while the opposite trend holds for
the pore surface areas for gas-solid reactions with Z > 1. This behavior will be used later
to explain the differences in the reaction vs. time histories of solids with different patterns

of grain overlapping.
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and partially overlapping grains with §,=1 are the same. NOGM: nonoverlapping

grains; POGM: partially overlapping grains; ROGM: randomly overlapping grains.
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Conversion vs. time results for reaction conditions controlled by intrinsic kinetics
(B8 = 0) are shown in Fig. 8.7. Since nono rlapping grains (N OGM) and partially over-
lapping grains (POGM) with §; = 1, have the same reaction surface area (see Figs. 8.3,
8.5, and 8.6) and the resistance for diffusion fhrough the product plays no role in the
process, the conversion vs. time curves for these two patterns of structure evolution are
identical. For the same reason, the conversion evolution results are independent of the
value of the stoichiometric volume ratio (Z), although the latter still determines the maxi-
mum allowable conversion, as it is indicated in Fig. 8.7 for Z = 3. Since the local reaction
rate is proportional to the internal reaction surface area (Sr) and the concentration at
the reaction interface is the same as that in the pores, the reaction rate and, hence, the
conversion of the solid follow the same trend as S, with increasing overlapping, that is,
they also increase.

Figs. 8.8 and 8.9 present conversion evolution histories for 3 = 0o, that is, under
reaction conditions controlled by diffusion in the product layer. Since 8 — oo is equivalent
to letting the reaction occur infinitely fast relative to the diffusion of the gaseous reactant

in the product layer (i.e., ks — oc), it is necessary to redefine the dimensionless time as

t
= lim = = (vs/VA)Dpsgfcpdt' - (8.22)
k,—oo 3
0

Comparison of Figs. 8.8 and 8.9 reveals that the effects of grain overlapping on the conver-
sion trajectories become stronger as the stoichiometric volume ratio (Z) increases. More-
over, the relative positions of the various conversion vs. time curves appear to be influenced
by the Z value. In particular, it is interesting to observe that for Z = 3, the order of the
four conversion vs. time curves is reversed relative to that seen in Fig. 8.7 for § = 0,
that is, the conversion reached after some reaction time now decreases with increasing
grain overlapping. These results can be explained with the aid of Figs. 8.5 and 8.6 for the
variation of the surface areas with the conversion. As shown there, the pore surface area
increases with decreasing grain overlapping (ROGM — POGM — NOGM), and there-
fore, more surface area is available for diffusion through the product layer for R > Ry,

and the thickness of the product layer is smaller. These two factors gain importance as
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Z increases and the product layer becomes thicker, eventually offsetting the effect of the
smaller reaction surface areas. The results of Fig. 8.9 for the NOGM and ROGM cases
are qualitatively similar to those presented by Sotirchos and Yu (1988) for the Ca0-S0,
reaction. Introducing the values used by Sotirchos and Yu for the CaQ-S0, reaction in
the definition of § (Eq. (8.18b)), we find that in their computations 3 was equal to 141,
Results for a case in which both intrinsic kinetics and diffusion through the product
layer are important are shown in Fig. 8.10 for # = 1 and Z = 3. Both S, and S, are
important in this case, and as a result, the conversion vs. time trajectories fér the various
patterns of grain overlapping differ less than the corresponding curves in Figs. 8.7 and
8.9. The evolution of the conversion in Fig. 8.10 may be more easily followed and better
understood by examining the variation of the reaction rate (d¢/dr) with the conversion,
shown in Fig. 8.11. Since ﬁonoVerlappin-g grains and partially overlapping grains with
b0 = 1 have the same and the smallest reaction surface area at all conversions, their
reaction rates and, hence, conversions are smaller than those of the others and practically
indistinguishable of each other at low conversions. As the conversion increases and the
product layer thickens, diffusion in the product layer plays a more important role. Thus,
the model of nonoverlapping grains (NOGM) that has the largest pore surface area starts

to react faster and eventually reaches higher conversions than the other models.

8.3. Results Under Internal Diffusional Limitations

A model for intraparticle diffusion and reaction is needed in addition to the struc-
tural model if the gas-solid reaction occurs in the presence of significant concentration
gradients. For small concentration of gaseous reactant and under isothermal conditions,
the intraparticle diffusion and reaction model can be written, in dimensionless quantities

and for spherical particles, in the following form:

—;(5ez)) - VAK,v.”L“ (8.23)




5 = O (1) = Sl (8.25a,b)
r ¢ .. D¢ k.
p= xzz;; =D—5; nvza; w = vgey; (8.26a —¢)
t
T = vgk_,Sg/Cfdt'; ®? = aQQ; Sht = koa (8.2Ta —¢)
Dg D¢

0
cy 1s the concentration in the bulk of the gas phase, a is the radius of the particle, r is the
distance from the center of the particle, and k, is the mass transfer coefficient.

The intraparticle effective diffusivity, De, and the volume-based reaction rate con-
stant, k,, are functions of the local conversion. It follows from Egs. (8.12) and (8.15) that

Ky (= ky/kyo) is given by the equation |

875 f dy
T 1585./5,) | S®)/5
Yr

(8.28)

The effective diffusion coefficient is obtained from the well-known additivity-of-resistances

(Bosanquet) formula, i.e.,
1 1 1

D~ D3, T Dy

(8.29)

Recent Monte Carlo computations of effective diffusivities in fibrous media by Tomadakis
and Sotirchos (1991b) have shown that Eq. (8.29) provides an excellent approximation to
D¢ over the whole diffusion regime. The Knudsen, D%, and bulk, D%, effective diffusivities
are given by the equations

Dy = =D; Dy = < Dg(26,/S,) (8.30a, b)
nB K -

Dy (2¢,/Sp) is the Knudsen diffusivity in a cylindrical capillary of radius (2¢,/5,). In order
to simplify the analysis of the results, it will be assumed that the tortuosity factors, npg and
Nk, are the same and independent of the porosity. The consequences of this assumption
will be discussed later during the presentation of some numerical results for the Zn0-H, S

reaction.
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Egs. (8.28)-(8.30) and the solution of the structural model can be used to determine
the variation of k, and é6° (= D¢/D§) with the local conversion, £. With the functional
dependence of these two parameters of the conversion known, the equations of the in-
traparticle diffusion and reaction model (Egs. (8.23)-(8.25)) can be solved by using some
discretization scheme to convert them into a system of ordinary differential equations and
subsequent integration in time. For the results presented in this study, discretization was
carried out using B-spline interpolation and collations (De Boor, 1978) and the resulting
set of ordinary differential equatior;s was integrated using a Gear-type solver (Gear, 1971).

With the initial bulk to Knudsen diffusivity ratio fixed, three additional parameters
are involved in the diffusion and reaction model: &2, Sh‘;, and w. Since the diffusion
coefficient in the ihtraparticle space much smallér than that in the bulk, the Sherwood
number (see Eq. (8.27¢)) is usually a very large number, and as a result, the concentration
at the surface of the particles is equal to that in the bulk, i.e., z|p=1 = 1. Under the
typical operating conditions encountered in most gas-solid reaction (e.g., hot gas and flue
gas desulfurization) the value of w varies in the range of 107 —10~%. The time constant for
diffusion in the intraparticie space (Eq. (8.23)) is thus much smaller than that associated
with structural changes in the reacting solid (Eq. (8’.24)), and consequently, the exact
value of w has practically no effect on the results of the diffusion and reaction model
(pseudosteady-state approximation). It can be argued, therefore, that the initial Thiele
modulus is the only parameter of practical significance encountered in the dimensionless
form of the intraparticle model.

