

FIGURE 6.1 Block Diagram of the IGCC System with CO2 Recovery Used in Cases 3 and 4

Material Flow (tons/d)	Base Case	Case 3
Coal (prepared)	3.845	3.845
Oxygen	2,347	2,347
Solid waste	492	492
Sulfur	78	78
CO ₂ (power plant only)	9210	993
SO ₂ (power plant only)	1.08	6.92
Net power output (MW)	458.4	340.11

TABLE 6.1 Material Flows for Oxygen-Blown Base Case and Case 3

case and gas turbine options. The chilled methanol process is depicted in Figure 6.2. The feed gas is cooled by heat exchange with the cleaned fuel gas. Because it is cooled to well below the point at which water would condense and freeze, methanol is added to the feed gas to act as an antifreeze. Condensate is removed in a phase separater and sent to a distillation unit to recover the methanol. The rich methanol from the absorber is flashed in three stages to release the H₂S and is finally stripped with steam heating. The lean methanol from the stripper is cooled by heat exchange with the methanol feed to the stripper and by refrigeration prior to reinjection into the absorber tower. Table 6.2 provides the details of stream composition, flows, and conditions for the H₂S recovery system. Comparing the feed stream, 1A, with the product stream, 2B, the reduction in H₂S in lb mol/h is 99.99% and the H₂S content of the fuel gas is about 0.7 ppmv. A description of the streams and assumptions used in the stream calculations is provided in Table 6.3.

6.3 Molten Carbonate Fuel Cell System

Figure 6.3 shows the molten carbonate fuel cell in the context of supporting systems. The sulfur-free gas from the methanol system is brought to fuel cell operating pressure in a power recovery turbine. The gas is then heated by steam injection and fed to the fuel cell, where the shift reaction converts CO to CO_2 and reforming converts CH_4 to H_2 and CO_2 . The anode exhaust is rich in CO_2 . The sensible heat of this stream is used to raise steam for the steam cycle. After further cooling by heat exchange with steam cycle condensate, the anode exhaust is sent to CO_2 recovery following water removal in a condenser. The CO_2 -lean gas has residual CO and H_2 , which is burned in air before this stream is used as the cathode feed. The cathode exhaust is sent through a power recovery turbine and heat exchangers before being exhausted as stack gas. The line list corresponding to Figure 6.3 is provided in Table 6.4. A description of the streams and key assumptions are provided in Table 6.5.

FIGURE 6.2 Flow Diagram of Chilled Methanol Process for H₂S Recovery in Case 3

Stream Data	Stream 1A	Stream 1B	Stream 1C	Stream 1D	Stream 2A	Stream 2B
Description of stream	Feed gas from KRW gasifier	Gases to heat exchanger	Gases from heat exchanger	Gases from phase separator	Sulfur-free gas from absorber	Sulfur-free gas to fuel cell
Gases (Ib·mol/h)						
co	4,559.29	4,559.29	4,559.29	4,559.29	4,530.65	4,530.65
CO ₂	389.37	389.37	389.37	389.37	267.08	267.08
H ₂	2,315.44	2,315.44	2,315.44	2,315.44	2,311.51	2,311.51
H ₂ O	19.41	19.41	19.41	0.00	0.00	0.00
N2	36.44	36.44	36.44	36.44	36.44	36.44
Ār	72.73	72.73	72.73	72.73	72.73	72.73
CH₄	487.31	487.31	487.31	487.31	480.56	480.56
NH ₃	0.00	0.00	0.00	0.00	0.01	0.01
H ₂ S	59.01	59.01	59.01	59.01	5.90E-03	5.90E-03
HCN	0.00	0.00	0.00	0.00	7.42E-04	7.42E-04
O ₂	0.00	0.00	0.00	0.00	0.00	0.00
cos	7.42	7.42	7.42	7.42	0.00	0.00
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	7,946.42	7,946.42	7,946.42	7,927.01	7,698.98	7,698.98
Liquids (lb·mol/h) Methanol	0.00	15.07	15.07	0.00	0.03	0.03
Temperature (°F)	105.00	104.55	-34.18	-34.18	-70.00	80.00
Pressure (psia)	456.00	456.00	456.00	456.00	450.00	450.00
Enthalpy of stream (Btu/h) (reference, 32°F)	4,444,715	4,433,245	-3,707,336	-3,666,146	-5,440,448	2,596,543

T	٩BI	_E	6.2	Stream	Flows of	Chilled	Methano	Process	for I	H_2S	S Remova	ıl in	Case 3	3
---	-----	----	-----	--------	----------	---------	---------	---------	-------	--------	----------	-------	--------	---

TABLE 6.2 (Cont.)

Stream Data	Stream 3A	Stream 3B	Stream 3C	Stream 3D	Stream 4A	Stream 4B
Description of stream	Bottoms from phase separator	Feed to distillation column	Overhead from distillation column	Wastewater from distillation column	H ₂ S-rich gas from flash drum 2	H ₂ S-rich gas from heat exchanger
Gases (lb⋅mol/h)						
CO	0.00	0.00	0.00	0.00	21.48	21.48
CO ₂	0.00	0.00	0.00	0.00	61.14	61.14
H ₂	0.00	0.00	0.00	0.00	3.14	3.14
H ₂ O	19.41	19.41	0.79	18.62	0.00	0.00
N ₂	0.00	0.00	0.00	0.00	0.00	0.00
Ar	0.00	0.00	0.00	0.00	0.00	0.00
CH₄	0.00	0.00	0.00	0.00	4.05	4.05
NH3	0.00	0.00	0.00	0.00	0.00	0.00
H₂Š	0.00	0.00	0.00	0.00	17.83	17.83
HCN	0.00	0.00	0.00	0.00	0.00	0.00
02	0.00	0.00	0.00	0.00	0.00	0.00
cos	0.00	0.00	0.00	0.00	2.35	2.35
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	19.41	19.41	0.79	18.62	109.99	109.99
Liquids (lb∙mol/h) Methanol	15.07	15.07	15.07	0.00	0.00	0.00
Temperature (°F)	-34.18	-34.18	150.00	280.00	-29.88	84.50
Pressure (psia)	456.00	50.00	50.00	50.00	150.00	150.00
Enthalpy of stream (Btu/h) (reference, 32°F)	-41,190	-41,190	270,074	83,134	-55,403	48,168

TABLE 6.2 (Cont.)

Stream Data	Stream 4C	Stream 4D	Stream 4E	Stream 4F	Stream 4G	Stream 4H
Description of stream	Overhead from stripper	H ₂ S-rich gas from phase separator	H ₂ S-rich gas after compressor	H_2S -rich gas from flash drum 3	H ₂ S-rich gas after compressor	H ₂ S-rich product
Gases (lb⋅mol/h)						
со	1.79	1.79	1.79	5.37	5.37	28.64
CO ₂	30.57	30.57	30.57	30.57	30.57	122.29
H ₂	0.16	0.16	0.16	0.63	0.63	3.93
H ₂ O	0.79	0.79	0.79	0.00	0.00	0.79
N_2	0.00	0.00	0.00	0.00	0.00	0.00
Ar	0.00	0.00	0.00	0.00	0.00	0.00
CH₄	1.35	1.35	1.35	1.35	1.35	6.75
NH ₃	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ S	28.70	28.70	28.70	12.48	12.48	59.01
HCN	0.00	0.00	0.00	0.00	0.00	0.00
O ₂	0.00	0.00	0.00	0.00	0.00	0.00
cos	3.42	3.42	3.42	1.64	1.64	7.42
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	66.78	66.78	66.78	52.04	52.04	228.83
Liquids (lb·mol/h) Methanol	224.97	21.45	21.45	0.00	0.00	21.45
Temperature (°F)	135.00	100.00	619.94	-33.64	286.22	318.59
Pressure (psia)	14.70	14.70	150.00	20.00	150.00	95.00
Enthalpy of stream (Btu/h) (reference, 32°F)	3,874,837	410,887	803,850	-28,354	117,525	969,544

TABLE 6.2 (Cont.)

Stream Data	Stream 41	Stream 5A	Stream 5B	Stream 5C	Stream 5D	Stream 5E
Description of stream	Methanol reflux to stripper	Rich methanol from absorber	Gases from flash drum 1	Feed to flash drum 2	Feed to flash drum 3	Rich methanol from flash drum 3
Gases (lb⋅mol/h)						
co`́	0.00	286.38	257.74	28.64	7.16	1.79
CO ₂	0.00	152.86	30.57	122.29	61.14	30.57
	0.00	39.27	35.34	3.93	0.79	0.16
H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00
N ₂	0.00	0.00	0.00	0.00	0.00	0.00
Ar	0.00	0.00	0.00	0.00	0.00	0.00
CH₄	0.00	67.52	60.77	6.75	2.70	1.35
NH ₃	0.00	0.00	0.00	0.00	0.00	0.00
H₂S	0.00	66.02	6.60	59.42	41.60	29.12
HCN	0.00	0.00	0.00	0.00	0.00	0.00
O ₂	0.00	0.00	0.00	0.00	0.00	0.00
cos	0.00	8.70	0.87	7.83	5.48	3.84
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	0.00	620.75	391.89	228.86	118.87	66.83
Liquids (lb·mol/h) Methanol	203.53	4,114.03	0.00	4,114.03	4,114.03	4,114.03
Temperature (°F)	100.00	-23.04	-23.04	-23.04	-29.88	-33.64
Pressure (psia)	95.00	450.00	300.00	300.00	150.00	20.00
Enthalpy of stream (Btu/h) (reference, 32°F)	250,640	-4,358,335	-153,557	-4,204,777	-4,671,853	-4,927,451

TABLE 6.2 (Cont.)

Stream Data	Stream 5F	Stream 6A	Stream 6B	Stream 6C	Stream 6D	Stream 6E	Stream 7A
Description of stream	Rich methanol to stripper	Lean methanol to circulation pump	Lean methanol from solvent circulation pump	Lean methanol to refrigeration	Methanol for feed gas injection	Lean methanol to absorber	Methanol makeup to stripper
Gases (lb⋅mol/h)							
co	1.79	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂	30.57	0.00	0.00	0.00	0.00	0.00	0.00
H ₂	0.16	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ar	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CH ₄	1.35	0.00	0.00	0.00	0.00	0.00	0.00
NH ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ S	29.12	0.41	0.41	0.41	0.00	0.41	0.00
HCN	0.00	0.00	0.00	0.00	0.00	0.00	0.00
O ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00
COS	3.84	0.41	0.41	0.41	0.00	0.41	0.00
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	66.83	0.82	0.82	0.82	0.00	0.82	0.00
Liquids (lb·mol/h) Methanol	4,114.03	4,129.14	4,129.14	4,114.06	15.07	4,114.06	21.48
Temperature (°F)	128.66	149.00	152.90	-10.00	-10.00	-70.00	70.00
Pressure (psia)	20.00	14.70	456.00	456.00	456.00	456.00	14.70
Enthalpy of stream (Btu/h) (reference, 32°F)	7,257,493	8,749,976	9,043,938	-3,129,543	-11,463	-7,600,310	14,782

Stream and Characteristics	Data	Comments on Stream Calculations
Stream 1A: Gas feed from KRW process Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) H ₂ S (mol fraction)	105 456 7,946 0.0074	This stream is coming from KRW process. This stream will be cooled against cold fuel gas from absorber and cold H_2S -rich gas from flash drum 2.
Stream 2A: Fuel gas from top of absorber Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) H ₂ S (ppm)	-70 450 7,699 0.767	Chilled methanol enters the top of the column at a temperature of -70° F. Gases leaving the column are in equilibrium with methanol; hence, they are at a temperature of -70° F. Gas composition corresponds to 99.99% removal of H ₂ S.
Stream 3A: Methanol-water mixture from phase separator Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) H ₂ S (mol fraction)	-34.18 456 34.49 0	Methanol is added to feed gas prior to absorption column to prevent icing of water in feed gas. Condensed water and methanol are separated from gas in phase separator.
Stream 3B: Methanol-water mixture to distillation column Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) H ₂ S (mol fraction)	-34.18 50 34.49 0	Methanol is separated from the methanol-water mixture in distillation column.
Stream 3C: Methanol from distillation column to stripper Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) H ₂ S (mol fraction)	150 50 15.86 0	Methanol from distillation column is sent to stripper.
Stream 3D: Wastewater from distillation column Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) H ₂ S (mol fraction)	280 50 18.62 0	Water from distillation column is removed from bottom of column for disposal.
Stream 4A: H ₂ S-rich gas from flash drum 2 Temperature (°F) Pressure (psia) Flow rate (Ib⋅mol/h) H ₂ S (mol fraction)	-29.88 150 109.99 0.1621	Rich methanol from flash drum 1 is flashed to pressure of 150 psia to desorb major portion of H_2S from solvent.

