ANL/ES/CP-96203

HYDROGEN PRODUCTION AND CARBON DIOXIDE RECOVERY FROM KRW OXYGEN-BLOWN GASIFICATION*

Ъy

Richard D. Doctor, Karen L. Chess,** Norman F. Brockmeier, John C. Molburg, and P. Thimmapuram Argonne National Laboratory Energy Systems Division/Bldg. 362 9700 S. Cass Ave. Argonne, IL 60439-4815

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

September 1998

Submitted for publication in the Proceedings of the Fourth Intl. Conference on Greenhouse Gas Control Technologies, Aug. 30-Sept. 2, 1998, Interlaken, Switizerland, sponsored by the IEA Greenhouse Gas R&D Programme.

^{*}Work supported by the U.S. Department of Energy, Office of Fossil Energy, under Contract No. W-31-109-ENG-38.

^{**}Current address: Fuel Tech, 1001 Frontenac Rd., Naperville, IL 60563-1746

HYDROGEN PRODUCTION AND CARBON DIOXIDE RECOVERY FROM KRW OXYGEN-BLOWN GASIFICATION

Richard D. Doctor, Karen L. Chess,* Norman F. Brockmeier, John C. Molburg, and P. Thimmapuram Argonne National Laboratory 9700 S. Cass Ave. Argonne, IL 60439-4815, USA

ABSTRACT

An oxygen-blown KRW integrated gasification combined-cycle plant producing hydrogen, electricity, and supercritical-CO₂, was studied in a full-energy cycle analysis extending from the coal mine to the final destination of the gaseous product streams. A location in the mid-western United States was chosen 160-km from Old Ben #26 mine which ships 3,866 tonnes/day of Illinois #6 coal by diesel locomotive. Three parallel gasifier trains, each capable of providing 42% of the plant's 413.5 MW nominal capacity use a combined total of 3,488 tonnes/day of 1/4" prepared coal. The plant produces a net 52 MW of power and 3.71 x 10^6 nm³/day of 99.999% purity hydrogen which is sent 100 km by pipeline at 34 bars. The plant also produces 3.18 x 10^6 nm³/day of supercritical CO₂ at 143 bars, which is sequestered in enhanced oil recovery operations 500 km away. A CO₂ emission rate of 1 kgCO₂/kWh was assumed for power purchases outside the fence of the IGCC plant.

INTRODUCTION

Oxygen-blown gasification is used to convert Illinois #6 coal to synthesis gas [Fig. 1]. After particulate removal, a shift reactor uses steam to convert the CO component of the gas to CO₂ and hydrogen (H₂). Next, H₂S is removed from the stream and processed to produce marketable sulfur. Carbon dioxide is then recovered in a glycol-based process and transported by pipeline for enhanced oil recovery. The gas stream after CO₂ recovery is processed using pressure-swing adsorption (PSA) to recover H₂ at a purity suitable for fuel cells, although there is no restriction on the actual hydrogen end-use. The H₂ stream is transported to end users via pipeline, while the residual gas from PSA-a combination of hydrogen, methane, and light hydrocarbons-is used to generate electricity by combustion turbine combined cycle. Part of the electricity generated supplies the internal needs of the plant, and the excess is sent to the grid.

MINING

The assumed power plant location is 100 mi (160 km) by diesel-rail transport from the Old Ben #26 underground mine in Sesser, Illinois. The plant receives 4,112 tons/day (155.4 metric tonnes/h) of 2 x 4-in. coal, which is prepared to 0 x 1/4-in. with 3.5% weight loss. A summary of this portion of the power cycle appears in Table 1.

INTEGRATED GASIFICATION COMBINED CYCLE CONVERSION

Previous process design studies to characterize integrated gasification combined-cycle (IGCC) power systems with CO₂capture technologies were modified using ASPEN⁹ modeling to evaluate a configuration producing both merchant hydrogen and electricity [1,2,3,4,5]. The power plant configuration employs three parallel gasifier trains, each capable of providing 42% of the plantis 413.5 MW nominal capacity (for the base case with no CO₂ recovery.) After modification, the plant produces 131 MMscf/day (3.71 million standard cubic m/day) of 99.999% purity hydrogen at 287.7 Btu/scf; 119.9 KJ/g (LHV) which is sent 100 km by pipeline at 34 bars. At 100% efficiency, this could yield 460 MW of power. The plant also produces 112 MMscf/day (3.18 million standard cubic m/day) of supercritical-CO₂ at 143 bars, which is sent 500-km for sequestering in enhanced oil recovery. PSA reject gas goes to a turbine cycle to produce 118 MW. After supplying 66 MW for internal power use this yields 52 MW Net power. The designed plant availability is 95%. This is largely reflected in higher projected maintenance costs.