Fig. 8.12 presents the effects of intraparticle diffusion on the conversion vs. time
results for a solid reacting in the Knudsen diffusion regime (D% << D%) with 8 = 1 and
Z = 3, whose corresponding conversion evolution curves in the absence of intraparticle
diffusion resistance are given in Fig. 8.10. The analogous results for the case with 8 = oo
(Fig. 8.9), where local reaction and structure evolution is controlled by diffusion in the
product layer, are shown in Fig. 8.13. Since § — oo implies that k, — oc, it is again
necessary to modify the definition of all dimensionless parameters and variables (namely,

7, ®%, and k,) that involve k,. This is done using the equation Q' = limg, o %, with @

representing 7, ®2, or k.. Thus, 7’ is given by Eq. (8.22), with cs in the place of ¢,, and
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o2 = 2-?%21 The average conversion, &, of F igs. 8.12 and 8.13 is defined as
1
£ = /gdp‘* (8.31)
0

The results of Figs. 8.12 and 8.13 were obtained by assuming that complete pore closure
at the external surface takes place when the local conversion becomes equal to 0.49 —
the maximum conversion possible is 0.50. Thus, notice that no reaction takes place in
Figs. 8.12 and 8.13, that is, the conversion remains unchanged, after the time that
corresponds to 0.49 conversion, for each case, in Figs. 8.10 and 8.9, respectively.
Comparison of the conversion trajectories of Fig. 8.12 with those of Fig. 8.10 shows
that the effects of grain overlapping on the predictions of the overall model (structure
evolution and diffusion and reaction) become stronger as the Thiele modulus increases and
the intraparticle diffusional limitations intensify. Similar conclusions are reached by com-
paring the various conversion vs. time curves in Figs. 8.13 and 8.9. The most noteworthy
observation from the results of Figs. 8.12 and 8.13 is that in the presence of intraparticle
diffusional limitations the maximum conversion reached by the reacting particles decreases
with decreasing grain overlapping although the observed behavior in the kinetically con-
trolled regime is different and in the case of Z = 3 exactly the opposite. This behavior can
be explained with the help of Fig. 8.14 which presents the variation of the effective Knud-
sen d1ffusxv1ty with the conversion for the four patterns of grain overlapping. It is seen
that the effective diffusion coefficient decreases with i mncreasing grain overlapping — since
D3 is proportional to (1/ Sp) and S, increases with increasing overlapping (see Figs. 8.4
and 8.6). The intraparticle concentration and, hence, conversion gradients become larger
as the grains are permitted to overlap more, and therefore, smaller average conversion
is reached by the particles when plugging of the opening at their external surface takes
place. Under strong internal diffusional limitations (e.g., % = 10), the average conversion
decreases with increasing grain overlapping at all reaction times. If diffusion takes place
in the bulk diffusion regime at all conversion levels, the eﬁ'eétive diffusion coefficient will
be independent of the extent of grain overlapping (for tortuosity factors depending on the

porosity only), and consequently, the effects of the intraparticle diffusional limitations on
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the conversion vs. time curves will be qualitative different from those of Figs. 8.12 and
8.13. However, actual processes are expected to behave more like the cases of F igs. 8.12
and 8.13 since even if diffusion initially occurs in the bulk diffusion regime, the decreasing
average pore opening (%Sf) will eventually bring it under Knudsen diffusion control.
Typical conversion and gaseous reactant concentration profiles in the interior of the
reacting particles are shown in Fig. 8.15 for the case of Fig. 8.12 with 8 = 1 (partially
overlapping grains) and ®% = 10. It is seen that because of the decreasing intraparticle
effective diffusivity with the local conversion, both profiles become steeper with the progress
of the reaction. The evolution of the conversion and concentration profiles for the other

cases of Fig. 8.12 and 8.13 is qualitatively similar to that shown in Fig. 8.15.

8.4. Application to the Reaction of ZnO Sorbents with Hy,S

In order to demonstrate the ﬂeﬁibility of the partially overlapping grain model, in
comparison to that of the two extremes of non- and randomly overlapping grains, we
apply in this section the model to some experimental reactivity evolution data for the
reaction of a zinc oxide sorbent (sorbent G-72D of United Ctalysts) with H»S. The
physical structure of the solid was characterized by mercury porosimetry, gas adsorption,
and nitrogen pycnometry. The sorbent has ¢y = 0.51, v, =17 em®/gmol, Z = 1.56 and
So =27m?/g. (The v, and Z values were estimated using the composition of the sorbent.)

The predictions of the diffusion, reaction, and structure evolution model of this study
for nonoverlapping (NOGM) and partially overlapping (POGM) with & = 1 grains are
compared in Fig. 8.16 with experimental data for the reaction of Zn0O particles (four size
ranges) with 0.5% H,S in N, at 600°C (see Fig. 4.15). The arithmetic mean of the two
limits of the particle size range was used as particle size in our computations, and the
effective diffusivity was computed using Egs. (8.29) and (8.30) with g = nx = 3. On
the basis of the results from the analysis of the experimental data using the generalized
random pore model, the product layer diffusivity (Dp) and the reaction rate constant (ks)
were set equal to 1078 ¢m?/s and 4.3 x 1073 cm/s, respectively. The Sherwood number

(kga/D) was estimated using correlations for flow past spherical particles, and it was found

to be almost unity for all particle sizes. In agreement with the general results of Fig. 8.12
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and 8.13, the nonoverlapping grain model is more strongly influenced by the existence of

intraparticle diffusional limitations, and thus tends to underestimate the average conversion

of the large particles. The main reason for this kind of behavior lies again in the variation

of the effective diffusion coefficient with the conversion, shown in Fig. 8.17. Diffusion in

the intraparticle space practically takes place in the Knudsen diffusion regime — the initial

value of 2¢,/5, is 200 A — and therefore, the effective diffusivity at nonzero conversions
‘Increases significantly with decreasing grain overlapping.

Since the variation of the effective diffusivity with the conversion turns out to be the
most important of the factors that influence the predictions of the overall model in the
presence of internal diffusional limitations, the theoretical results of Fig. 8.16 are strongly
affected by the formula used to follow the dependence of the effective diffusivity in the struc- .
ture of the solid. A constant tortuosify factor was used to obtain the results of Fig. 8.16,
but since the étructure of the solid becomes more tortuous as the porosity decreases, the
tortuosity factor is in general an increasing function of the porosity (Tomadakis and Sotir-
chos, 1991a). Use of variable (and possibly different) tortuosity factors for the Knudsen
and bulk diffusion regimes is not expected to change the qualitative trend seen iﬁ Fig. 8.17
although the 8, value that gives the best agreement between model and experiment will

most probably be different.

8.5. Summary and Further Remarks

A mathematical model was developed for gas-solid reaction occurring in porous media
whose structure can be visualized as an assemblage of partially overlapping (penetrable)
spherical grains of uniform radius, each consisting of a spherical hard core, of the same
radius for all grains, and a soft penetrable shell. The development of the diffusion, reaction,
and structure evolution model was based on the randomly overlapping grain model of
Sotirchos and Yu (1988) and the expressions derived by Rikvold and Stell (1985a) — on
the basis of the scaled-particle theory of hard sphere fluids of Reiss et al. (1959) - for
the porosities and surface areas of partially penetrable spheres. The partially overlapping

grain model is considerably more flexible than the structural models that correspond to

the extreme cases of nonoverlapping and partially overlapping grains. By varying the hard
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core to grain radius ratio, it is possible to cover the whole space between these two extremes
for a solid of given porosity and internal surface area.

A detailed parametric sensitivity analysis of the mathematical model, in terms of the
various dimensionless parameters encountered in, was carried out for the case of gas-solid
reactions with solid product. The flexibility of the mathematical model was demonstrated
by applying it to a set of experimental data for the ZnO-H»O reaction. Our results showed
that the effects of the extent of grain overlapping on the evolution of the overall reactivity of
the solid with time are influenced in a rather complex fashion by the diffusional limitations
in the product layer and in the intraparticle space. For fixed values of initial porosity and
internal surface area, the conversion reached by the reacting solid increases with increasing
grain overlapping in the absence of diffusion limitations, because of increasing reaction
surface area. However, as the graiﬁé are permitted to overlap more, the pore surface area
decreases, and this can lead to lower local reaction rates under strong diffusional limitations

in the product layer. Smaller pore surface areas usually imply larger effective diffusion

‘coefficients in the Knudsen regime, and a result, the conversion reached by the reacting

solid particles in the presence of strong intraparticle diffusional limitations decreases, in
general, with decreasing grain overlapping,.