TABLE 6.3 Descriptions of Streams of Chilled Methanol Process for H_2S Removal in Case 3

TABLE 6.3 (Cont.)

Stream and Characteristics	Data	Comments on Stream Calculations
Stream 4C: H ₂ S-rich gas from stripper Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) H ₂ S (mol fraction)	135 14.7 291.76 0.0984	The final removal of H_2S is achieved in stripper by heat. Because of low vapor pressure of methanol, substantial amounts of methanol will be vaporized along with value of H_2S .
Stream 4D: H_2S -rich gas from phase separator Temperature (°F) Pressure (psia) Flow rate (lb-mol/h) H_2S (mol fraction)	100 14.7 88.24 0.3253	Methanol is condensed from H_2S -methanol mixture, and H_2S is separated in phase separator.
Stream 4F: H ₂ S-rich gas from flash drum 3 Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) H ₂ S (mol fraction)	-33.64 20 52.04 0.2398	Rich methanol solution from flash drum 2 is further flashed to pressure of 20 psia in flash drum 3 to desorb H_2S from solvent.
Stream 4H: Final H ₂ S-rich product Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) H ₂ S (mol fraction)	318.59 95 250.27 0.2358	The H_2S -rich streams from stripper and flash drum 3 are compressed to pressure of 95 psia and then combined with H_2S -rich stream from flash drum 2. This stream is further processed in a Claus plant for sulfur recovery.
Stream 5A: Rich methanol from the absorber Temperature (°F) Pressure (psia) Flow rate (lb-mol/h) H ₂ S (mol fraction)	-23.04 450 4,734.79 0.0139	Rich methanol, which contains H_2S and other soluble gases, is withdrawn from bottom of tower. Temperature of solvent rises because of heat of absorption of H_2S into methanol.
Stream 5B: Recycle to absorption tower Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) H_2S (mol fraction)	-23.04 300 391.90 0.0168	Rich methanol is flashed to pressure of 300 psia to desorb gases like H_2 and CH_4 , and the desorbed gases are recycled to absorption tower.
Stream 6A: Lean methanol from stripper Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) H ₂ S (mol fraction)	149 14.7 4,129.96 0.0001	Lean methanol from stripper bottom is to be circulated to absorption tower. The H_2S content in lean methanol is 0.0001 moles of H_2S per mole of methanol.

TABLE 6.3 (Cont.)

Stream and Characteristics	Data	Comments on Stream Calculations
Stream 6B: Lean methanol from		
circulation pump		
Temperature (°F)	152.9	Lean methanol from stripper is at pressure of
Pressure (psia)	456	14.7 psia and is pressurized to absorption tower
Flow rate (ID-mol/n)	4,129.90	operating pressure of 456 psia by using
H_2S (montraction)	0.0001	circulation pump.
Stream 6C: Lean methanol from		
heat exchanger		
Temperature (°F)	-10	Lean methanol from circulating pump is cooled
Pressure (psia)	456	against cold rich methanol from flash drum 3 to
Flow rate (lb·mol/h)	4,114.89	temperature of -10°F. Small portion of methanol
H_2S (mol fraction)	0.0001	is injected into feed gas prior to absorption to prevent icing of water.
Stream 6F: Lean methanol to stripper		
Temperature (°F)	-70	Lean methanol from heat exchanger is further
Pressure (psia)	456	cooled to temperature of -70°F by refrigeration.
Flow rate (lb·mol/h)	4,114.89	
H ₂ S (mol fraction)	0.0001	
Stream 7A: Methanol makeup		
Temperature (°F)	70	Methanol has low vapor pressure; hence, it is
Pressure (psia)	14.7	lost in stripper along with H ₂ S. Also, some
Flow rate (lb·mol/h)	21.48	methanol is lost in distillation column along with
H ₂ S (mol fraction)	0.0	wastewater.

FIGURE 6.3 Flow Diagram of Fuel Cell System and Associated Heat Recovery in Case 3

Stream Data	Stream 2B	Stream 8A	Stream 8B	Stream 9	Stream 10	Stream 11
Description of stream	Feed gas from methanol	Fuel gas from expansion turbine	Fuel gas to fuel cell	Fuel cell anode exhaust	Gases from heat exchanger 2	Gases from heat exchanger 5
Gases (lb·mol/h)						
co	4,530.65	4,530.65	4,530.65	1,812.26	1,812.26	1,812.26
CO ₂	267.08	267.08	267.08	8,724.66	8,724.66	8,724.66
H ₂	2,311.51	2,311.51	2,311.51	1,693.50	1,693.50	1,693.50
H ₂ O	0.00	0.00	12,000.00	13,579.13	13,579.13	13,579.13
N ₂	36.44	36.44	36.44	36.44	36.44	36.44
Ar	72.73	72.73	72.73	72.73	72.73	72.73
CH ₄	480.56	480.56	480.56	0.00	0.00	0.00
NH ₃	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ S	0.8 ppm	0.8 ppm	0.8 ppm	0.00	0.00	0.00
HCN	0.00	0.00	0.00	0.00	0.00	0.00
O ₂	0.00	0.00	0.00	0.00	0.00	0.00
COS	0.1 ppm	0.1 ppm	0.1 ppm	0.00	0.00	0.00
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	7,698.98	7,698.98	19,698.97	25,918.72	25,918.72	25,918.72
Liquids (lb∙mol/h) H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°F)	80.00	-28.67	502.23	1,300.00	450.00	150.00
Pressure (psia)	450.00	150.00	150.00	150.00	150.00	150.00
Enthalpy of stream (Btu/h) (reference, 32°F)	2,596,057	-3,248,936	302,507,570	591,791,666	351,871,758	41,118,662

TABLE 6.4 Stream Flows of Molten Carbonate Fuel Cell System in Case 3

TABLE 6.4 (Cont.)

Stream Data	Stream 12	Stream 13	Stream 14	Stream 15	Stream 16	Stream 17
Description of stream	Gases to glycol process	Gases from glycol process	Gases from heat exchanger 1	Air to compressor	Air from compressor	Gases from burner
Gases (lb·mol/h)						
co	1,812.26	1,794.14	1,794.14	0.00	0.00	0.00
CO ₂	8,724.66	3,926.10	3,926.10	0.00	0.00	5,720,23
	1,693.50	1,688.08	1,688.08	0.00	0.00	0.00
H ₂ O	78.96	0.00	0.00	0.00	0.00	1,688.08
N ₂	36.44	35.71	35.71	44,202.24	44,202.24	44,237.95
Ar	72.73	72.73	72.73	543.05	543.05	615.78
CH₄	0.00	0.00	0.00	0.00	0.00	0.00
NH3	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ S	0.00	0.00	0.00	0.00	0.00	0.00
HCN	0.00	0.00	0.00	0.00	0.00	0.00
O ₂	·0.00	0.00	0.00	11,822.71	11,822.71	10,081.60
cos	0.00	0.00	0.00	0.00	0.00	0.00
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	12,418.55	7,516.76	7,516.76	56,568.00	56,568.00	62,343.64
Liquids (lb⋅mol/h) H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°F)	70.00	56.14	600.00	81.00	713.05	1,411.87
Pressure (psia)	150.00	145.00	145.00	14.70	150.00	150.00
Enthalpy of stream (Btu/h) (reference, 32°F)	3,933,703	1,441,106	36,784,141	19,042,871	275,242,646	706,519,291

TABLE 6.4 (Cont.)

Stream Data	Stream 18	Stream 19	Stream 20	Stream 21	Stream 22	Stream 23
Description of stream	Gases from heat exchanger 3	Fuel cell cathode exhaust	Gases from expansion turbine	Gases from splitter to heat exchanger 1	Gases from heat exchanger 1	Gases from splitter to heat exchanger 4
Gases (lb·mol/h)						
co	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂	5,720.23	461.60	461.60	73.82	73.82	387.78
H ₂	0.00	0.00	0.00	0.00	0.00	. 0.00
H ₂ O	1,688.08	1,688.08	1,688.08	269.95	269.95	1,418.13
N ₂	44,237.95	44,237.95	44,237.95	7,074.39	7,074.39	37,163.55
Ar	615.78	615.78	615.78	98.47	98.47	517.31
CH₄	0.00	0.00	0.00	0.00	0.00	0.00
NH ₃	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ S	0.00	0.00	0.00	0.00	0.00	0.00
HCN	0.00	0.00	0.00	0.00	0.00	0.00
O ₂	10,081.60	7,452.29	7,452.29	1,191.75	1,191.75	6,260.54
cos	0.00	0.00	0.00	0.00	0.00	0.00
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	62,343.64	54,455.70	54,455.70	8,708.38	8,708.38	45,747.31
Liquids (lb·mol/h) H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°F)	980.33	1,300.00	667.23	667.23	100.00	667.23
Pressure (psia)	150.00	150.00	14.70	14.70	14.70	14.70
Enthalpy of stream (Btu/h) (reference, 32°F)	482,306,421	546,008,492	280,696,393	44,888,086	9,545,050	235,808,307

TABLE 6.4 (Cont.)

Stream Data	Stream 24	Stream 25	Stream 26	Stream 27	Stream 28	Stream 29
Description of stream	Gases from heat exchanger 4	Water from condenser	Water from pump	Steam from heat exchanger 5	Steam from heat exchanger 4	Steam from heat exchanger 3
Gases (lb⋅mol/h)						
со	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂	387.78	0.00	0.00	0.00	0.00	0.00
H ₂	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ O	1,418.13	0.00	0.00	9,917.77	15,668.16	30,055.55
N ₂	37,163.55	0.00	0.00	0.00	0.00	0.00
Ar	517.31	0.00	0.00	0.00	0.00	0.00
CH₄	0.00	0.00	0.00	0.00	0.00	0.00
NH ₃	0.00	0.00	0.00	0.00	0.00	0.00
H₂S	0.00	0.00	0.00	0.00	0.00	0.00
HĈN	0.00	0.00	0.00	0.00	0.00	0.00
O ₂	6,260.54	0.00	0.00	0.00	0.00	0.00
cos	0.00	0.00	0.00	0.00	0.00	0.00
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	45,747.31	0.00	0.00	9,917.77	15,668.16	30,055.55
Liquids (lb⋅mol/h) H₂O	0.00	24,215.42	36,215.42	26,297.65	20,547.25	6,159.87
Temperature (°F)	400.00	121.36	121.36	356.77	356.77	356.77
Pressure (psia)	14.70	1.76	146.96	146.96	146.96	146.96
Enthalpy of stream (Btu/h) (reference, 32°F)	146,194,205	38,996,150	58,258,290	368,957,384	458,571,485	682,784,353

TABLE 6.4 (Cont.)