H₂ PIPELINE

A 100-km pipeline design was prepared and costs were estimated for a high purity hydrogen flow of $3.71 \times 10^6 \text{ nm}^3/\text{day}$ through a 343 mm pipe at 30 bar. There appears to be no economic justification for going to higher pipeline pressures and an internal study of the costs for delivering energy as methane vs. energy as H₂ showed a 13% advantage for methane at 500 psi rising to a 46% advantage at 800 psi. Economic assumptions were for an availability of 95% and capital recovery of 12% to yield transmission costs of 0.171 \$/Mscf; 0.564 \$/GJ. It is very important to observe that the high costs of a dedicated pipeline dictate the high availabilities.

*Current address: Fuel Tech, 1001 Frontenac Rd., Naperville, IL 60563-1746

Fig. 1. Integrated Gasification Combined-Cycle Producing Electricity, CO2 and H2

		Diesel	CO ₂				
	Electricity	Fuel #2	Emissions	Electricity	Losses	Coal	CO ₂
metric units	kWh/tonne	tonne-	kg/tonne	MW	%	kg/h	kg/h
		km/liter .	coal			Ū	U
MINING (a)							
Methane emissions (b)			9.63		0.0%	178,981	1,724
Hoisting	6.12		6.12				
Drilling	2.03		2.03				
Ventilation	2.20		2.20				
Dewatering	2.67		2.67				
Break and convey	0.73		0.73				
Ancillary	0.46		0.46				
subtotal	14.21		14.21	2.54	0.0%	178,981	2,543
PREPARATION 2x4-in.	0.44		0.44	0.07	10.0%	161,083	71
TRANSPORT - 161 km							
Mine to IGCC by rail		135	3.27				
General service	0.98		0.98	0.15			
Return to mine		50	1.22				
General service	0.36		0.36	0.06			
subtotal			5.83	0.21	3.5%	155,445	905
PREPARATION 1/4-in. (c)	5.85				6.5%	145,341	

Table 1. F	Energy Use	in C	Coal Mining, I	Preparation,	and Trans	portation
------------	------------	------	----------------	--------------	-----------	-----------

(a) Operations of 250 days/yr at 13 hr/day

N.

٠

(b) Methane emissions of 175 scf/ton counted only as conversion to CO₂ within a 14-yr life

(c) Accounted for in IGCC plant balance

CO₂ PIPELINE

Design and economic assumptions for a supercritical-CO₂ pipeline were compared against current plans for Dakota Gasification Company, Beulah, ND [6] and Shell estimates of CO₂ purchase costs at 3.25/bbl of oil recovered [7] with a reasonable CO₂ utilization of 5.6 Mscf/bbl oil [8], which would come to a purchase price of about 0.60/Mscf. Since, the 30-in. Shell Cortez line is unusually large – resulting in economies of scale – previously determined pipeline costs of 0.77/Mscf CO₂ still appear reasonable.

RESULTS: FULL-ENERGY CYCLE BALANCES

The energy costs of delivering electricity 100-km from the IGCC plant are presented for three cases; the IGCC base case with no CO₂ recovery (Table 2); the IGCC system with CO₂ recovery (Table 3); the IGCC system developed for this study with H₂ production and CO₂ recovery (Table 4). For the Base-case with no CO₂ recovery; delivered power was 396-MW full-cycle with emissions of 0.83 kgCO₂/kWh. There is a derating with CO₂ recovery. Delivered power becomes 366-MW full-cycle at 0.20 kgCO₂/kWh. An additional derating takes place in the present case with both H₂ production and CO₂ recovery where the hydrogen goes to 3-stage solid-oxide fuel cells. The delivered power now becomes 344-MW full-cycle at 0.22 kgCO₂/kWh. This is the combination of 52-MW busbar at the plant and 298-MW from fuel cells and a steam generator topping cycle.

Table Desise Pl	2. KRW O_2 -	blown IQ	SCC - Ba	se Case			
Basis: E	lecuric power o	lenvery .		Power	CO2	CH	N ₂ O
	nm ³ /d	tons/d	kg/h	MW	kg/h	kg/h	kg/h
MINING AND TRANSPORT			Ũ		Ũ	-0-1	
Coal methane emissions						566	
Mining operations & preparation				-2.61	2.614		0.00003
Transport by rail - 161 km				-0.21	905		0.66265
a. Subtotal				-2.82	3.520	566	0.66267
POWER PLANT							
Coal preparation (0-in. x 1/4-in.)		3,845	145,341	-0.85			
O ₂ by cryogenic separation	8,937,000	2,347	88,717	-29.29			
Steam from heat recovery generator			17.254				
Gasifier island				-2.90			
Solid waste		492	18,598				
Sulfur		78	2,948	-4.64			
SO ₂ (gasifier only)		6.92	262		6,157		unknown
Power island				-7.02	320,383		
Miscellaneous (5%)				-2.24	·		
Subtotal				-44.70	326,540		
Power - gas turbine				627.40			
Power - air compressor and losses				-328.60			
Power - steam turbine				159.40			
GROSS Power Subtotal				458.20		,	
b. NET Power				413.50			
c. CO ₂ PIPELINE AND				0.00	0		
SEQUESTERING							
d. H ₂ PIPELINE				0.00	0		
e. TRANSMISSION LOSS-3.5%				-14.47	0		
f. NET ENERGY CYCLE -Base Case*	0.833	kg CC	0₂/kWh	396.20	330,060	566	0.66267