We mentioned in the introductory section of our paper that a partially overlapping
(‘sintered’) sphere model was developed by Lindner and Simonsson (1981) (PSSM model).
The development of this model was based on the assumption that the structure of the
unreacted solid could be represented by an aggregate of spherical grains in which each grain
Is in contact with n, on the average, other grains of the same initial radius, ro. The ‘degree
of sintering’ was given by the distance d from the center to the plane of contact. For a given
d/ro and €, n was determined by requiring that the model be consistent with the physical
constraint of having zero surface area at zero porosity. Fig. 8.18 compares the variation of
the internal surface area with the porosity of a structure of initial nonoverlapping grains
with € = 0.5 predicted by the Lindner and Simonsson model (d/ry = 1; n = 5.57) and the
partially overlapping grain model (§o = 1). Since both models start with a structure of
unconsolidated grains, the internal surface areas they predict for € > ¢, are identical, but

significant differences are observed between the surface areas predicted by the two models
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partially overlapping grain model (POGM) developed in this study for £9=0.5 and
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below €. Since these surface areas are the pore surface areas for Z > 1, the conversion
vs. time results of ¢ two models - the presence of diffusional limitations (in the product
layer or in the intre .rticle space; are ekpected to differ significantly.

It can be shown using Egs. (8.19), (8.21), and (8.23) in the paper by Lindner and
Simonsson that the internal surface area for d/ro = 1 decreases with decreasing porosity
for n > 4, which corresponds to ¢ > 2/3. On the other hand, the internal surface area
given by Eq. (8.6) (in our study) for partially overlapping grains with 60 = 1 goes through
a maximum for all ;. Thus, the only way to make the internal surface area vs. conversion
curve of the PSSM model get closer to that of the POGM model for € < ¢ in Fig. 8.18 is
to use in the PSSM model d/ry > 1. The pore surface of the ISSSM model will then evolve
as that of nonoverlapping grains until the point d/r = 1. (At d/r = 1 the derivative of
the surface area vs. porosity curve is discontinuous because at this point each grain in the

PS5M model comes in contact with a finite number of grains.)

8.6. Notation

Symbols that do not appear here are defined in the text.

a  radius of the particle, cm

Cs  gas concentration in the bulk, mol/em3

€p  gas concentration in the pores, mol/em?

¢r  gas concentration at the reaction surface, mol/em?
D bulk diffusion coefficient, ern?/s

D¢ effective diffusion coefficient, em?/s

p effective bulk diffusion coefficient, em?/s

Dy Knudsen diffusion coefficient in a pore, cm?/s
5 effective Knudsen diffusion coefficient, cm? /s
Dp diffusion coeficient in the product layer, em?/s
ks reaction rate constant, cm /s

ky;  mass transfer coefficient, cm/s

k, local volume-based reaction rate constant, s~1



N o3

n [

n

he

HN-

v

number of grains per unit volume

radial distance in a particle, em

grain radius, cm

hard core radius, cm

reaction rate per unit surface, mol/cm?/s
internal surface area of a two-phase structure, cm?/cm?
Sherwood number (see Eq. (8.27¢))

time, s \

temperature, K

specific molar volume of solid i, cm®/mol
dimensionless concentration in the particle
dimensionless radial distance in the grains

stoichiometric volume ratio (vpvp/vs)

Greek Letters

dimensionless parameter (Eq. 8.18b)

grain growth variable

dimensionless effective diffusivity

porosity of a grain structure

hard core porosity |

tortuosity factor for bulk diffusion

tortuosity factor for Knudsen diffusion
dimensionless reaction rate constant (= k,/kyg)
stoichiometric coefficient of the reactive gas
stoichiometric coefficient of the solid reactant

local solid conversion

- average solid conversion in a particle

dimensionless distance in a particle

dimensionless time (= vgk,Sg fOt(Cf or c,)dt')




[
[}
(S]]

7' dimensionless time (= (vs/v4)Dp S} fot(Cf or ¢,)dt’)
®*  initial Thiele modulus (= a? ksSo/DE)
®? modified initial Thiele modulus (= a®DpSE/(vaDy))

w  dimensionless parameter (= ¢ FUs)

Subscripts
0 referstot = 0or to properties of the unreacted grain structure
f refer< to the bulk gas phase
p  refers to the pore surface or to the grains forming the pore surface
r  refers to the reaction surface or to the grains forming the reaction surface
P refers to the solid product

S refers to the solid reactant
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9. STEADY-STATE VS. TRANSIENT MEASUREMENT OF EFFECTIVE
DIFFUSIVITIES IN POROUS MEDIA USING THE DIFFUSION-CELL
METHOD

9.1. Introduction

The effective diffusivities of gases in porous media participating in gas-solid reac-
tions, as well as their variation with the extent of the conversion of the solid for noncat-
alytic reactions, are among the most important parameters needed for the description of
such processes. Knowledge of the effective diffusivity and its dependence on pore struc-
ture is also required in the analysis of experimental reactivity data for reactions between
gases and porous solids obtained under significant diffusional limitations in the pore space.
The particle-bed and the diffusion-cell method are most commonly used for the measure-
ment of effective diffﬁsion coefficients in porous media. In the particle-bed (or pulse-
chromatographic) method, the effective diffusivity is extracted from the response of the
exit concentration of a tracer gas in a packed bed of particles of the porous solid to a pulse
change in the inlet concentration (Kucera, 1965; Schneider and Smith, 1968; Shah and
Ruthven, 1977). Among the most important advantages of the particle-bed method over
the diffusion cell method is that it can also be employed for porous media available in par-
ticle form only. Moment analysis of the response of the packed bed is the preferred method
in the literature for estimation of the effective diffusivity from pulse-chromatographic data
inasmuch as analytical expressions for the dependence of the moments of the response on
the parameters of process can be derived if a linear convection and diffusion mathematical
model is used for the bed - a reasonable approximation for low concentrations of diffusing
gas.

Despite its appealing simplicity, the moments method may lead to inaccurate es-
timates of the effective diffusion coefficient because of the strong effect of experimental
errors in the response curve (especially for large values of time) on the cofnputed mo-
ments, and in particular on the second central moment that is usually used to estimate
the effective diffusion coeffficient. An alternative method of response analysis which does

not present this disadvantage is the time-domain method, in which the effective diffusion

coefficient and other transport parameters of the system (the axial dispersion coefficient,




268

for instance) are estimated by minimizing the difference between the experimental response
and the response predicted by the mathematical model, usually, the integral square error
(Boersma-Klein and Moulijn, 1979). Some of the problems met in the moments method
can be avoided in the time-domain method by using only the part of the response that is
free of large relative experimental errors.

In the diffusion-cell method, first proposed by Wicke and Kallenbach, 1941), streams
of a binary mixture of a carrier gas and of the species whose diffusion coefficient we seek
to determine are flown over the two sides of a pellet (slab-shaped sample) of the porous -
medium. The experiment is carried out under isobaric conditions because, otherwise, a
flux model for simultaneous convection and diffusion in pofous media has to be used to
analyze the experimental data and isolate the diffusive contribution to the total mass
transport flux. In contrast to the particle-bed method, diffusion-cell measurements can be
carried out both under steady-state and transient conditions (Smith, 1981). In the steady-
state version of the experiment, the mass transport flux is determined by measuring the
concentration of the streams leaving the two sides of the diffusion cell and performing a
simple mass balance on the tracer gas. When transient operation of the diffusion cell is
employed, a concentration pulse is introduced in the stream that flows over one side of the
porous sample, and the response of the concentration of the tracer gas in the exit stream
of the other side is monitored, as in the case of the particle-bed method (Suzuki and
Smith, 1972); Dogu and Smith, 1975); Baiker et al., 1982). Because of its simplicity, the
moments method is again the preferred method of data analysis for transient diffusion-cell
experiments. The sensitivity of the moments method to experimental errors in the response
(noise, baseline shift, etc.) is not as large as that of particle-bed data because only the
zero and first moments are now needed to get the effective diffusivity. Nevertheless, a
time-domain method should again be preferred. Since only the zero and first moments of
the experimental and theoretical responses are matched, the response curves in the time
domain can be considerably different from each other.

It has been reported in the literature that effective diffusivities extracted from steady-

state experiments in a diffusion cell may differ significantly from the values obtained from

the analysis of pulse response data from particle-bed or diffusion-cell arrangements, even if
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the same unit (i.e., diffusion cell) is used to obtain the steady-state and dynamic response
data (McGreavy and Siddiqui, 1980; Baiker et al., 1982). Several explanations have been
proposed to account for this discrepancy. These include: the existence of dead-end pores
which should participate in the diffusion process under transient conditions but not un-
der steady-state conditions; the effects of nonequilibrium adsorption, while equilibrated
adsorption is usually assumed in the construction of the transient model; the effects of
surface diffusion; and the effects of the dynamics of the entry and exit sections of the
diffusion-cell or particle-bed apparatus, including those of the detectors used for concen-
tration measurement, on the overall dynamics on the process and, hence, on the moments
of the transient response to a concentration pulse. To all these explanations, one should
add the possibility of erroneous determination of the moments of the response because of
experimental errors.