Stream Data	Stream 30	Stream 31	Stream 32	Stream 33	Stream 34A	Stream 34B	Stream 34C
Description of stream	Steam from heat exchanger 2	Steam for heating feed to fuel cell	Steam to steam turbine	Steam turbine exhaust	Water from condenser	Makeup water to pump	Wastewater for treatment
Gases (lb·mol/h)					e.		
co	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H_2^{-}	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ O	36,215.42	12,000.00	24,215.42	22,813.57	0.00	0.00	0.00
N ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ar	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CH ₄	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NH ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ S	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HCN	0.00	0.00	0.00	0.00	0.00	0.00	0.00
O ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00
cos	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	36,215.42	12,000.00	24,215.42	22,813.57	0.00	0.00	0.00
Liquids (lb⋅mol/h) H₂O	0.00	0.00	0.00	1,401.85	13,500.17	12,000.00	1,500.17
Temperature (°F)	775.00	775.00	775.00	121.36	70.00	70.00	70.00
Pressure (psia)	146.96	146.96	146.96	1.76	150.00	150.00	150.00
Enthalpy of stream (Btu/h) (reference, 32°F)	922,758,266	305,756,514	617,001,752	459,798,748	9,234,116	8,208,000	1,026,116

Stream and Characteristics	Data	Comments on Stream Calculations
Stream 2B: Sulfur-free gas from H ₂ S section Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) CO ₂ (mole fraction) CO (mole fraction)	80 450 7,698.98 0.0347 0.5885	The synthesis gas is cleaned in two stages. Sulfur compounds are removed before the gas is fed to the fuel cell.
Stream 8A: Expanded gases from expansion turbine Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) CO ₂ (mole fraction) CO (mole fraction)	-28.67 150 7,698.98 0.0347 0.5885	Sulfur-free gases are expanded through an expansion turbine for power recovery to a pressure suitable for fuel cell operation.
Stream 8B: Feed to fuel cell anode Temperature (°F) Pressure (psia) Flow rate (lb mol/h) CO ₂ (mole fraction) CO (mole fraction)	502.23 150 19,698.97 0.0136 0.2300	The expanded gases are heated by direct steam injection to temperature of 502.23°F. Direct injection of steam will increase the conversion of CO and also prevent the deposition of carbon on fuel cell anode.
Stream 9: Fuel cell anode exhaust Temperature (°F) Pressure (psia) Flow rate (Ib-mol/h) CO ₂ (mole fraction) CO (mole fraction)	1300 150 25,918.72 0.3366 0.0699	The composition of the gases corresponds to 100% conversion of CH_4 and 60% conversion of H_2 and CO. The temperature of gases is determined by energy balance.
Stream 10: CO_2 -rich gases from heat exchanger 2 Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO_2 (mole fraction) CO (mole fraction)	450 150 25,918.72 0.3366 0.0699	The hot anode exhaust gases are cooled to a temperature of 450°F in heat exchanger 2 to raise high steam for bottoming cycle.

 TABLE 6.5 Descriptions of Streams of Fuel Cell System in Case 3

TABLE 6.5 (Cont.)

Stream and Characteristics	Data	Comments on Stream Calculations
Stream 11: CO ₂ -rich gases from heat exchanger 5		
Temperature (°F)	150	The anode exhaust gases are further cooled
Pressure (psia)	150	in heat exchanger 5 to a temperature of
Flow rate (Ib-mol/h)	25,918.98	150°F. The heat is utilized for preheating
CO ₂ (mole fraction)	0.3366	water for steam cycle. The amount of
CO (mole fraction)	0.0699	water vapor in the gases corresponds to the water's vapor pressure.
Stream 12: Feed gas to CO ₂ recovery		
Temperature (°F)	_70	CO ₂ -rich gases are cooled in a condenser
Pressure (psia)	150	to knock out the water vapor from the
Flow rate (lb·mol/h)	12,418.55	gases.
CO_2 (mole fraction)	0.7026	
CO (mole fraction)	0.1459	
Stream 13: CO ₂ -lean gases from CO ₂ recovery section		
Temperature (°F)	56.14	Fuel cell cathode takes CO_2 as its feed;
Pressure (psia)	145	therefore, the CO ₂ -lean gases along
Flow rate (lb·mol/h)	7,516.76	with unconverted CO and H ₂ are fed back
CO ₂ (mole fraction)	0.5223	to the fuel cell system.
CO (mole fraction)	0.2387	
Stream 14: CO ₂ -lean gases from		
heat exchanger 1		
Temperature (°F)	600	The CO ₂ -lean gases from CO ₂ recovery
Pressure (psia)	145	section are heated with part of the cathode
Flow rate (lb·mol/h)	7,516.76	exhaust gases to a temperature of 600°F.
CO_2 (mole fraction)	0.5223	
CO (mole fraction)	0.2387	
Stream 15: Air to air compressor		
Temperature (°F)	81	The cathode reaction involves both O_2 and
Pressure (psia)	14.7	CO_2 . The O_2 is supplied by air. Also air
Flow rate (lb·mol/h)	56,568	is supplied to burn unconverted CO
CO_2 (mole fraction)	0.0000	and H ₂ .
CO (mole fraction)	0.0000	
		· · · · · · · · · · · · · · · · · · ·

TABLE 6.5 (Cont.)

Stream and		
Characteristics	Data	Comments on Stream Calculations
Stream 16: Compressed air from air compressor Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction) CO (mole fraction)	713.05 150 56,568 0.0000 0.0000	The air is compressed to the operating pressure of the fuel cell.
Stream 17: Gases from combustion chamber Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction) CO (mole fraction)	1,411.87 150 62,343.64 0.0918 0.0000	The composition of gases is based on the composition of gases from CO_2 recovery and air from compressor. The temperature is adiabatic temperature.
Stream 18: Fuel cell cathode feed Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction) CO (mole fraction)	980.33 150 62,343.64 0.0918 0.0000	The gases from the combustion chamber are cooled to a suitable temperature of the fuel cell in heat exchanger 3.
Stream 19: Fuel cell cathode exhaust Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction) CO (mole fraction)	1,300 150 54,455.70 0.0085 0.0000	Part of the CO_2 in the cathode feed is consumed by cathode reaction. The temperature of gases is by energy balance.
Stream 20: Cathode exhaust from expansion turbine Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO_2 (mole fraction) CO (mole fraction)	667.23 14.70 54,455.70 0.0085 0.0000	High-temperature cathode exhaust gases are expanded in expansion turbine to recover power.

TABLE 6.5 (Cont.)

Stream and Characteristics	Data	Comments on Stream Calculations
Stream 21: Cathode exhaust Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction) CO (mole fraction)	667.23 14.70 8,708.38 0.0085 0.0000	The gases from the expansion turbine are at 667° F. Part of this gas stream is used in heating the gases from the CO ₂ recovery system.
Stream 22: Exhaust to stack Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO_2 (mole fraction) CO (mole fraction)	100 14.70 8,708.38 0.0085 0.0000	
Stream 23: Cathode exhaust Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction) CO (mole fraction)	667.23 14.70 45,747.31 0.0085 0.0000	The second portion of the cathode exhaust is utilized in raising the temperature of water for the steam cycle.
Stream 24: Exhaust to stack Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) CO ₂ (mole fraction) CO (mole fraction)	400 14.70 45,747.31 0.0085 0.0000	
Stream 25: Water from steam condenser Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) Quality	121.36 1.76 38,996,150 0	Water from the steam condenser is for steam cycle.
Stream 26: Water from pump Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) Quality	121.36 146.96 38,996,150 0	Water from the pump is for steam cycle.

TABLE 6.5 (Cont.)

Stream and Characteristics	Data	Comments on Stream Calculations
Stream 27: Steam from heat exchanger 5 Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) Quality	356.77 146.96 38,996,150 0.2738	Steam is from heat exchanger 5.
Stream 28: Steam from heat exchanger 4 Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) Quality	356.77 146.96 38,996,150 0.4326	Steam is from heat exchanger 4.
Stream 29: Steam from heat exchanger 3 Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) Quality	356.77 146.96 38,996,150 0.8299	Steam is from heat exchanger 3.
Stream 30: Steam from heat exchanger 2 Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) Quality	775 146.96 38,996,150 1	Superheated steam is from heat exchanger 2.
Stream 31: Steam for heating fuel cell feed Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) Quality	775 146.96 12,000 1	Superheated steam is used for heating the fuel cell feed.
Stream 32: Superheated steam to steam turbine Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) Quality	775 146.96 4,215.42 1	Superheated steam goes to steam turbine for power recovery.

TABLE 6.5 (Cont.)

Stream and Characteristics	Data	 Comments on Stream Calculations
Stream 33: Expanded steam from steam turbine Temperature (°F)	121.36	
Pressure (psia) Flow rate (lb.mol/b)	1.76 24 215 42	
Quality	0.9421	
Stream 34A: Condensate from anode exhaust condenser Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) Quality	70 150 13,500.17 0	
Stream 34B: Makeup water to steam cycle pump		
Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) Quality	70 150 12,000 0	
Stream 34C: Wastewater for		
treatment		
Temperature (°F)	70	
Pressure (psia)	150	
Flow rate (Ib·mol/h)	1,500.17	
	0	

6.4 Glycol Process for CO₂ Recovery

Figure 6.4 is an overall flow diagram of a glycol-based CO_2 recovery system. It is similar to the glycol system described in Section 4. In this system, the CO_2 is absorbed under pressure in a low-temperature glycol absorber. The pressure is released through a hydraulic turbine and in a series of flash tanks. The first tank in that series, the slump tank, allows for recovery of hydrogen from the rich absorbent. The subsequent tanks release CO_2 for disposal. The use of a series of tanks reduces the compression requirement. Table 6.6 is a line list corresponding to Figure 6.4. Stream descriptions and associated assumptions are provided in Table 6.7.

6.5 Fuel Cell, Steam Cycle, and Plant Performance

Use of the fuel cell topping cycle with methanol-based H_2S recovery and glycol-based CO_2 recovery results in a net plant output of 340 MW, 18% less than in the base case plant without CO_2 recovery. Table 6.8 lists the topping cycle output, steam cycle output, and internal plant consumption for the base case (no CO_2 recovery) and for the current case, Case 3. The most significant losses are the consumption of power for CO_2 compression and reduced steam cycle output.

6.6 Economics

Details of the capital investment estimates for the H_2S recovery system, the fuel cell system, and the CO₂ recovery system are presented in Tables 6.9, 6.10, and 6.11, respectively. A summary of capital costs, including indirect capital investment, operating, and maintenance costs, is provided in Section 9.