*f = a+b+c+d+e.

APPLICATIONS

Carbon dioxide as a supercritical product (143 bar) can be recovered from coal gasification and power production. Where there is an enhanced oil recovery market, this actually is profitable. The need for high-pipeline utilization is critical. Hydrogen can be recovered at high purity (99.999%) for sale from coal gasification, however the need for high pipeline-utilization is critical. Pressures of 35 bar are optimal. Fuel-cell conversion efficiencies need to approach 77% to match the base-case output. At present, solid-oxide fuel cell efficiencies are 53-58%; while alkaline fuel cell efficiencies are near 70%.

3

Table 3. O₂-blown IGCC with CO₂

Glycol CO₂ and H₂S recovery; turbine topping Basis: Electric power delivery 100 km from station

				Power	CO ₂	CH4	N ₂ O
	nm³/d	tons/d	kg/h	MW	kg/h	kg/h	kg/h
MINING AND TRANSPORT Coal methane emissions						566	
Mining operations & preparation				-2.61	2,614		0.00003
Transport by rail - 161 km				-0.21	905		0.66265
a. Subtotal				-2.82	3,520	566	0.66267
POWER PLANT							
Coal preparation (0-in. x 1/4-in.)		3,845	145,341	-0.85			
O ₂ by cryogenic separation	8,937,000	2,347	88,717	-29.29			
Steam from heat recovery generator			17,254				
Gasifier island				-2.90			
Solid waste		492	18,598				
Sulfur		78	2,948				
SO ₂ (gasifier only)		6.92	262		6,157		unknown
Glycol circulation				-5.80	320,383		
Glycol refrigeration				-4.50			
Power recovery turbines				3.40			
CO ₂ compression to pipeline (143 bar)	3,178,000			-17.30	-260,055		
Power island				-6.90			
Miscellaneous (5%)				-2.86	<i></i>	•	
Subtotal				-67.01	66,485	U	unknown
Power - gas turbine				580.78			
Power - air compressor and losses				-325.51			
Power - steam turbine				195.30			
GROSS Power Subtotal				450.57			
b. NET Power				383.56			
CO2 PIPELINE AND SEQUESTERING	3,178,000				260,055		
Pipeline booster stations				-1.64	1,637		0.00002
Geological reservoir (1% loss)					-257,454		
c. Subtotal				-1.64	4,238	0	0.00002
d. H ₂ PIPELINE				0.00			
e. TRANSMISSION LOSS-3.5%				-13.42			
f. NET ENERGY CYCLE*	0.203	kg CC)₂/kWh	365.67	74,242	566	0.66269
f = a+b+c+d+e.							

Table 4. KRW O₂-blown IGCC

	3			Power	CO ₂	CH4	N ₂ O
	nm ⁻ /d	tons/d	kg/h	MW	kg/h	kg/h	kg/h
MINING AND TRANSPORT							
Coal methane emissions						566	
Mining operations & preparation				-2.61	2,614		0.00003
Transport by rail - 161 km				-0.21	905		0.66265
a. Subtotal				-2.82	3,520	566	0.66267
POWER PLANT							
Coal preparation (0-in. x 1/4-in.)		3,845	145.341	-0.85			
O_2 by cryogenic separation	8.937.000	2.347	88.717	-29.29			
Steam from heat recovery generator	-,,		17 254				
Gasifier island			17,004	-2.90			
Solid waste		492	18,598	-2			
Sulfur		78	2.948				
SO ₂ (gasifier only)		6.92	262		6,157		unknown
Glycol circulation				-5.80	320 383		andiown
Glycol refrigeration				-4 50	520,505		
Power recovery turbines				3 40			
CO_2 compression to 143 bar	3.178.000			-17.30	-260.055		
H_2 PSA purification to 31 bar	3.710.000			-3.18	200,000		
H ₂ crvo-storage for pipeline	-,,			-0.92			
Power island				-1.81			
Miscellaneous (5%)				-3.07			
Subtotal				-66.22	66.485	n	unknown
Power - gas turbine				244.53	00,100	v	undionn
Power - air compressor and losses				-169.48			
Power - steam turbine				42.93	•		
GROSS Power Subtotal				117.98			
b. NET Power				51.76			
CO, PIPELINE &	3.178.000				260.055		
SEQUESTERING	-,				200,000		
Pipeline booster stations				-1.64	1,637		0.00002
Geological reservoir (1% loss)					-257,454		
c. Subtotal				-1.64	4,238	0	0.00002
H ₂ PIPELINE OUTLET (21 bar)	3,710,000				-		
H ₂ 3-stage SOFC (58% of 460.0 MW)				266.80			
Steam Generator (85% of 36.8 MW)				31.28			
d. Subtotal				298.08	0	0	0.00000
e. TRANSMISSION LOSS-3.5%		,		-1.81			
f. NET ENERGY CYCLE*	0.216	kg CO	O₂/kWh	343.56	74,242	566	0.66269