Cui et al. (.1989, 1990) recently showed that even in the absence of dead-end pores,
surface diffusion and adsorption equilibration effects, and entry and exit section dynam-
ics effects, effective diffusivities obtained from steady-state diffusion-cell experiments will
always be different for éolids with a distribution of pore size from those obtained from
pulse-chromatographic (particle-bed) data through moments matching. The main reason
for this difference is the use of a pseudohomogeneous model, that is, the use of a single
effective diffusion coefficient to describe diffusion in an intrinsically inhomogeneous system
which comprises subsystems (pores) of different diffusional resistances. For a simple pore
structure consisting of parallel, noninteracting pores, Cui et al. showed that experiments
under steady-state conditions yield, for diffusion parallel to the pores and in the absence

of adsorption, the Johnson and Stewart, 1965) effective diffusivity, viz.,

Dt = / D(R)Y(R)dR 9.1)
R

D(R) is the diffusivity in pores of radius R, ¢ is the porosity, and 4(R) is the normalized
porosity density function, that is, y(R)dR is the porosity fraction that belongs to pores
with radius in the range [R, R 4+ dR]. Matching of the moments of the transient responses

of the inhomogeneous and homogeneous models, on the other hand, yields an effective
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_diffusivity given by

Df =] /R 5§R—)v<mdm-l (9.2)
Egs. (9.1) and (9.2) give the same effective diffusivity only for solids with pores of uniform
size. For solids with distributed pore size, the effective diffusivity of Eq. (9.2) is always
smaller than that given by Eq. (9.1), by more than an order of magnitude for broad
pore size distributions. Cui et al. (1989) postulated that for pore network models more
complex than the parallel, noninteracting pore network, the differences between the steady-
state (diffusion-cell) and transient (particle-bed) diffusivities for distributed pore size solids
would undoubtedly be larger than those between the predictions of Egs. (9.1) and (9.2).

The measurement of effective diffusivities using the diffusion-cell method under sta-
tionary and nonstationary conditions Wés examined by Burghardt et al. (1988) for bidis-
perse porous structures consisting of through macropores and dead-end micropores. Three
different pore structures were considered in their analysis: a globural structure consist-
ing of compacted ndicroporous particles, a capillary structure with dead-end micropores
emanating from the surface of a macroporous netWork, and a structure with dead-end mi-
cropores situated parallel to through macropores. It was found that the diffusion process
in the dead-end micropores has no effect on the zero and first moments of the response of
the diffusion cell, and as a result, matching of the first two moments yields the steady-state
effective diffusivity. The micropore effective diffusivity appears in the second moment of
the response, and the effective diffusivities obtained by second moment matching are lower
than the value obtained from the stationary experiment. The theoretical conclusions of
Burghardt et al. were in excellent agreement with their own experimental data for five
different porous pellets..

An analysis of the relation between the effective diffusivities obtained from transient
and steady-state mass transport experiments for solids with a pore size distribution us-
ing the diffusion-cell method is presented in this paper. The simple network of parallel
(through) pores that was employed by Cui et al. (1989, 1990) in their study of the particle-
bed method is used to represent the structure of the solid, and two models, differing in the

complexity of the boundary conditions, are used to describe the diffusion-cell process. It is

shown that in the case of transient diffusion-cell experiments, moment analysis of the tran-
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sient responses (i.e., zero or first mcment matching) yields the same result as steady-state
difi . ion-cell experiments. Despite ving the same zero an:! first moments, the impulse
responses of the inhomogeneous an. »seudohomogeneous models differ significantly, buf if
a time-domain parameter estimation procedure is employed, the obtained effective diffu-
sivity is, in general, larger than that resulting from steady-state experiments. It is finally
shown that for more realistic pore structures, that is, pore structures exhibiting pore in- .
terlinking between the two sides of the solid sample, the difference between the responses
of the homogeneous and inhomogeneous model, for the same zero and first moments, is

smaller and approaches zero as the extent of pore communication is increased.

9.2. Description of the Diffusion-Cell System

A schematic diagram of a diffusion-cell arrangement is shown in Fig. 9.1. F; are
the flow rates of the gaseous streams that flow over the tw sides of the porous slab,
¢i are the concentrations of the diffusing species (solute) in the solute-carrier mixtures,
Vi are the volumes of the dead-space Tegions (‘mixing’ chambers) next to the two faces
of the porous slab, ! is the slab thickness, and 4 is the cross-sectional area of the slab
perpendicularly to the direction of diffusion, viz., the z-direction. In order to facilitate
the analysis and interpretation of the results and avoid the use of a tortuosity factor, it is
assumed that the pore space of the solid can be represented by an assemblage of cylindrical
pores, arranged parallel to the direction of diffusion. The population of pores is described
using the distribution density (R), with ¢(R)dR being the porosity due to pores with size
in the range [R, R + dR]. The normalized form of e(R) is denoted by v(R).

If a homogeneous model is used to describe the diffusion process in the porous
medium, the mass balance for the solute in the solid in the absence of chemical reac-

tion takes the form

e+ L2 o9 (9.3)

where ¢ and N are the concentration and flux of the solute, respectively, and subscript k

1s used to indicate that they refer to a homogeneous model. For a single pore of radius R,
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on the other hand, the mass balance for the solute is written
O0¢(R) ON(R) ‘
3 + a3z = (9.4)

with ¢(R) and N(R) being the concentration and flux of the solute in a pore of radius R.
For small concentrations of solute and isobaric conditions, the fluxes (N, and N (R)) can

be related to the concentration gradients using the relations

ach

Ni=-D*—

—=; N(R)=-D(R)Z™ ac(R) (9.5, b)

D¢ and D(R) are the diffusion coefficients of the solute in the porous medium (effective)
and in a pore of radius R, respectively, both assumed independent of the concentration of
the solute. Introducmg Egs. (9.5a,b) in Egs. (9.3) and (9.4), the mass balance equations

in the porous medium and in an individual pore become

edcy, ea ch
S~ D" =0 (9.6)
2
az(f) D(R)a C(R) 9.7)

The average molar flux for the inhomogeneous system at some position z in the
porous slab is obtained by averaging the flux for a single pore the same position over the

pore size distribution, that is, we set
N, = / N(R)e(R)dR (9.8)
R

(Subscipt n is used to indicate quantities that refer to the inhomogeneous system or model.)

Under steady-state conditions, we have that

Jdey, _ Oc(R) _c—cg
ér 8z 1

(9.9)

where ¢ and ¢; are the concentrations of the solute at z — 0 and z = . Equating the
homogeneous and inhomogeneous model fluxes (Eqgs. (9.5) and (9.8)) and using Eq. (9.9),
we find that the steady-state effective diffusivity is given by

Dt = / D(R)/(R)dR ~ (9.10)
R

3]




[ Q]
-1
N

that 1s, Eq. (9.1).