FIGURE 6.4 Flow Diagram of Glycol Process for CO_2 Recovery and Chilled Methanol Process for H_2S Recovery with Fuel Cell Topping Cycle in Case 3

Stream Data	Stream 12	Stream 13	Stream 35	Stream 36	Stream 37	Stream 38
Description of stream	Feed gas from fuel cell system	H ₂ -rich gas after heat exchanger	Absorber feed	Clean fuel gas from absorber	Lean glycol solvent to absorber	Rich glycol from absorber
Gases (lb⋅mol/h)						
co	1,812.16	1,794.14	1,812.16	1,794.14	0.00	181.23
CO ₂	8,724.66	3,926.10	8,724.66	3,926.10	210.13	5,110.91
-	1,693.50	1,688.08	1,693.50	1,688.08	10.41	158.18
H ₂ O	78.96	0.00	78.96	0.00	0.00	79.76
N2	36.44	35.71	36.44	35.71	0.00	7.29
Ar	72.73	72.73	72.73	72.73	0.00	0.00
CH4	0.00	0.00	0.00	0.00	0.00	0.00
NH ₃	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ S	0.01	0.00	0.01	0.00	0.00	0.01
HCN	0.00	0.00	0.00	0.00	0.00	0.00
O ₂	0.00	0.00	0.00	0.00	0.00	0.00
cos	0.00	0.00	0.00	0.00	0.00	0.00
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	12,418.46	7,516.76	12,418.46	7,516.76	220.54	5,537.38
Liquids (Ib mol/h) Glycol solvent	0.00	0.00	0.00	0.00	20,802.84	20,802.84
Temperature (°F)	70.00	56.14	55.00	30.00	30.00	50.36
Pressure (psia)	150.00	145.00	150.00	145.00	150.00	145.00
Enthalpy of stream (Btu/h) (reference, 32°F)	3,933,489	1,441,041	2,373,591	-119,000	-5,712,163	53,306,378

TABLE 6.6 Stream Flows of Glycol System for CO2 Removal in Case 3

TABLE 6.6 (Cont.)

Stream Data	Stream 39	Stream 40	Stream 41	Stream 42	Stream 43	Stream 44
Description of stream	Rich glycol solvent after turbine 1	Gases from slump tank	Rich glycol to flash tank 1	CO ₂ -rich gas from flash tank 1	Rich glycol to flash tank 2	CO ₂ -rich gas from flash tank 2
Gases (lb⋅mol/h)					,	
co`́	181.23	163.10	18.12	18.12	0.00	0.00
CO ₂	5,110.91	102.22	5,008.69	3,756.52	1,252.17	876.52
H ₂	158.18	142.36	15.82	1.58	14.24	2.14
H ₂ O	79.76	0.80	78.96	78.96	0.00	0.00
N ₂	7.29	6.56	0.73	0.73	0.00	0.00
Ar	0.00	0.00	0.00	0.00	0.00	0.00
CH₄	0.00	0.00	0.00	0.00	0.00	0.00
NHa	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ S	0.01	0.00	0.01	0.00	0.01	0.00
HCN	0.00	0.00	0.00	0.00	0.00	0.00
O ₂	0.00	0.00	0.00	0.00	0.00	0.00
cos	0.00	0.00	0.00	0.00	0.00	0.00
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	5,537.38	415.04	5,122.33	3,855.91	1,266.42	878.66
Liquids (lb·mol/h) Glycol solvent	20,802.84	0.00	20,802.84	0.00	20,802.84	0.00
Temperature (°F)	49.97	49.57	49.57	34.81	34.81	31.33
Pressure (psia)	50.00	50.00	50.00	25.00	25.00	14.70
Enthalpy of stream (Btu/h) (reference, 32°F)	52,160,172	53,779	50,942,277	95,822	8,065,266	-5,201

TABLE 6.6 (Cont.)

Stream Data	Stream 45	Stream 46	Stream 47	Stream 48	Stream 49
Description of stream	Rich glycol to flash tank 3	CO ₂ -rich gas from flash tank 3	Lean glycol to solvent circulation pump	Lean glycol from pump	Rich CO ₂ gas product
Gases (lb·mol/h)					
CO	0.00	0.00	0.00	0.00	18.12
CO ₂	375.65	162.68	212.98	212.98	4,795,72
H ₂	12.10	1.54	10.56	10.56	5.26
H ₂ O	0.00	0.00	0.00	0.00	78.96
N2	0.00	0.00	0.00	0.00	0.73
Ar	0.00	0.00	0.00	0.00	0.00
CH₄	0.00	0.00	0.00	0.00	0.00
NH ₃	0.00	0.00	0.00	0.00	0.00
H ₂ S	0.01	0.00	0.01	0.01	0.00
HCN	0.00	0.00	0.00	0.00	0.00
O ₂	0.00	0.00	0.00	0.00	0.00
COS	0.00	0.00	0.00	0.00	0.00
SO ₂	0.00	0.00	0.00	0.00	0.00
Total gas flow	387.76	164.22	223.55	223.55	4,898.79
Liquids (Ib·mol/h) Glycol solvent	20,802.84	0.00	20,802.84	20,802.84	0.00
Temperature (°F)	31.33	30.68	30.68	31.83	32.44
Pressure (psia)	14.70	4.00	4.00	150.00	25.00
Enthalpy of stream (Btu/h) (reference, 32°F)	-1,911,810	-1,911	-3,762,523	-497,860	1,156,091

Stream and Characteristics	Data	Comments on Stream Calculations
Stream 12: CO_2 -rich gas from fuel cell system Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO_2 (mole fraction)	70 150 12,418.46 0.7026	The synthesis gas is cleaned in two stages. First, sulfur compounds are removed with chilled methanol. Then they are fed to another absorption column for CO_2 recovery.
Stream 35: Feed gas to absorber Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction)	55 150 12,418.46 0.7026	The CO ₂ -rich gas is cooled against the cold fuel gas from the top of the absorber to a temperature of 55°F.
Stream 36: Fuel gas from absorber Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction)	30 145 7,516.76 0.5223	The composition of this stream corresponds to a CO_2 -removal efficiency of 55%. Also, other gases like H ₂ S, COS, and H ₂ are absorbed by the solvent. The temperature of this stream is close to the temperature of lean solvent entering the absorber at the top.
Stream 13: Fuel gas after heat exchanger Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) CO ₂ (mole fraction)	56.14 145 7,516.76 0.5223	Fuel gas is heated against the CO_2 -rich gases from the fuel cell section.
Stream 37: Lean glycol to the of absorber Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) CO ₂ (mole fraction)	30 150 21,023.38 0.01	Lean glycol solvent contains residual CO ₂ . 50% excess solvent is used. The solvent is cooled to 30°F by refrigeration.

TABLE 6.7 Descriptions of Streams of Glycol Process for CO2 Removal in Case 3

TABLE 6.7 (Cont.)

Stream and Characteristics	Data	Comments on Stream Calculations
Stream 38: Rich glycol solvent from absorber		
Temperature (°F)	50.36	Flow rate reflects lean glycol solvent plus
Pressure (psia)	145	absorbed CO_2 , H_2S , and other gases. The
Flow rate (Ib·mol/h)	26,340.22	temperature increases because of the heat of
CO ₂ (mole fraction)	0.1940	absorption of OO_2 and H_2S .
Stream 39: Rich glycol solvent from turbine 1		
Temperature (°F)	49.97	This stream is the exit stream from power
Pressure (psia)	50	recovery turbine. Exit pressure has
Flow rate (Ib·mol/h)	26,340.22	been selected to avoid release of CO ₂
CO ₂ (mole fraction)	0.1940	and H_2S while allowing some recovery of work of pressurization. The change in temperature over the turbine is estimated from change in enthalpy, which is taken to be equal to flow work.
Stream 40: Flash gas	40.57	CO and II C are released from the
Pressure (psia)	49.57	dvcol solvent in the slump tank. This
Flow rate (b:mol/b)	415.04	stream is compressed and recycled to the
CO_2 (mole fraction)	0.2463	absorber to decrease the losses of valuable gases like H_2 and CO.
Stream 41: Rich alveel to		
high-pressure flash tank 1		
Temperature (°F)	49.57	The CO ₂ from the rich glycol solvent is
Pressure (psia)	50	released in stages.
Flow rate (Ib·mol/h)	25,925.17	
CO ₂ (mole fraction)	0.1932	
Stream 42: CO ₂ -rich flash gas from		
Temperature (°F)	34 81	In first stage, the gases are flashed to
Pressure (psia)	25	a pressure of 25 psia. The amount of
Flow rate (lb·mol/h)	3,855.91	CO ₂ remaining in the solvent
CO ₂ (mole fraction)	0.9742	depends on pressure, and the CO_2 released is calculated by mass balance.

TABLE 6.7 (Cont.)

Stream and Characteristics	Data	Comments on Stream Calculations
Stream 43: Glycol solvent from high-pressure flash tank Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction)	34.81 25 22,069.26 0.0567	 -
Stream 44: CO ₂ -rich flash gas from intermediate-pressure flash tank Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) CO ₂ (mole fraction)	31.33 14.70 878.66 0.9976	The amount of CO_2 in solvent and released as gas is calculated as in stream 42. Sufficient residence is provided for the gases to separate from solvent. This determines tank volume.
Stream 45: Glycol solvent from intermediate-pressure flash tank Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction)	31.33 14.7 21,190.60 0.0177	
Stream 46: CO_2 -rich flash gas from low-pressure flash tank Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO_2 (mole fraction)	30.68 4.0 164.22 0.9906	Glycol solvent is flashed to a pressure of 4 psia to remove as much CO_2 as possible. The lower residual amount of CO_2 in lean glycol solvent reduces the circulation rate of solvent.
Stream 47: Lean glycol solvent from low-pressure flash tank Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction)	30.68 4.0 21,026.38 .0101	

TABLE 6.7 (Cont.)

Stream and Characteristics	Data	Comments on Stream Calculations	
Stream 48: Lean glycol solvent after circulation pump Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction)	31.83 150 21,026.38 0.0101	 83 The lean solvent is pressurized to the 50 absorber operating pressure by using a pump. 38 The change in temperature results from work 01 of compression. The solvent is chilled before being sent to the absorber. 	
Stream 49: CO ₂ -rich product gas Temperature (°F) Pressure (psia)	32.44 25.0	Flash gases from intermediate- and low- pressure flash tanks are compressed to the	
Flow rate (Ib·mol/h) CO ₂ (mole fraction)	4,898.79 0.9790	pressure of stream 42. Streams 42, 44, and 46 are combined for further compression for pipeline.	

	Power (MW)	
Power Variable	Base Case	Fuel Cell Case
Power output Gas turbine or fuel cell Steam turbine	298.8 159.4	246.7 171.8
Internal power consumption CO ₂ recovery CO ₂ compression Solvent circulation Solvent refrigeration Others	0 0 0	-24.9 -2.9 -1.3 -0.4
Gasification system ^a Net power output	-44.7 413.5	-48.9 340.1
Energy penalty	0	73.4

TABLE 6.8 Power Output, Plant Power Use, and Net Power Output for Base Case and Case 3 Fuel Cell/ Glycol Process

^a Includes H₂S recovery system energy use.