Glycol CO₂ and H₂S recovery; PSA H₂ recovery; turbine topping; 3-stage solid oxide fuel cell

*f = a+b+c+d+e

FULL ENERGY CYCLE ANALYSIS OF GREENHOUSE GAS FORCING

Recent consideration of full-energy cycle analysis for power production (9) have emphasized the importance of greenhouse gases such as methane and N_2O in addition to other than carbon dioxide. Modeling results suggest that a molecule of methane is equivalent to 56 molecules of CO_2 in its climate-forcing impact, while each N_2O molecule is equivalent to 280 molecules of carbon dioxide (10). These "equivalent CO_2 impacts" were used as the basis for Fig. 2 which shows the equivalent CO_2 emissions to provide 396-MW of electricity 100-km from the IGCC system.

124

Fig. 2. Equivalent CO₂ Greenhouse Emissions 396 MW Net-Cycle.

ACKNOWLEDGMENTS

This work is supported by the U.S. Department of Energy Fossil Energy Program at the Federal Energy Technology Center, through contract W-31-109-Eng-38; contract managers, Perry Bergman and Sean Plasynski. Special thanks for the support and encouragement from Harvey Ness and Dave Beecy.

REFERENCES

- 1. Gallaspy, D.T., et al., 1990. iSouthern Company Serviceís Study of a KRW-based GCC Power Plant,î EPRI GS-6876, Electric Power Research Institute, Palo Alto, CA.
- Doctor, R.D., Molburg, J.C., Thimmapuram, P.R., Berry, G.F., and Livengood, C.D., 1994. iGasification Combined Cycle: Carbon Dioxide Recovery, Transport, and Disposal, ANL/ESD-24, Argonne National Laboratory, Argonne, IL.
- 3. Doctor, R.D., Molburg, J.C., and Thimmapuram, P.R., 1996. iKRW Oxygen-Blown Gasification Combined Cycle: Carbon Dioxide Recovery, Transport, and Disposal,î ANL/ESD-34, Argonne National Laboratory, Argonne, IL.
- Doctor, R.D., J.C. Molburg, P.R. Thimmapuram, "Oxygen-Blown Gasification Combined Cycle, Carbon Dioxide Recovery, Transport, and Disposal," Proceedings of the 3rd Intl. Energy Agency Carbon Dioxide Disposal Symposium, Cambridge, MA, USA, 9-11 Sept. 1996, H.J. Herzog, Ed., Pergamon Press, Oxford; simultaneous publication in Energy Conservation and Management, 28 (Suppl.):575-580 (1997).
- Doctor, R.D., Molburg, J.C., Thimmapuram, P.R., Berry, G.F., and Livengood, C.D., and Richard A. Johnson, iGasification Combined Cycle: Carbon Dioxide Recovery, Transport, and Disposal,î Proceedings of the 2nd Intl. Energy Agency Carbon Dioxide Disposal Symposium, Oxford, UK, 29-31 March, 1993, P.W. F. Reimer, ed., IEA Greenhouse Gas R&D Programme, Pergamon Press, Oxford (1993); simultaneous Publication in Energy Conservation and Management, 34(9-11):1113-20 (1993).
- 6. Big Canadian Miscible CO2 EOR Project," Oil & Gas J. (July 7, 1997).
- 7. Moritis, C., iEOR Survey and Analysis,î Oil & Gas J. (Apr. 15, 1996).
- 8. Hsu, C. et al., iProduction Report,î Oil and Gas J. (Oct. 23, 1995).
- 9. Smith, I.M., Greenhouse Gas Emission Factors for Coal-The Complete Fuel Cycle, International Energy Agency, London, UK, Nov. 1997.
- 10. Bryant, E., Climate Process and Change, Cambridge, 1997, p. 119.