9.3. Effective Diffusivities From Transient Experiments Using
Moments Matching

In order to be able to extract effective diffusion coefficients from experimental data of
transient experiments, a set of boundary conditions is needed to complete the mathematical
model. The simplest set of boundary conditions is obtained by aissuming that the volumes
of the mixing chambers are negligibly small in comparison to that of the porous slab
and that no flow takes place over the face of the slab at z = ! , where measurement of the
concentration response takes place. For an actual experimental arrangement, this situation
corresponds to the case where a diffusion cell with a closed end is employed, the carrier-
solute mixture is flown over the open end of the cell at a very high flow rate, and some
concentration sensor is used to measure the concentration of the soiute at the closed end

(Suzuki and Smith, 1972). With these assumptions the boundary conditions take the form

ch=co=c1; c(R)=co=1c; (at z=0) (9.11a,)
Ne=0; Npo=0 (atz=1) (9.12a, b)
co(R)=¢, forall R (atz=1) (9.13)

Eq. (9.13) states that the solute has the same concentration in all pores at the closed end of
the diffusion cell. Using Eqs. (9.5) and (9.8), Egs. (9.12) may be written in the equivalent

form

%’? = 0; /};D(R) a;(f) e(R)dR =0 (9.14a,b)

In the application of the moments method, the moments of the experimental response
of-a system (diffusion cell or particle bed) to some form of concentration input are set equal
to those predicted by a homogeneous model for the system, and the resulting equations

are used to estimate the unknown effective transport properties of the model. For the

1deal case of a unit impulse (Dirac delta function) input, the moments of the response of

the output, m;, can be found from the transfer function between imput and output, G(s),
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using the equation £G(s)
‘G(s
dst

It can easily be shown by taking the Laplace transform of Egs. (9.6), (9.11a), and

m; = (1) lim,_q

(9.15)

(9.142) and solving the resulting equations that the transfer function for the homogene-

neous model is

1
Gh(s) = Wj (916)

Using Eq. (9.16), we find that the zero moment of the impulse response is unity and that

the first moment is given by
el?
2D¢

Similarly, solving Eqs. (9.7), (9.11b), (9.13), and (9.14b) in the s-domain we find that the

myp =

(9.17)

transfer function for the inhomogeneous model has the form

D(R), /5t =———=—¢(R)dR
an(s>=f" Ry ot wony /)

(9.18)

5 cosh(, /5w l)
Je D(R)\/ Btmy sm \/gl)e(R)dR

Using Eq. (9.16), we find that the zero moment of the impulse response of the inhomoge-
neous system is unity, as in the case of the homogeneous model, and that the first moment

is given by the expression
12
- 2 [ D(R)y(R)dR

Matching the first moments of the inhomogeneous (‘experimental’) and homogeneous

Min

(9.19)

model responses, i.e., setting m;; = my,, we get
D= / D(R)/(R)dR C(9.20)
R _

with subscipt ¢t used to denote effective diffusivities estimated from dynamic data.
Eq. (9.20) clearly states that the effective diffusivity obtained using the moments method
is identical to that obtained from steady-state experiments.

A question that naturally arises at this point is whether this conclusion is specific

to the limiting case described by the boundary conditions given by Egs. (9.11)-(9.14) or it

also applies to the more general problem depicted in Fig. 9.1. If perfect mxing is assumed
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in the dead-space regions adjacent to the porous slab, the boundary conditions for the
homogeneous and inhomogeneous diffusion-cell models become of the form (Burghardt

and Smith, 1979)

0 ,
Vlé‘l = Fi(c1 — ¢o) — AN (9.21)
ch =co; c(R)=1¢o (at z =0) (9.22a, b)
Ocy . '
VQE = Fy(ca — ;) + AN (9.23)
ch=c; ¢(R)=c¢ (atz=1) | (9.24a,b)

Egs. (9.22b) and (9.23b) state that the concentrations of the solute in all pores at z = 0
and z = [, respectively, are the same. The flux N used in Eqs. (9.21) and (9.23) is given by
Eq. (9.5a) for the homogeneous model and (9.8) and (9.5b) for the inhomogeneous model.

Assuming that the same concentration of solute is present initially in both streams,
solution of Egs. (9.6), (9.21), (9.22a). (9.23), (9.24a), and (9.5a) gives for the transfer
function of the homogeneou_s model the result

gik ‘
G = 9.25
w(s) (1+ 715+ g2 )(¢ + 725 + g28) — 93, (9.25)

with

A ES 1
=D = 9.26
iR =1 De sinh( /1) ; (9.26)

_ A pe [es coshy 5D (9.27)
2= RV D sink( /20 '

¢=F/F; mn=V/F (9.284, )

Using Eq. (9.16), we find that the zero and first moments of the impulse response of the

. homogeneous model are given by the relations (see also Burghardt and Smith, 1979)
,. mon = 1 (9.29)
‘ 1+¢(1+ -4h)
2 ¢Fll F]l \ A_S[ 1 , 612 €¢F113 9.30)
mlh_mOh[T1(1+ADe)+T2(1+ADe)+ 1711 +( +¢)2De +6A(De)2] ( . )
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Solution of the equations of the inhomogeneous model (Egs. (9.7), (9.21), (9.22b),
(9.23), (9.24b), (9.8), and (9.5b)) leads to the following transfer function between the input

(¢1) and output (c;) concentrations:

din
G .
n(s) = (14 718 + 920 )(@ + T25 + gon) — 93, (5:31)
with
A / s 1
an=2 [ p(ry e(R)AR 9.32
=7 L2 o sinh(, /e 1) A( (932)
A / D). = s—cosh(, [ 5tm!) (RVE (0.33
92n = 4 ¢ )
2 Jr D(R) sinh( o)

Differentiating Eq. (9.31) and using Eq. (9.16), we derive the following expressions for the

zero and first moments of the impulse response of the inhomogeneous model:

Mon = 1 (9.34)
1+ ¢(1+ -2k AD:

Fiyl
man = mhaln(1+ )+ m(1 + 1) + 2 S g+ o) (03)

where Df is the effective diffusivity given Eq. (9.20).

It is seen by corﬁparing Eqgs. (9.30) and (9.35) that by setting the effective diffusivity
in the homogeneous model equal to that given by Eq. (9.20), its first moment becomes
identical to that of the inhomogeneous model. Therefore, even for the general form of
boundary conditions (Egs. (9.21)-(9.24)), moment analysis of transient experimental data
gives the same effective diffusion coefﬁcient_ as steady-state experiments. Comparison of
Egs. (9.29) and (9.34) reveals that this choice of effective diffusivity also makes the zero
moments of the two responses identical. This is a very important observation since the
zero moment of the impulse response‘ is the change of the steady-state concentration of the

solute at z = [ for a unit step change in the input concentration at z = 0 (c1).
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In the chomatographic (particle-bed) method, pores of different size share the same
concentration at the external surface of the particle, but otherwise, diffusion occurs in-
dependently in each pore. The contribution of the intraparticle diffusion process to the
second central moment of the bed’s response turns out to simply be the average of the
diffusion time of a single pore over the pore size distribution (Villermaux, 1987; Cui et
al., 1989). (The diffusion time is proportional to a?/D(R) (cf. Eq. (9.17)), with a being
the radius of the particle.) The second central moment of the chromatographic response
is thus influenced more strongly by the diffusivity of the small pores, and second moment
matching leads to Eq. (9.2), which predicts much smaller effective diffusivities than the
value resulting from diffusion-cell experiments (Eq. (9.10) or (9.20)). In the diffusion-cell
method, however, there is interaction of the fluxes in different size pores at the end of
the sample (see Eqgs. (9.8), (9.12b), and (9.23)), and it is actually the large pores that
serve as the main transport arteries of the system even under transient conditions. This
interaction is further discussed in the following section, where the time domain responses

of the homogeneous and heterogeneous models are compared.

9.4. Comparison of the Homogeneous and Inhomogeneous Model Responses
in the Time Domain

It was pointéd out in the introduction that matching the first two moments of the
experimental and theoretical responses of a system does not guarantee good agreement
between the concentration vs. tixhe curves in the time domain. It is interesting, therefore,
to investigate the relationship of the time-domain responses of the inhomogeneous (‘exper-
imental’) and homogeneous models after their first two moments have been matched. In
order to simplify the analysis, interpretation, and presentation of the results, we will focus

on solids with discrete, bimodal distribution of pore size, i.e., solids for which
e(R)AR = €16(R — Ry1) + €26(R — R»)

The impulse responses of the homogeneous and inhomogeneous models for the case of
simple boundary conditions (with one of the ends of the diffusion cell closed and without

dead space and mass transport limitations at its exposed end, Egs. (9.11)-(9.14)) are shown

in Fig. 9.2. The corresponding curves for a diffusion-cell with both ends exposed to gaseous
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streams (boundary conditions given by Egs. (9.21)-(9.24)) are shown in Fig. 9.3. The Fast
Fourier Transform (FFT) method (specifically, a routine described by Press et al. (1986))
was used to invert the transfer functions given by Egs. (9.16), (9.18), (9.25), and (9.31)
and construct the response curves in the time domain. The results shown in the figure are
for diffusion in the Knudsen regime in a solid with 0.5 total porosity, equal porosities of
large and small pores, and pore size ratio equal to 10. For the case with the general form
of boundary conditions (Fig. 9.3), the volumes of the mixing regions next to the two faces
of the slab were taken as 1/10 of the volume of the slab, and the dimensionless parameters
AD(R;)/F;l were set equal to 3. In an actual experiment, the latter value would obtain,
for instance, for A = 2 cm?, D(R;) = 0.5 cm?/s, | = 0.2 cm, and F; = 100 cm?/min.