TABLE 6.9 Sizing and Cost Estimation for Major Equipment Used for H_2S Removal in Chilled Methanol Process in Case 3

1.	Gas-Gas Heat Exchanger for Raw Gas Cooling	į	
	$\Omega = 1$ oad (Btu/b)	103 571	
	G = Load (Diam) The - Inlet temperature of hot fluid (°E)	104 55	
	The - milet temperature of bet fluid (1)	104.00	
	Pressure of het rease (reis)	-10	
	Pressure of hot gases (psia)	450	
	I ca = Inlet temperature of cold fluid (°F)	-29.9	
	I cb = Outlet temperature of cold fluid (°F)	84.50	
	Delta T1	20.045	
	Delta T2	20	
	Log mean temperature difference (°F)	20	
	Overall heat transfer coefficient (Btu/h/ft ² /°F)	5	
	Heat transfer area (ft ²)	1,038	
	Operating pressure (psia)	275	
	Pressure factor	1. 1 65	
	Materials correction factor	1	
	Module factor	32	
1	(includes all of the supporting equipment and connections and installation)	0.2	
	Purchased cost of boot exchanger in 1987	¢22.000	
	(mild steel construction, shall and tube floating bood)	φ 2 3,000	
	(mind steel construction, shell and tube libating head)	000	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of heat exchanger in 1995		\$100,187
	h) with H. S. Loop Eucl. Coo		
	b) with Π_2 5-Lean rule Gas	0.000.000	
	Q = Load (Biu/n)	8,036,992	
	I na = Inlet temperature of not fluid (°F)	104.55	
	Thb = Outlet temperature of hot fluid (°F)	-34	
	Pressure of hot gases (psia)	456	
	Tca = Inlet temperature of cold fluid (°F)	-70	
	Tcb = Outlet temperature of cold fluid (°F)	80	
	Delta T1	24.545	
	Delta T2	36	
	Log mean temperature difference (°F)	30	
	Overall heat transfer coefficient (Btu/h/ft²/°F)	5	
	Heat transfer area (ft ²)	53,888	
	Operating pressure (psia)	275	
	Pressure factor	1.165	
	Materials correction factor	1	
	Module factor	32	,
	(includes all of the supporting equipment and connections and installation)	0.2	
	Purchased cost of heat exchanger in 1987	\$350.000	
	(mild steel construction, shall and tube fleating head)	<i>4000,000</i>	
	CE index for process equipment in 1007	200	
	OE index for process equipment in 1987	320	
	Le index for process equipment in 1995	3/3.9	
	Installed cost of heat exchanger in 1995		51.524.5//

TABLE 6.9 (Cont.)

2.	H ₂ S Absorption Column		
	Diameter of tower (ft)	7	
	HETP (ft)	3	
	Number of theoretical stages	15	
	Absorber tower height (ft)	49	
	(4 ft for inlet, outlet and gas, and liquid distributions)		
	Volume of packing (ft ³)	1,733	
	Pressure factor	2.6	
	Cost per foot of column height	\$950	
	(mild steel construction)	• -	
	Materials correction factor	1	
	Module factor	4.16	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of absorber in 1995	0,0.0	\$588 291
	Cost of packing per cubic foot	\$63.5	\$000,201
	(2 in, pall rings-metal)	\$00.0	
	Total cost of packing		\$110,014
3.	H2S Stripping Column		
•	Diameter of tower (ft)	25	
	HETP (ft)	2.0	
	Number of theoretical stages	17	
	Absorber tower height (ft)	55	
	(4 ft for inlet, outlet and gas, and liquid distributions)	55	
	Volume of packing (ft ³)	250	
	Pressure factor	1	
	Cost per ft of column height	\$500	
	(mild steel construction)	4000	
	Module factor	4 16	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of absorber in 1995	070.0	\$133 660
	Cost of packing per cubic foot	\$63.5	ψ103,009
	(2-in, pall rings-metal)	400.0	
	Total cost of packing		\$15,903

TABLE 6.9 (Cont.)

4.	Flash Drum 1		
	Methanol flow rate (lb/h)	123,450	
	Density of methanol (lb/gal)	6.55	
	Residence time (s)	180	
	Slump tank volume (gal)	942	. "
	Pressure factor	1	
	Module factor	2.08	
	Purchased cost of flash drum in 1987 (mild steel construction)	\$5,200	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of flash drum in 1995		\$12,638
5.	Recycle Compressor		
	Inlet pressure (psia)	300	
	Outlet pressure (psia)	456	
	Compressor size (hp)	72	
	Purchased cost of centrifugal compressor in 1987	\$32,000	
	(includes electric motor drive and gear reducer)		
	Size factor	1	
	Module factor	2.6	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of compressor in 1995		\$97,214
6.	Flash Drum 2		
	Methanol flow rate (lb/h)	123,450	
	Density of methanol (lb/gal)	6.55	
	Residence time (s)	180	
	Slump tank volume (gal)	942	
	Pressure factor	1	
	Module factor	2.08	
	Purchased cost of flash drum in 1987 (mild steel construction)	\$5,200	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of flash drum in 1995		\$12,638
7.	Flash Drum 3		
-----	---	----------	-----------------
	Methanol flow rate (lb/h)	123,450	
	Density of methanol (lb/gal)	6.55	
	Residence time (s)	180	
	Slump tank volume (gal)	942	
	Pressure factor	1	
	Module factor	2.08	
	Purchased cost of flash drum in 1987	\$5,200	
	(mild steel construction)		
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of flash drum in 1995		\$12,638
8.	Flash Gas Compressor 1		
	Inlet pressure (psia)	20.00	
	Outlet pressure (psia)	150.00	
	Compressor size (hp)	57	
	Purchased cost of centrifugal compressor in 1987	\$27,000	
	(includes electric motor drive and gear reducer)		
	Size factor	1	
	Module factor	2.6	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of compressor in 1995		\$82,024
9.	Flash Gas Compressor 2		
	Inlet pressure (psia)	14.70	
	Outlet pressure (psia)	150.00	
	Compressor size (hp)	154	
	Purchased cost of centrifugal compressor in 1987	\$60,000	
	(includes electric motor drive and gear reducer)		
	Size factor	1	
	Module factor	2.6	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of compressor in 1995		\$182,276
10.	Solvent Circulation Pump		
	Horse power	115	
	Size exponent	1	
	Purchased cost of pump in 1987	\$12,000	
	(includes motor, coupling, base; cast iron, horizontal)		
	Module factor	1.5	
	CE index for process equipment in 1987	320	
	Le index for process equipment in 1995	373.9	601 000
	Installed Cost of Solvent pump in 1995		⇒∠1,U3 ∠

11.	Lean-Rich Solvent Heat Exchanger		
	Q = Load (Btu/h)	12,184,945	
	Tha = Inlet temperature of hot fluid (°F)	153	
	Thb = Outlet temperature of hot fluid (°F)	-10	
	Pressure of hot gases (psia)	20	
	Tca = Inlet temperature of cold fluid (°F)	`- 3 4	
	Tcb = Outlet temperature of cold fluid (°F)	129	
	Delta T1	24	
	Delta T2	24	
	Log mean temperature difference (°F)	24	
	Overall heat transfer coefficient (Btu/h/ft²/°F)	150	
	Heat transfer area (ft ²)		
	Operating pressure (psia)	3,391	
	Pressure factor	456	
	Materials correction factor	1.175	
	Module factor	3.2	
	(includes all of the supporting equipment and connections and installation)		
	Purchased cost of heat exchanger in 1987	\$54,000	
	(mild steel construction, shell and tube floating head)		
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of heat exchanger in 1995		\$237,240
12.	Solvent Refrigeration		
	Refrigeration (tons)	2,235	
	Purchased cost in 1987	\$750,000	
	Temperature correction factor	3.5	
	Module factor	1.46	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of solvent refrigeration in 1995		\$4,478,037
	Total Direct Cost		\$7,608,378
	Total Direct Cost for Three Trains		\$22,825,134

TABLE 6.10 Sizing and Cost Estimation for Major Equipment Used for Fuel Cell System in Case 3

1.	Fuel Gas Expansion Turbine		
	Turbine size (hp)	2,296	
	Purchased cost in 1979	\$1,607,439	
	Module factor	1.00	
	CE index for process equipment in 1979	\$256	
	CE index for process equipment in 1995	373.9	
	Installed cost of turbine in 1995		\$2,347,740
2.	Heat Exchanger 1		
	Q = Load (Btu/h)	35,343,035	
	Tha = Inlet temperature of hot fluid (°F)	667.23	
	Thb = Outlet temperature of hot fluid (°F)	100	
	Pressure of hot gases (psia)	15	
	Tca = Inlet temperature of cold fluid (°F)	32.4	
	Tcb = Outlet temperature of cold fluid (°F)	600.00	
	Delta T1	67.2315	
	Delta T2	68	
	Log mean temperature difference (°F)	67	
	Overall heat transfer coefficient (Btu/h/ft ² /°F)	5	
	Heat transfer area (ft ²)	104,882	
	Operating pressure (psia)	145.00	
	Pressure factor	1.16	
	Materials correction factor	1	
	Module factor	3.2	
	(includes all of the supporting equipment and connections and installation)		
	Purchased cost of heat exchanger in 1987	\$524,411	
	(This steel construction, shell and tube librating field)	000	
	CE index for process equipment in 1967	320	
	Le index for process equipment in 1995	373.9	00 074 400
	Installed cost of heat exchanger in 1995		\$2,274,498

З.	Heat Exchanger 2		
	Q = Load (Btu/h)	239,973,908	
	Tha = Inlet temperature of hot fluid ($^{\circ}F$)	1300.00	
	Thb = Outlet temperature of hot fluid ($^{\circ}F$)	450	
	Pressure of hot gases (psia)	150	
	Tca = Inlet temperature of cold fluid (°F)	356.8	
	Tcb = Outlet temperature of cold fluid (°F)	775.00	
	Delta T1	525	
	Delta T2	93	
	Log mean temperature difference (°F)	250	
	Overall heat transfer coefficient (Btu/h/ft ² /°F)	30	
	Heat transfer area (ft ²)	32.019	
	Operating pressure (psia)	146.96	
	Pressure factor	1 165	
	Materials correction factor	1	
	Module factor	32	
	(includes all of the supporting equipment and connections	0.2	
	and installation)		
	Purchased cost of heat exchanger in 1987	\$250,000	
	(mild steel construction, shell and tube floating head)	φ200,000	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of heat exchanger in 1995	070.0	\$1 088 984
	installed obst of field exchanger in food		01,000,004
4.	Heat Exchanger 3		
	Q = Load (Btu/h)	224,212,870	
	Tha = Inlet temperature of hot fluid (°F)	1411.87	
	Thb = Outlet temperature of hot fluid (°F)	980	
	Pressure of hot gases (psia)	150	
	Tca = Inlet temperature of cold fluid (°F)	356.8	
	Tcb = Outlet temperature of cold fluid ($^{\circ}$ F)	356.77	
	Delta T1	1055.102336	
	Delta T2	624	
	Log mean temperature difference (°F)	820	
	Overall heat transfer coefficient (Btu/h/ft ² /°F)	30	
	Heat transfer area (ft ²)	9,109	
	Operating pressure (psia)	146.96	
	Pressure factor	1.165	
	Materials correction factor	1	
	Module factor	3.2	
	(includes all of the supporting equipment and connections		
	and installation)		,
	Purchased cost of heat exchanger in 1987	\$100,000	
	r arenaeea eeer er near exenanger in reer		
	(mild steel construction, shell and tube floating head)	· · · · · · · · · · · · · · · · · · ·	
	(mild steel construction, shell and tube floating head) CE index for process equipment in 1987	320	
	(mild steel construction, shell and tube floating head) CE index for process equipment in 1987 CE index for process equipment in 1995	320 373.9	