The response curves have been rendered independent of the type of the solute, sample
thickness, and pore size by using the dimensionless time tD(R,)/1? instead of the real time.
Since diffusion occurs in the Knudsen regime, the diffusivity ratio is equal to the pore size
ratio, i.e., D(R;) = D(R;)/10. Using this relationship and Eq. (9.10) or (9.20), we find
© 2t the effective diffusivity of the homogeneous model that is obtained from steady-
state experiments or from transient experiments through moments matching is equal to
0.275D(R;). Use of the particle-bed diffusivity expression of Cui et al. (Eq. (9.2)) gives
about three times smaller effective diffusivity (D® = 0.090909 - - - D(R;)). When the
simple set of boundary conditions (Eqs. (9.11)-(9.14)) is employed, the first moment of the
homogeneous modell with eﬁ'e'c_tive diffusivity given by Eq. (9.2) is about three times larger
than the first moment of the homogeneous model (2.75 vs. 0.90909 - - -, in dimensionless
units). Thus, it is hardly surprising that the response curves of the homogeneous model
with effective diffusivity given by Eq. (9.2) (chain-dot curves in Figs. 9.2 and 9.3) have
pactically no relation to the ‘actual’ response curves of the system, that is, the response
curves of the inhomogeneous model (solid curves). It should be pointed out that the second
moment of the inhomogeneous model is larger than that of the homogeneous model with
D¢ from Eq. (9.10) or (9.20), in agreement with the conclusions of Burghardt et al. (1988),
but smaller than the value obtained when the chromatographic diffusivity (Eq. (9.2))
i1s employed. For instance, for the cases shown in Fig. 9.2, the second moment of the

inhomogeneous model is 1.935- - -, while that of the homogeneous model is 1.377 for D¢
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Figure 9.2: Impulse response curves of the homogeneous and inhomogeneous models for a
diffusion cell with aclosed end (boundary conditions given by Eqgs. (9.11)-(9.14)). £; = &, =
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from Eq. (9.20) and 12.60 for D® from Egq. (9.2).

Although the impulse response of the homogeneous model (with D¢ from Eq. (9.10)
or (9.20)) has the same zero and first moments as the response of the inhomogeneous
model, Figs. 9.2 and 9.3 show that there are significant differences between the response
curves in the time domain. These differences are mainly due to the existence of two time
constants, differing by an order of magnitude, for gaseous diffusion in the inhomogeneous
(heteroporous) solid and the use of a single time constant in the homogeneous model. By
using a single time constant, it is impossible to simultaneously capture the fast dynamics of -
the large pores and the slow response of the small pores, and as a result, the homogeneous
model tends to underpredict the system’s response for small -and large values of time. This
behavior is in qualitative agreement with some results obtained by Mo and Wei (1986)
from the numerical solution of the diffusion equation on a lattice simulating the structure
of a partially blocked ZSM-5 zeolite. Mo and Wei found that the steady-state effective
diffusivity was the lower limit (for increasing time) of a transient effective diffusivity based
on the instantaneous mass transport flux through the sample.

When only one end of the diffusion cell is exposed to a gaseous stream, the total flux
at its closed end must obviously be zero at all times, and consequently, the diffusion flux.
in the small pores there must be the negative of the diffusion flux in the large pores. This
situation is illustrated in Fig. 9.4 which presents dimensionless concentration profiles in
the diffusion cell at various times following a step change (from zero) in the concentration
of the tracer gas (solute) at its exposed end. The results of the figure show that the
concentration gradient in the small pores at the closed end of the slab is always positive,
and consequently, there is net flow of tracer gas in the small pores through both ends at
all times. It is thus the large pores that serve as the transport arteries of the porous slab
under unsteady conditions, and therefore, concentration equilibration in the small pores
takes place much faster than it would if transport in them occurred independently of that
in the large pores — as it is the case in particle-bed experiments (Eq. (9.2)).

Fig. 9.5 presents the evolution of the dimensionless concentration profiles in the two

pore families following a step change (from zero) in the concentration of the tracer gas at

z = 0 when both ends of the diffusion cell are exposed to flowing streams. Although in




\ | 283

) —
- S —
" ST — 4.0
AN NS, T eSS TTTT—— e mme--T
"‘ ‘~ ----------------------
(3 ~
W ~
‘\‘ S
=t N N )
QL (SR AN ~ ”
W VU ~. I
\ LA -~ .
-
© oy AN .-
wn ‘\ “\‘ \~~ e
- N )
~ \ . ~
2 * - ot Wy S . 10
[} [y . - .
o ' N Iy >
] I \‘ \‘\ =% -
N -
}\ “ yoosN\s N R tcaan . l;
v v \s ¢
< [} LS Y ) 08
m “ AT AN - .
Y
' Y s\ A
LYY AN S
) [N N , ,
4 Q RN .
) LY “ . , ,
U U2 ) ) A . ~ .
* oy <] ‘ [y . . - S 0 5
2 o Iy ) A * e . ’ .
L) - . ,
O 1 \\ . N e e , '1
[y . . - . , ,
U Iy \J . ) ~ . .
[y ~ “n . , ,
y M ) \‘ AR .. ~ - ’ "
4
|‘ . “ ~ el .- j ,
|I,I ' * N Ay Secccea=" . 0.3
M * A * i ’ .
L4
=~ [Te] + \ . . ”
< N ' y N . ) ~
Y A S . , ,
O d_ M . e P recaeee=” - , ,
~—~ Y R . j )
vy 1y . A . ,
* s .~ - )
= SN o ) ,
AN - . s
LLI N .~ ~ P .
A - sh - ’
* . S~ Pad .
— s ~ S~ - .
- - .
. e awe- .
3o : . < T =01
-~ - .
o . -~ ~
. R - -
o -ees eeeceoaa- -
! ==

0.0 0.2 6.4 0I.6 0I.8 1.0
DIMENSIONLESS DISTANCE, z /1

Figure 9.4: Dimensionless concentration profiles in a diffusion cell with closed end (bound-
ary conditions given by Eqgs. (9.11)-(9.14)) at various times for a step change (of magnitude
c1) in the concentration of the stream flowing over its open end. Model parameters same as
in Fig. 9.2. —: concentration in pores of radius Ry; - - -: concentration in pores of radius
R;.
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: Figure 9.5: Concentration profiles in a diffusion cell with both ends exposed to gaseous
streams (boundary conditions given by Egs. (9.21)-(9.24)) at various times for a step change
(of magnitude c; ) in the concentration of the stream flowing over one end. Model parameters
same as in Fig. 9.3. —: concentration in pores of radius Ry; - - -: concentration in pores of
radius R;.
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this case the total diffusion flux at z = [ is not zero, the cohcentration gradient in the
small pores at this point is again positive during the initial stages of the transient response
of the system, and therefore, mass transport from one end of the slab to the other occurs
through the large pores only. Only after the concentration profile gets close to steady
state, the concentration gradient in the small pores at z = [ becomes negative, and direct
contribution of these pores to the mass transport rate through the slab starts to take place.
Both in Figs. 9.4 and 9.5, the concentration profile in the large pores becomes almost linear
after the initial stages of the transient process, indicating that the diffusion process in the
large pores is at pseudosteady state. This situation is obviously expected since the time
constant for diffusion in the pores is inversely proportional to the pore size, and hence, it
is an order of magnitude smaller for the large pores.

If the Fast Fourier Transform method is used to compute the concentration profiles
shown in Figs. 9.4 and 9.5, complete response curves must be constructed at various
positions within the cell. This turns out to be a computationally intensive task since
both a very high sampling frequency and a large interval of time must be employed to
capture the slow and fast dyhamics of the local responses. For this reason, the results
shown in Fig. 9.4 and 9.5 were obtained using cubic B-spline collocation (De Boor, 1978)
to discretize the inhomogeneous model equations (Egs. (9.7) and (9.11)-(9.14) or (9.21)-
(9.24)) and time-integration of the resulting system of algebraic and ordinary differential
equations with a Gear-type solver (Gear, 1971).