5.	Heat Exchanger 4		
	Q = Load (Btu/h)	89,614,102	
	Tha = Inlet temperature of hot fluid (°F)	667.23	
	Thb = Outlet temperature of hot fluid ($^{\circ}$ F)	400	
	Pressure of hot gases (psia)	15	
	Tca = Inlet temperature of cold fluid (°F)	356.8	
	Tcb = Outlet temperature of cold fluid (°F)	356.79	
	Delta T1	310.4448363	
	Delta T2	43	
	Log mean temperature difference (°E)	136	
	Overall heat transfer coefficient (Btu/h/ft ² /°F)	30	
	Heat transfer area (ft ²)	22 038	
	Operating pressure (neia)	146.96	
	Pressure factor	1 165	
	Materials correction factor	1	
	Module factor	30	
	(includes all of the supporting equipment and connections	0.2	
	and installation)		
	Purchased cost of heat exchanger in 1987	\$180,000	
	(mild steel construction, shell and tube floating head)	\$100,000	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of heat exchanger in 1995	070.0	\$784,068
			<i></i>
6.	Heat Exchanger 5		
	Q = Load (Btu/h)	310,699,095	
	Tha = Inlet temperature of hot fluid (°F)	450.00	
	Thb = Outlet temperature of hot fluid (°F)	150	
	Pressure of hot gases (psia)	150	
	Tca = Inlet temperature of cold fluid (°F)	121.4	
	Tcb = Outlet temperature of cold fluid (°F)	356.77	
	Delta T1	93.23133627	
	Delta T2	29	
	Log mean temperature difference (°F)	55	
	Overall heat transfer coefficient (Btu/h/ft²/°F)	30	
	Heat transfer area (ft ²)	189,274	
	Operating pressure (psia)	146.96	
	Pressure factor	1.165	
	Materials correction factor	. 1	
	Module factor	3.2	
	(includes all of the supporting equipment and connections and installation)		
	Purchased cost of heat exchanger in 1987	\$946,369	
	(mild steel construction, shell and tube floating head)	<i>40.000</i>	
	(industry		
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1987 CE index for process equipment in 1995	320 373.9	

7.	Refrigeration Refrigeration (tons) Purchased cost in 1987 Temperature correction factor Module factor CE index for process equipment in 1987 CE index for process equipment in 1995	2,324 700,000 1.46 320 373.9	
	Installed cost of solvent refrigeration in 1995		\$1,194,143
8.	Cathode Exhaust Gas Expansion Turbine		
	Turbine size (hp)	104,234	
	Purchased cost in 1987	\$10,435,839	
	Module factor	1.00	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of turbine in 1995	,	\$12,193,625
9.	Air Compressor for Fuel Cell		
	Inlet pressure (psia)	14.70	
	Outlet pressure (psia)	150.00	
	Compressor size (MW)	225	
	Purchased cost in 1987	\$24,446,768	
	Module factor	1.00	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost air compressor in 1995		\$28,564,520
10.	Steam Turbine		
	Turbine output (MW)	172	

The cost of steam turbine is already included in the base case.

11.	Condenser		
	Q = Load (Btu/h)	420,802,598	
	Tha = Inlet temperature of hot fluid ($^{\circ}$ F)	121.36	•
	Thb = Outlet temperature of hot fluid (°F)	121	
	Pressure of hot gases (psia)	2	
	Tca = Inlet temperature of cold fluid (°F)	70.0	
	Tcb = Outlet temperature of cold fluid (°F)	100.00	
	Delta T1	21.35924367	
	Delta T2	51	
	Log mean temperature difference (°F)	34	
	Overall heat transfer coefficient (Btu/h/ft ² /°F)	500	
	Heat transfer area (ft ²)	24,613	
	Operating pressure (psia)	146.96	
	Pressure factor	1.165	
	Materials correction factor	1	
	Module factor	3.2	
	(includes all of the supporting equipment and connections		
	and installation)		
	Purchased cost of heat exchanger in 1987	\$200,000	
	(mild steel construction, shell and tube floating head)		
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of heat exchanger in 1995		\$871,187
12.	Pump		
	Horsepower	110	
	Size exponent	1	
	Purchased cost of pump in 1987	\$12,000	
	(includes motor, coupling, base; cast iron, horizontal)	· ·	
	Module factor	1.5	
	CE index in 1987	320	
	CE index in 1995	373.9	
	Installed cost of solvent pump in 1995		\$21,032
13.	Fuel Cell Stack		
	Fuel cell power output (kW)	77.952	
	Unit cost per kilowatt	\$180	
	Total cost	÷	\$14,031.388
			+ · · · · · · · · · · · · · · · · · · ·

14.	Fuel Cell Invertor Unit cost per kilowatt Total cost	\$100	\$7,795,216
15.	Fuel Cell Controls Unit cost per kilowatt Total cost	\$140	\$10,913,302
16.	Fuel Cell and Components Assembly Unit cost per kilowatt Total cost	\$110	\$8,574,737
	Total Direct Cost		\$95,212,358
	Total Direct Cost for Three Trains		\$285,637,074

TABLE 6.11 Sizing and Cost Estimation for Major Equipment Used for CO₂ Removal in Glycol Process in Case 3

1.	Gas-Gas Heat Exchanger		
	Q = Load (Btu/h)	1,559,898	
	Tha = Inlet temperature of hot fluid ($^{\circ}$ F)	70.00	
	Thb = Outlet temperature of hot fluid (°F)	55	
	Pressure of hot gases (psia)	150.00	
	Tca = Inlet temperature of cold fluid (°F)	30.00	
	Tcb = Outlet temperature of cold fluid (°F)	56.14	
	Delta T1	13.8564	
	Delta T2	25	
	Log mean temperature difference (°F)	19	
	Overall heat transfer coefficient (Btu/h/ft²/°F)	5	
	Heat transfer area (ft ²)	16,521	
	Operating pressure (psia)	150.00	
	Pressure factor	1.16	
	Materials correction factor	1	
	Module factor	3.2	
	(includes all of the supporting equipment and connections and installation)		
	Purchased cost of heat exchanger in 1987	\$160,000	
	(mild steel construction, shell and tube floating head)		
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1993	360.4	
	Installed cost of heat exchanger in 1993		\$693,958
2.	CO ₂ Absorption Column		
	Diameter of tower (ft)	16	
	HETP (ft)	` 3	
	Number of theoretical stages	12	
	Absorber tower height (ft)	40	
	(4 ft for inlet, outlet and gas, and liquid distributions)		
	Volume of packing (ft ³)	7,241	
	Pressure factor	1	•
	Cost per foot of column height (mild steel construction)	\$1,400	
	Materials correction factor	1	
	Module factor	4.16	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1993	360.4	
	Installed cost of absorber in 1993		\$272,199
	Cost of packing per cubic foot	\$63.5	·
	Total cost of packing		\$459.813

З.	Power Recovery Turbine 1		
	Turbine size (hp)	451	
	Purchased cost in 1979	\$180,000	
	Module factor	1	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1993	360.4	
	Installed cost of solvent pump in 1993		\$210,319
4.	Slump Tank		
	Glycol flow rate (lb/h)	5,824,796	
	Density of glycol (lb/gal)	8.6	
	Residence time (s)	180	
	Slump tank volume (gal)	33,865	
	Pressure factor	1.38	
	Materials correction factor	1	
	Module factor	2.08	
	Purchased cost of slump tank in 1987	\$65,000	
	(Initial Steel Construction)	220	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	300.4	¢010 000
	Installed cost of slump tank in 1993		\$218,002
5.	Recycle Compressor		
	Inlet pressure (psia)	50	
	Outlet pressure (psia)	150.00	
	Compressor size (hp)	259	
	Purchased cost of centrifugal compressor in 1987 (includes electric motor drive and gear reducer)	\$95,000	
	Size factor	1	
	Materials correction factor	1	
	Module factor	2.6	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1993	360.4	
	Installed cost of compressor in 1993		\$288,604

6.	Flash Tank 1		
	Glycol flow rate (lb/h)	5,824,796	
	Density of glycol (lb/gal)	8.6	
	Residence time (s)	180	
	Slump tank volume (gal)	33,865	
	Pressure factor	1	
	Materials correction factor	1	
	Module factor	2.08	
	Purchased cost of slump tank in 1987	\$65,000	
	(mild steel construction)		
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1993	360.4	
	Installed cost of slump tank in 1993		\$157,973
7.	Flash Tank 2		
	Glycol flow rate (lb/h)	5,824,796	
	Density of glycol (lb/gal)	8.6	
	Residence time (s)	180	
	Slump tank volume (gal)	33,865	
	Pressure factor	1	
	Materials correction factor	1	
	Module factor	2.08	
	Purchased cost of slump tank in 1987 (mild steel construction)	\$65,000	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1993	360.4	
	Installed cost of slump tank in 1993		\$157,973
8.	Flash Tank 3		
	Glycol flow rate (lb/h)	5,824,796	
	Density of glycol (lb/gal)	8.6	
	Residence time (s)	180	
	Slump tank volume (gal)	33,865	
	Pressure factor	1	
	Materials correction factor	1	
	Module factor	2.08	
	Purchased cost of slump tank in 1987	\$65,000	
	(mild steel construction)		
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1993	360.4	
	Installed cost of slump tank in 1993		\$157,973

9.	Solvent Circulation Pump		i -
•••	Horsepower	1,282	
	Size exponent	0.79	
	Purchased cost of 300-hp pump in 1987	\$30,000	
	(includes motor coupling base cast iron horizontal)	400,000	
	Module factor	15	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1987	360 4	
	Installed east of activant nump in 1002	300.4	\$165 601
	Installed cost of solvent pump in 1995		\$105,051
10.	Compressor 1 for CO ₂		
	Inlet pressure (psia)	14.70	
	Outlet pressure (psia)	50.00	
	Compressor size (hp)	600.41	
	Purchased cost of centrifugal compressor in 1987	\$85.000	
	(includes electric motor drive and gear reducer)	\$55,555	
	Size factor	1	
	Materials correction factor	. 1	
	Module factor	26	
	CE index for process equipment in 1987	2.0	
	CE index for process equipment in 1997	360.4	
	Installed cost of compressor in 1993	500.4	\$258 225
	installed cost of compressor in 1995		Ψ230,223
11.	Compressor 2 for CO ₂		
	Inlet pressure (psia)	4.00	
	Outlet pressure (psia)	50.00	
	Compressor size (hp)	120.54	
	Purchased cost of centrifugal compressor in 1987	\$50.000	
	(includes electric motor drive and gear reducer)		
	Size factor	1	
	Materials correction factor	1	
	Module factor	2.6	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1993	360.4	
	Installed cost of compressor in 1993		\$151,897
		·	<i><i><i>t</i> · · · · ,<i>o</i> · <i>.</i></i></i>
12.	Solvent Refrigeration		
	Refrigeration (tons)	434.53	
	Purchased cost in 1987	\$230,000	
	Temperature correction factor	1.25	
	Module factor	1.46	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1993	360.4	<i>i</i> .
	Installed cost of solvent refrigeration in 1993		\$490,452

13.	CO ₂ Product Gas Compressors		
	Compressor 1 (hp)	2,913.98	
	Compressor 2 (hp)	2,913.98	
	Compressor 3 (hp)	2,913.98	
	Purchased cost of centrifugal compressor 1 in 1987	\$750,000	
	Purchased cost of centrifugal compressor 2 in 1987	\$750,000	
	Purchased cost of centrifugal compressor 3 in 1987	\$750,000	
	(includes electric motor drive and gear reducer)		
	Size factor	1	
	Module factor	2.6	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1993	360.4	
	Installed cost of compressor 1 in 1993		2,278,453
	Installed cost of compressor 2 in 1993		2,278,453
	Installed cost of compressor 3 in 1993		2,278,453
	Total Direct Cost		\$10,518,378
	Total Direct Cost for Three Trains		\$31,555,133

7 Case 4 — Fuel Cell Topping Cycle and Membrane CO₂ Recovery

Material and energy balances have been developed in this section for the application of an internal reforming molten carbonate fuel cell as the topping cycle for an IGCC plant. The CO_2 from the fuel cell exhaust is recovered by membrane separation. The analysis is very similar to that presented in Section 6, except the glycol-based absorption system is replaced with a membrane system.