We have seen in Figs. 9.2 and 9.3 that despite having the same first two moments,
the impulse responses of the homogeneous and inhomogeneous model exhibit marked dif-
ferences in the time domain. It was thus decided to examine how the response curves of the
homogeneous model for effective diffusivities obtained through a time-domain parameter
estimation compare with that of the inhomogenedus model. Effective diffusivities were
thus determined by minimization of the weighted integral square difference of the impulse
responses of the homogeneous and inhomogeneous model, that is, by minimization of the

functional .
f= / w(t)(yn (1) — ya(t))2dt (9.36)

where w(¢) is the weight function: 1, ¢, or 2. The Fast Fourier Tranform method was



286

used to obtain the homogeneous and inhomogeneous model responses, y;, and y,, and as
a result, the equivalent finite sum form of functional f was employed in the computations.
The upper limit of the time interval used in the evaluation of the functional was set equal
to 8 times the first moment of the normalized impulse response of the inhomogeneous

model.

Method | D{/D(R:) |Zero Moment | First Moment
Moments 0.275 1.0 0.9090
w(t) =1 0.4046 1.0 0.6178
w(t)y=t 0.3673 1.0 0.6805
w(t) =2 | 0.30862 1.0 0.8100

Table 9.1: Effective Diffusivities from Moments Matching or Time-Domain Parameter
Estimation on the Diffusion-Cell with Closed End.

The obtained diffusivities through the above parameter estimation scheme for the
diffusion cells used to get the results of Figs. 9.2 and 9.3 are given in Tables 9.1 and 9.2.
Shown in the tables are also the values of the first and zero moments of the homogeneous
model for the estimated effective diffusivity. The impulse response curves of the homo-
geneous model for the effective diffusivities of Tables 9.1 and 9.2 are compared with the
impulse response of the inhomogeneous model in Figs. 9.6 and 9.7. Notice that When>both
ends of the cell are exposed to flowing streams, both the first and the zero moments of
the impulse response of the homogeneous model are functions of the effective diffusivity.
Therefore, in this case one has the choice of using the impulse response or its normalized
form in the parameter estimation scheme.

The results of Tables 9.1 and 9.2 show that time-domain parameter estimation gives
effective diffusion coefficients larger, in general, than the value obtained through moments
matching. The only exception is the case with w(¢) = t? and the general form of boundary
conditions (Table 9.2 and Fig. 9.7). The main reason for this occurrence is that the time-

domain parameter estimation process — especially if the normalized form of the response is
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Figure 9.7: Comparison of the impulse response of the inhomogeneous model with the
impulse responses of the homogeneous model for effective diffusivities estimated through
curve fitting using different weight functions in the expression for the square error (see Table
9.2). The diffusion cell has both ends exposed to gaseous flow, and the model parameters
are the same as those of Fig. 9.3. The chain-dotted (- - ) curves were obtained by matching
the normalized impulse responses of the inhomogeneous and of the homogeneous models.
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used — places more weight on the initial response of the system where the impulse response
has larger values. As more weight is put on the difference between the homogeneous and
inhomogeneous impulse responces at large times, by using weight functions ¢ and t2, the
effective diffusivity becomes smaller and the response curve moves to the right — except
when the normalized response is used with w(t) = ¢ in Table 9.2 and Fig. 9.7. Using
w(t) = t appears to give the best, in a qualitative sense, results, but it should be kept
in mind that unless the effective diffusivity obtained via moments matching is used, the
steady-state behavior will not be predicted by the homogeneous model. Only the effective
diffusivity given by Eq. (9.10) or (9.20) reproduces the zero moment of the response, which
as we have already mentioned is the steady state concentration at z = ! for c1 =1 and

Cz=0.

Method |Dj/D(R;) |Zero Moment | First Moment
Moments | 0.275 0.3113 0.4858
wit)=1 | 0.3578 0.3411 0.4972
w(t)=t | 0.3048- 0.3232 0.4906
wt)=1 | 0.2290 0.2894 0.4762
w(t)=1* | 0.4805 0.3712 0.5067
‘wt)=t* | 0.5082 0.3765 0.5082
w(t)=¢2* | 04465 | 0.3641 0.5046

Tabie 9.2: Effective Diffusivities from Moments Matching or Time-Domain Parameter
Estimation on the Diffusion-Cell with both ends open. (*Using the normalized form of the
impulse response.) ’ :

For the simple set of boundary conditions (Eqs. (9.11)-(9.14)), the first moment is
inversely proportional to the effective diffusivity. (see Eq. (9.17)), and as a result, the rela-
tive differences among the first moments of Table 9.1 are proportional to those among the
effective diffusivities. However, as the results for the first moments of Table 9.2 show, when
both ends of the diffusion cell are exposed to flowing streams (the standard experimental

arrangement ), the sensitivity of the first moment to the effective diffusivity is considerably
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weaker. This different behavior is due to the fact that the contributions of the dynamics
of the mixing chambers to the overall first moment (see Eq. (9.30)) are weakly influenced
by the effective diffusivity. There are two important consequences of this observation for
those using transient operation of a diffusion cell to extract effective diffusivities. First,
sufficient information on the dynamics of the mixing chambers must be available to obtain
accurate effective diffusivity estimates. Second, small errors in the moments may produce

large errors in the diffusion coefficient estimates.

9.5. Pore Interlinking and Mismatch between the Homogeneous and
Inhomogeneous Model Responses "

The parallel pore model does not offer an acceptable representation of the internal
structure of porous media encounte'red in practical applications. Its main drawback is that
it does not allow for pore communication in the interior of a porous sample, and as a result,
the concentration fields in pores of different size interact only at the external surface of
the sample. Real porous media, however, exhibit a highly interconnected pore structure
- a point in the interior can be reached from almost any point of the external surface -
and with such frequency that in most cases it is impossible to discern long uninterrupted
pore segments between pore intersections. Thus, in this section we will examine how the
mismatch between the responses of the inhomogeneous and homogeneous models (with D¢
given by Eq. (9.10) or (20)) is affected by pore communication (pore interlinking) in the
interior of the porous medium.

A simple porous medium with interconnected pores, probably the simplest, is ob-
tained by considering a laminated structure in which each lamina is topologically equiva-
lent to the parallel pore structure of Fig. 9.1, that is, it contains parallel, noninteracting
pores arranged perpendicularly to its faces. Between two adjacent laminae, there exists
a thin void layer whose sole function is to preserve the continuity of diﬁ'usion paths be-
tween adjacent laminae and equilibrate the concentration there. The assumption that the
concentration is uniform in the region between adjacent laminae does not necessarily im-
ply that there is no diffusion resistance in this region parallel to the faces of the slab. It

simply means that over the smallest region of the face of each lamina that is statistically
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representative of the cross-section of the pellet at large - that is, it contains a statisti-
cally representative sample of pore mouths - concentration differences are negligible. A
structure consisting of k laminae of equal thickness I /k is schematically shown in Fig. 9.8.
Obviously, if only one layer is considered, the parallel pore structure considered thus far
in our analysis (Fig. 9.1) is obtained.

In the diffusion cell experiment, the laminated structure is assumed to be positioned
in such a way that diffusion takes place paralle] to the pores, as in Fig. 9.1. Eq. (9.7) now
holds in the interior of each lamina, and Eqs. (9.11)-(9.14) or (9.21)-(9.24) are still the
boundary conditions at the two faces of the porous slab. Let cf(R) be the concentration in
the interior of the 7th lamina in a pore of radius R. Continuity of flux and concentration

at r = % requires that

dct(R dct(R
/R D(R)—a%e(zz)dm,:ﬂ_,)- = /R D(R)#S(R)dmz:(%ﬁ (9.37)

R, o (u)- = cH(R)| gyt =Cn (9.39)

z=(
with ¢!, being the concentration, common for all pores, of the inhomogeneous model at
z = tl/k. Obviously,

e =cy; k=g (9.39q, b)

Using the solution of Eq. (9.7) in each layer, Eq. (9.37) takes the form

actl —ch +act = 0; o= g3n/2¢4n (9.40a, )
with
/ D(R) D(R) smh( = Se(R)R (9.41)
Gan = / .D(R)\/T “osy ot k)e(R)dR (9.42)
R D(R) sinh(, [ 5oz 1)

Solving the difference equation described by Eq. (9.40a) and using Eq. (9.39) and
the general form of boundary conditions, we get, after some manipulations, that

cl | fi(p2 — p1)
et fafs(ph —p%) = fi(f2 + fa)(pm l—pf‘1)+f3<p§‘2—pf‘2)