7.1 Design Basis

Figure 7.1 provides an overview of the of the IGCC system, including the gasifier, gas treatment, the fuel cell, and the steam cycle. This system is identical to that represented in Figure 6.1 and is reproduced here for convenience. The overall design of the fuel cell is determined by the gasifier capacity and synthesis gas composition. These are assumed to be the same as in the base case, which has no CO₂ recovery. The fuel cell has very low tolerance for contaminants, including particulates and sulfur compounds. To achieve the required level of H₂S removal, a chilled methanol system has been employed rather than the glycol system used in the gas turbine cases. The chilled methanol system is designed to reduce the sulfur species (H₂S and COS) concentration to less than 1 ppmv. The reactions in the fuel cell anode shift the synthesis gas to a hydrogen-rich gas with a high concentration of CO₂ and reduce the resultant hydrogen with carbonate ion. Oxidation of the carbonate at the anode releases CO₂ and two electrons. The CO₂-rich anode exhaust is treated in a membrane recovery system to separate most of the CO₂. Thermal energy released by cooling this anode exhaust provides heat for the steam bottoming cycle. An expansion turbine is used on the cathode exhaust to extract energy.

Table 7.1 is a summary of principal material flows for the base case and for this design option. The CO_2 reduction accomplished at the power plant is 89% and is accompanied by a 24% reduction in net electrical output from the base case, which uses a gas turbine and no CO_2 recovery. A full accounting of the net CO_2 reduction would include CO_2 released in the generation of replacement power; mining, coal, and reagent preparation; and materials transport.

7.2 Chilled Methanol Process for H₂S Recovery

The design of the chilled methanol system is the same as that described for Case 3. It is required to provide adequate H_2S removal to meet fuel cell requirements. See Figure 6.2 and Tables 6.2 and 6.3 for details.

FIGURE 7.1 Block Diagram of the IGCC System with CO2 Recovery Used in Cases 3 and 4

Material Flow (tons/d)	Base Case	Case 4
Coal (prepared)	3,845	3,845
Oxygen	2,347	2,347
Solid waste	492	492
Sulfur	78	78
CO ₂ (power plant only)	9210	993
SO ₂ (power plant only)	1.08	6.92
Net power output (MW)	413.5	313.77

TABLE 7.1 Material Flows for Oxygen-Blown Base Case and Case 4

7.3 Molten Carbonate Fuel Cell System

The molten carbonate fuel cell system with the membrane for CO_2 recovery is virtually identical to that described in section 6.3. A slight difference in stream composition following the membrane system reflects the performance difference between the two CO_2 -recovery systems. Table 7.2 is an alternate line list for Figure 6.3 detailing these differences.

7.4 Membrane System for CO₂ Recovery

Figure 7.2 is an overall flow diagram of a membrane CO_2 -recovery system. It is similar to the membrane system described in Section 5. Table 7.3 is a line list corresponding to Figure 7.2. Stream descriptions and associated assumptions are provided in Table 7.4.

7.5 Fuel Cell, Steam Cycle, and Plant Performance

Use of the fuel cell topping cycle with methanol-based H_2S recovery and membrane CO_2 recovery results in a net plant output of 314 MW, 24% less than in the base case plant without CO_2 recovery. Table 7.5 lists the topping cycle output, steam cycle output, and internal plant consumption for the base case (no CO_2 recovery) and for the current case, Case 4. The most significant losses are the consumption of power for CO_2 compression and power required for permeate compression between membrane stages.

7.6 Economics

Details of the capital investment estimates for the H_2S recovery system, the fuel cell system, and the CO₂ recovery system are presented in Tables 6.9, 7.6, and 7.7, respectively. A summary of capital costs, including indirect capital investment, operating, and maintenance costs, is provided in Section 9.

Stream Data	Stream 12	Stream 13	Stream 14	Stream 15	Stream 16	Stream 17
Description of stream	Gases to membrane process	Gases from membrane process	Gases from heat exchanger 1	Air to compressor	Air from compressor	Gases from burner
Gases (Ib·mol/h)						
co`´	1,812.26	1,539.74	1,539.74	0.00	0.00	0.00
CO ₂	8,724.66	4,180.59	4,180.59	0.00	0.00	5,720.33
Ho	1,693.50	1,692.69	1,692.69	0.00	0.00	0.00
H ₂ O	135.79	24.61	24.61	0.00	0.00	1,717.29
Na	36.44	35.82	35.82	44,039.07	44,039.07	44,074.89
Ar	72.73	62.12	62.12	541.05	541.05	603.17
CH₄	0.00	0.00	0.00	0.00	0.00	0.00
NH ₃	0.00	0.00	0.00	0.00	0.00	0.00
H₂S	0.00	0.00	0.00	0.00	0.00	0.00
HCN	0.00	0.00	0.00	0.00	0.00	0.00
02	0.00	0.00	0.00	11.779.07	11,779.07	10,162.86
COS	0.00	0.00	0.00	0.00	0.00	0.00
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	12,475.38	7,535.57	7,535.57	56,359.19	56,359.19	62,278.54
Liquids (lb·mol/h)						
H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°F)	150.00	154.88	600.00	81.00	713.05	1,355.19
Pressure (psia)	150.00	140.00	140.00	14.70	150.00	150.00
Enthalpy of stream (Btu/h) (reference, 32°F)	12,463,567	7,542,911	37,780,990	18,972,575	274,226,598	676,482,506

TABLE 7.2 Stream Flows of Molten Carbonate Fuel Cell System in Case 4

TABLE 7.2 (Cont.)

Stream Data	Stream 18	Stream 19	Stream 20	Stream 21	Stream 22	Stream 23
Description of stream	Gases from heat exchanger 3	Fuel cell cathode exhaust	Gases from expansion turbine	Gases from splitter to heat exchanger 1	Gases from heat exchanger 1	Gases from splitter to heat exchanger 4
Gases (Ib·mol/h)						
co	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂	5,720.33	461.70	461.70	75.84	75.84	385.85
H_2^-	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ O	1,717.29	1,717.29	1,717.29	282.10	282.10	1,435.19
N ₂	44,074.89	44,074.89	44,074.89	7,240.25	7,240.25	36,834.64
Ar	603.17	603.17	603.17	99.08	99.08	504.08
CH4	0.00	0.00	0.00	0.00	0.00	0.00
NH ₃	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ S	0.00	0.00	0.00	0.00	0.00	0.00
HCN	0.00	0.00	0.00	0.00	0.00	0.00
O ₂	10,162.86	7,533.54	7,533.54	1,237.55	1,237.55	6,295.99
COS	0.00	0.00	0.00	0.00	0.00	0.00
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	62,278.54	54,390.59	54,390.59	8,934.82	8,934.82	45,455.75
Liquids (Ib·mol/h)					``````````````````````````````````````	
H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00
Temperature (°F)	980.33	1,300.00	667.24	667.24	200.00	667.24
Pressure (psia)	150.00	150.00	14.70	14.70	14.70	14.70
Enthalpy of stream (Btu/h) (reference, 32°F)	482,489,027	546,065,398	281,008,417	46,161,714	15,923,634	234,846,704

TABLE 7.2 (Cont.)

Stream Data	Stream 24	Stream 25	Stream 26	Stream 27	Stream 28	Stream 29
Description of stream	Gases from heat exchanger 4	Water from condenser	Water from pump	Steam from heat exchanger 5	Steam from heat exchanger 4	Steam from heat exchanger 3
Gases (lb⋅mol/h)	- 					
со	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂	385.85	0.00	0.00	0.00	0.00	0.00
H ₂	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ O	1,435.19	0.00	0.00	10,270.88	15,985.92	28,434.17
N ₂	36,834.64	0.00	0.00	0.00	0.00	0.00
Ar	504.08	0.00	0.00	0.00	0.00	0.00
CH₄	0.00	0.00	0.00	0.00	0.00	0.00
NH ₃	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ S	0.00	0.00	0.00	0.00	0.00	0.00
HCN	0.00	0.00	0.00	0.00	0.00	0.00
02	6,295.99	0.00	0.00	0.00	0.00	0.00
cos	0.00	0.00	0.00	0.00	0.00	0.00
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	45,455.75	0.00	0.00	10,270.88	15,985.92	28,434.17
Liquids (lb·mol/h)						
H ₂ O	0.00	22,923.59	34,923.59	24,652.71	18,937.68	6,489.42
Temperature (°F)	400.00	121.36	121.36	356.77	356.79	356.77
Pressure (psia)	14.70	1.76	146.96	146.96	146.96	146.96
Enthalpy of stream (Btu/h) (reference, 32°F)	145,783,678	36,915,818	56,173,167	366,812,595	455,875,619	649,869,098

TABLE 7.2 (Cont.)

Stream Data	Stream 30	Stream 31	Stream 32	Stream 33	Stream 34A	Stream 34B	Stream 34C
Description of stream	Steam from heat exchanger 2	Steam for heating feed to fuel cell	Steam to steam turbine	Steam turbine exhaust	Makeup water to pump	Makeup water to pump	Makeup water to pump
Gases (lb⋅mol/h)							
ço	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ O	34,923.59	12,000.00	22,923.59	21,596.52	0.00	0.00	0.00
N ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ar	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CH₄	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NH3	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ S	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HCN	0.00	0.00	0.00	0.00	0.00	0.00	0.00
02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
cos	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total gas flow	34,923.59	12,000.00	22,923.59	21,596.52	0.00	0.00	0.00
Liquids (lb·mol/h)							
H ₂ O	0.00	0.00	0.00	1,327.07	13,443.34	12,000.00	1,443.34
Temperature (°F)	775.00	775.00	775.00	121.36	150.00	150.00	150.00
Pressure (psia)	146.96	146.96	146.96	1.76	146.96	146.96	146.96
Enthalpy of stream (Btu/h) (reference, 32°F)	889,843,009	305,756,514	584,086,495	435,269,723	28,553,650	25,488,000	3,065,650

FIGURE 7.2 Flow Diagram of Membrane Process for CO₂ Removal in Case 4

Stream Data	Stream 12	Stream 13	Stream 35	Stream 36	Stream 37	Stream 38	
Description of stream	Feed gas from fuel cell system	H ₂ -rich gas to fuel cell	To 1st-stage membrane	1st-stage retentate	1st-stage permeate	Gases from compressor	
Gases (Ib·mol/h)		· · · · · ·					
со	1,812.26	1,539.74	2,042.34	1,296.30	746.04	746.04	
CO ₂	8,724.66	4,180.59	9,349.34	2,831.36	6,517.98	6,517.98	
H ₂	1,693.50	1,692.69	1,946.43	1,906.70	39.72	39.72	
H ₂ O	135.79	24.61	139.47	14.94	124.53	124.53	
N ₂	36.44	35.82	41.79	36.72	5.07	5.07	
Ar	72.73	62.12	82.01	52.51	29.50	29.50	
CH₄	0.00	0.00	0.00	0.00	0.00	0.00	
NH ₃	0.00	0.00	0.00	0.00	0.00	0.00	
H ₂ Š	0.00	0.00	0.00	0.00	0.00	0.00	
HCN	0.00	0.00	0.00	0.00	0.00	0.00	
O ₂	0.00	0.00	0.00	0.00	0.00	0.00	
cos	0.00	0.00	0.00	0.00	0.00	0.00	
SO ₂	0.00	0.00	0.00	0.00	0.00	0.00	
Total gas flow	12,475.38	7,535.57	13,601.38	6,138.53	7,462.84	7,462.84	
Liquids (lb⋅mol/h)	0.00	0.00	0.00	0.00	0.00	0.00	
Temperature (°F)	150.00	154.88	128.70	128.70	128.70	472.66	
Pressure (psia)	150.00	140.00	150.00	140.00	25.00	150.00	
Enthalpy of stream (Btu/h) (reference, 32°F)	12,462,913	7,542,574	11,053,736	4,694,179	6,359,557	31,178,763	

TABLE 7.3 Stream Flows of Membrane Process for CO_2 Removal in Case 4

TABLE 7.3 (Cont.)