(9.43)
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with N v
1+V1—-4a?
P12 = %a (9.44)
A A / A
fi= 7, 93ni fo=1+ms+ 7 94ms fs=0¢+ms+ 7 94n (9.45a — c)

By setting 71 = 7 = ¢ = 0 and letting F1 — oo, Eq. 9. (43) gives the transfer function
for the simple set of boundary conditions (Egs. (9.11)-(14)), which turns out to be

3nlp2 — p1
Onle) = ) (9.46)
For k =1, Eqgs. (9.43) and (9.46) take the form of Egs. (9.31) and (9.18), respectively. It is
possible to further simplify Eqgs. (9.43) and (9.46), but such a simplification is unnecessar
for their inversion using the Fast Fourier Transform method. |

The expressions for the first and zero moments of the impulse response of the transfer
functions of Egs. (9.43) and (9.46) are again derived using Eq. (9.16). After a number of
algebraic manipulations, one finds that the zero and first moments of the impulse response
of a multilayered slab are independent of the number of layers, k, for both types of boundary
conditions. Thus, the zero moment of the impulse response of Eq. (9.46) is unity, its first
moment is given by Eq. (9.19), and the zero and first moments of Eq. (9.43) are given
by Egs. (9.34) and (9.35), respectively. This result obviously implies that the effective
diffusivity in a multilayered slab that is obtained through moments matching is independent
of the number of layers and is given by Eq. (9.10) or (9.20).

Increasing the number of laminae in the slab increases the degree of interaction
of pores of different size in the porous medium. The effects of pore interlinking on the
response of the diffusion céll may therefore be investigated by examining how the number of
laminae influences the behavior of the system. Figs. 9.9 and 9.10 present impulse response
curves, constructed by inverting Egs. (9.46) and (9.43), respectively, for various values
of k, with each layer in the slab characterized by discrete, bimodal distribution of pore
size. The pore size distribution and the other parameters of the cell are identical to those
used to obtain the results of F igé. 9.2-9.7 for the single layer slab. It is seen that as the

number of layers is increased and the degree of pore interaction between the two sides of

the porous slab rises, the response of the diffusion cell (inhomogeneous model) gets closer
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to that predicted by the homogeneous model using the effective diffusivity of Eq. (9.10) or
(9.20) (dashed curve). Even with only two layers in the porous slab, that is, with the pores
interacting only at a single point, there is a dramatic decrease in the difference between the
inhomogeneous and the homogeneous model response. With both ends of the cell exposed,
the response of the inhomogeneous system becomes almost identical, for most practical
purposes, to that of the homogeneous model for less than 8 layers in the slab. However,
since the two responses are further apart when the simple set of boundary conditions is
used, it takes more layers for the difference between the two responces to be reduced to a
similar extent in this case (compare Figs. 9.9 and 9.10). In the hypothetical situation of
an infinite number of pore layers, a perfectly inteconnected pore network obtains, in which
the microscopic concentration field in each pore coincides with the macroscopic one given
by the homogeneous model with D¢ taken from Eq. (9.10) or (9.20).

The above observations point to the conclusion that under conditions of pore commu-
nication - as 1t is expected to be the case in an actual porous medium - the disagreement
between the predictions of the homogeneous and inhomogeneous model might not be of
such magnitude to justify the use of a complex inhomogeneous model to describe the dif-
fusion process. It can thus be argued that provided that a diffusion flux model consistent
with the topology of the pore structure of the porous medium is .employed (Sotirchos,
1989), a pseudohomogeneous model employing effective values for the various transport
properties may provide a satisfactory description not only of the steady-state but also of

the transient processes occurring in a solid with distributed pore size.

9.6. Summary and Concluding Remarks

The relation between the effective diffusion coefficients of nonadsorbiﬁg gases ob-
tained from steady-state and transient diffusion-cell experiments was investigated in this
study. A simple geometrical model consisting ofvparallel noninteracting pores, of some pore
size distribution (parallel bundle pore model), was used to represent the physical structure
of the porous medium, and two different experimental arrangements were employed in the
analysis of the system; namely, one in which the concentration of the tracer gas is moni-

tored at a closed end of the diffusion cell and another in which gaseous streams flow over
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Figure 9.9: Effect of the number of layers in a sample of fixed thickness on the impulse
response of the homogeneous model (D¢ from Eq. (9.10) or (9.20)) for a diffusion cell with
closed end. Model parameters same as in Fig. 9.2.
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Figure 9.10: Effect of the number of layers in a sample of fixed thickness on the impulse
response of the homogeneous model (D¢ from Eq. (9.10) or (9.20)) for a diffusion cell with
both ends exposed to gaseous flow. Model parameters same as in Fig. 9.3.
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both faces of the porous slab. The parallel pore model does not permit communication
of pores in the interior of the porous slab, and thus, in order to examine the effects of
pore interlinking on our conclusions, we also studied the diffusion problem in a laminated
structure, in which the pore structure of each lamina is described by the parallel bundle
pore model.

The analysis of the problem showed that the effective diffusivity determined by
matching the zero and first moments of the experimental (inhomogeneous model) response
of the diffusion cell with the corresponding moments of the response of the homogeneous
model is identical to the effective diffusion coefficient derived from steady-state diffusion
cell experiments. Because of the existence of different time constants for diffusion in a
solid with a pore size distribution, the time-domain response predicted by the homoge-
neous model, which has a single time constant, is different from that of the inhomogeneous
model. If a tim‘e-domain parameter estimation scheme is employed, the obtained effec-
tive diffusivities are, in general, larger than the steady-state value. These findings are in
sharp contrast with the conclusions reached by Cui et al. (1989, 1990) from their analy-
sis of particle-bed tran51ent data, where it was found that effective diffusivities extracted
from particle-bed experiments through moment matching for solids with distributed pore.
size and noninteracting pores (parallel bundle model) can be smaller, by a few orders of |
magnitude in some cases, than the steady-state diffusivities.

Allowing for pore communication in the interior of the porous solid causes a dramatic
reduction in the difference between the responses of the homogeneous and inhomogeous
modei 1n the time domain. It can thus be argued that the intrinsic inability of a pseudo-
homogeneous model to describe diffusion and reaction in a physically inhomogeneous pore
structure might not be an issue in practical applications, and that explanations for any
discrepancies between transient and steady-state estimates of effective diffusivities from
diffusion-cell experiments :..ould be sought elsewhere. It should be pointed out that in
their comparative study of measuring methods of effective diffusivities in porous cata-
lysts, Baiker et al. (1982) obtained experimental results that are in agreement with the
conclusions of my study and of the study of Burghardt et al. (1988). The steady-state

diffusion-cell effective diffusivities in the industrial catalysts they studied were found to be
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_practically the same as, or in a few cases slightly smaller than, the transient effective diffu-
sivities measured using the same unit. Only when the particle-bed method was used, the
dynamic diffusivities were significantly smaller than the steady-state values, in agreement
with the analysis of Cui et al. However, Baiker et al. concluded that the differences be-
tween the particle-bed and diffusion-cell results were within reasonable limits considering

the sources of uncertainty in the bed experiments.

9.7. Notation

Symbols that do not appear here are defined in the text.

c concentration, kmol/m?
Co concentration at ¢ = 0, kmol/m?
cl concentration at = = [, kmol/m3
ci inlet concentration of the stream flowing over face i of the slab, kmol/m?
c(R) concentration in a pore of radius R, kmol/m?
c(R) concentration in a pore of radius R in layer : of a multilayered slab, kmol/ m3
ct concentration at the interface of layer : and i + 1 of a multilayered slab,
kmol/m?
D¢ effective diffusion coefficient, m?/s
D steady-state effective diffusion coefficient, m?/s
D transient effective ‘diffusion coefficient, m?/s’
fi parameters defined in Eq. (9.45)
F; flow rate of the stream flowing over face ¢ of the slab, m3/ 3
. Gih parameters defined in Egs. (9.26) and (9.27)
" gin parameters defined in Eqs. (9.32), (9.33), (9.41), and (9.42)
G(s) transfer function between ¢; (output) and ¢; (input)
k number of laminae in a multilayered slab
l slab thickness, m
m; ith moment of impulse response, m?
° N diffusion flux, kmol/m? - s

N(R) diffusion flux in a pore of radius R, kmol/m? -