Stream Data	Stream 39	Stream 40	Stream 41	Stream 42	Stream 43
Description of stream	Gases to 2nd- stage membrane	2nd-stage retentate	CO ₂ -rich product gas	Recycle gases to compressor	Recycle gases from compressor
Gases (Ib·mol/h)					
co	746.04	473.52	272.52	230.08	230.08
CO ₂	6,517.98	1,973.91	4,544.07	624.69	624.69
H_2^{-}	39.72	38.91	0.81	252.93	252.93
H ₂ O	124.53	13.34	111.18	3.68	3.68
N_2	5.07	4.46	0.62	5.35	5.35
Ar	29.50	18.89	10.61	9.28	9.28
CH4	0.00	0.00	0.00	0.00	0.00
NH ₃	0.00	0.00	0.00	0.00	0.00
H ₂ S	0.00	0.00	0.00	0.00	0.00
HCN	0.00	0.00	0.00	0.00	0.00
O ₂	0.00	0.00	0.00	0.00	0.00
cos	0.00	0.00	0.00	0.00	0.00
SO ₂	0.00	0.00	0.00	0.00	0.00
Total gas flow	7,462.84	2,523.03	4,939.81	1,126.01	1,126.01
Liquids (lb⋅mol/h)	0.00	0.00	0.00	0.00	0.00
Temperature (°F)	212.00	212.00	212.00	154.88	167.34
Pressure (psia)	150.00	140.00	25.00	140.00	150.00
Enthalpy of stream (Btu/h) (reference, 32°F)	12,062,267	3,975,443	8,086,823	1,127,051	1,243,809

Stream and Characteristics	Data	Comments on Stream Calculations
Stream 12: CO ₂ -rich gas from fuel cell section Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction)	150 150 12,475.38 0.6994	The synthesis gas is cleaned in two stages. First, sulfur compounds are removed by chilled methanol. This is the sulfur-free system.
Stream 35: Feed gas to 1st-stage membrane system Temperature (°F) Pressure (psia) Flow rate (lb-mol/h) CO ₂ (mole fraction)	128.70 150 13,601.38 0.6874	The sulfur-free gas is mixed with the recycle from the 2nd-stage retentate and fed to the 1st-stage membranes.
Stream 36: Retentate from 1st-stage membrane system Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) CO ₂ (mole fraction)	128.70 140 6,138.53 0.4612	The composition of this stream depends on the permeability and selectivity of the membranes. The membrane system is a facilitated membrane that has a higher selectivity and permeability for CO_2 than for H ₂ . The ratio of permeate to retentate CO_2 selectivity is 2.3 times for a pressure drop of 125 psia.
Stream 37: Permeate from 1st-stage membrane system Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction)	128.70 25 7,462.84 0.8734	The composition of this stream is calculated by mass balance around the membrane.
Stream 38: Gases from compressor Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction)	472.66 150 7,462.84 0.8734	The permeate from the 1st-stage membrane is at a pressure of 25 psia. These gases are again compressed to a pressure of 150 psia for the 2nd-stage membrane.

TABLE 7.4 Descriptions of Streams of Membrane Process for CO₂ Removal in Case 4

TABLE 7.4 (Cont.)

Stream and Characteristics	Data	Comments on Stream Calculations
Stream 39: Gases from heat exchanger Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction)	212 150 7,462.84 0.8734	The temperature of the gases rises because of the compression. Therefore, this stream is cooled to a temperature of 212°F, suitable for the membrane system.
Stream 40: Retentate of 2nd-stage membrane system Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction)	212 140 2,523.03 0.7824	The composition of this stream is calculated on the basis of the selectivity and permeability of gases, as is done for stream 36. The ratio of permeate to retentate CO_2 selectivity is 2.3 for a pressure drop of 125 psia.
Stream 41: Permeate of 2nd-stage membrane system Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) CO ₂ (mole fraction)	212 25 4,939.81 0.9199	The composition of this stream is calculated on the basis of the mass balance around the membrane. This is the CO ₂ -rich stream for disposal.
Stream 13: Fuel gas to gas turbines Temperature (°F) Pressure (psia) Flow rate (lb·mol/h) CO ₂ (mole fraction)	154.88 140 7,535.57 0.5548	H ₂ -rich retentate from 1st stage (stream 36) and that from 2nd stage (stream 40) are mixed. Part of mixture is taken as fuel gas for gas turbines.
Stream 42: Recycle to 1st-stage membrane system Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) CO ₂ (mole fraction)	154.88 140 1,126.01 0.5548	Part of the retentate from stream 36 and part from stream 40 are recycled back to the 1st-stage membrane systems to increase the CO ₂ removal efficiency.
Stream 43: Recycle to 1st-stage membrane after compression Temperature (°F) Pressure (psia) Flow rate (Ib·mol/h) CO ₂ (mole fraction)	167.34 150 1,126.01 0.5548	The recycle from the retentate is at a pressure of 150 psia and is compressed to the inlet pressure of the 1st membrane.

	Power (MW)		
Power Variable	Base Case	Fuel Cell Case	
Power output			
Gas turbine or fuel cell	298.8	247.4	
Steam turbine	159.4	165.8	
Internal power consumption CO ₂ recovery			
CO ₂ compression	0	28.7	
Solvent circulation	0	0	
Solvent refrigeration	0	0	
Others	0	-21.8	
Gasification system ^a	-44.7	-48.9	
Net power output	413.5	313.8	
Energy penalty	0	99.7	

TABLE 7.5 Power Output, Plant Power Use, and Net Power Output for Base Case and Case 4 Fuel Cell/ Membrane Process

^a Includes H_2S recovery system energy use.

TABLE 7.6 Sizing and Cost Estimation for Major Equipment Used for Fuel Cell System in Case 4

1.	Fuel Gas Expansion Turbine		
••	Turbine size (hp)	2.296	
i.	Purchased cost in 1979	\$1.607.439	
	Module factor	1.00	
	CE index for process equipment in 1979	\$256	
	CE index for process equipment in 1995	373.9	
	Installed cost of turbine in 1995	070.0	\$2 347 740
			φ <u>2</u> ,041,740
2.	Heat Exchanger 1		~
	Q = Load (Btu/h)	30,238,080	
	Tha = Inlet temperature of hot fluid (°F)	667.24	
	Thb = Outlet temperature of hot fluid (°F)	200	
	Pressure of hot gases (psia)	15	
	Tca = Inlet temperature of cold fluid (°F)	154.9	
	Tcb = Outlet temperature of cold fluid (°F)	600.00	
	Delta T1	67.2395	
	Delta T2	45	
	Log mean temperature difference (°F)	55	
	Overall heat transfer coefficient (Btu/h/ft²/°F)	5	
	Heat transfer area (ft ²)	109,077	
	Operating pressure (psia)	150.00	
	Pressure factor	1.16	
	Materials correction factor	1	
	Module factor	3.2	
	(includes all of the supporting equipment and connections and installation)		
	Purchased cost of heat exchanger in 1987 (mild steel construction, shell and tube floating head)	\$545,385	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of heat exchanger in 1995		\$2,365,464

3.	Heat Exchanger 2		
	Q = Load (Btu/h)	239,973,908	
	Tha = Inlet temperature of hot fluid (°F)	1300.00	
	Thb = Outlet temperature of hot fluid ($^{\circ}F$)	450	
	Pressure of hot gases (psia)	150	
	Tca = Inlet temperature of cold fluid ($^{\circ}$ F)	356.8	
	Tcb = Outlet temperature of cold fluid ($^{\circ}$ F)	775.00	
	Delta T1	525	
	Delta T2	93	
	Log mean temperature difference (°F)	250	
	Overall heat transfer coefficient (Btu/h/ft ² /°F)	30	
	Heat transfer area (ft ²)	32.019	
	Operating pressure (psia)	146.96	
	Pressure factor	1.165	
	Materials correction factor	1	
	Module factor	3.2	
	(includes all of the supporting equipment and connections	0.2	
	and installation)		
	Purchased cost of heat exchanger in 1987	\$250,000	
	(mild steel construction, shell and tube floating head)	\$200,000	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of heat exchanger in 1995		\$1.088.984
			.,
4.	Heat Exchanger 3		
	Q = Load (Btu/h)	193,993,479	
	Tha = Inlet temperature of hot fluid (°F)	1355.19	
	Thb = Outlet temperature of hot fluid (°F)	980	
	Pressure of hot gases (psia)	150	
	r resoure of not guess (point)	100	
	Tca = Inlet temperature of cold fluid (°F)	356.8	
	Tca = Inlet temperature of cold fluid (°F) Tcb = Outlet temperature of cold fluid (°F)	356.8 356.77	
	Tca = Inlet temperature of cold fluid (°F) Tcb = Outlet temperature of cold fluid (°F) Delta T1	356.8 356.77 998.4229363	
	Tca = Inlet temperature of cold fluid (°F) Tcb = Outlet temperature of cold fluid (°F) Delta T1 Delta T2	356.8 356.77 998.4229363 624	
	Tca = Inlet temperature of cold fluid (°F) Tcb = Outlet temperature of cold fluid (°F) Delta T1 Delta T2 Log mean temperature difference (°F)	356.8 356.77 998.4229363 624 796	
	Tca = Inlet temperature of cold fluid (°F) Tcb = Outlet temperature of cold fluid (°F) Delta T1 Delta T2 Log mean temperature difference (°F) Overall heat transfer coefficient (Btu/h/ft ² /°F)	356.8 356.77 998.4229363 624 796 30	
	Tca = Inlet temperature of cold fluid (°F) Tcb = Outlet temperature of cold fluid (°F) Delta T1 Delta T2 Log mean temperature difference (°F) Overall heat transfer coefficient (Btu/h/ft ² /°F) Heat transfer area (ft ²)	356.8 356.77 998.4229363 624 796 30 8,120	
	Tca = Inlet temperature of cold fluid (°F) Tcb = Outlet temperature of cold fluid (°F) Delta T1 Delta T2 Log mean temperature difference (°F) Overall heat transfer coefficient (Btu/h/ft ² /°F) Heat transfer area (ft ²) Operating pressure (psia)	356.8 356.77 998.4229363 624 796 30 8,120 146.96	
	Tca = Inlet temperature of cold fluid (°F) Tcb = Outlet temperature of cold fluid (°F) Delta T1 Delta T2 Log mean temperature difference (°F) Overall heat transfer coefficient (Btu/h/ft ² /°F) Heat transfer area (ft ²) Operating pressure (psia) Pressure factor	356.8 356.77 998.4229363 624 796 30 8,120 146.96 1.165	
	Tca = Inlet temperature of cold fluid (°F) Tcb = Outlet temperature of cold fluid (°F) Delta T1 Delta T2 Log mean temperature difference (°F) Overall heat transfer coefficient (Btu/h/ft²/°F) Heat transfer area (ft²) Operating pressure (psia) Pressure factor Materials correction factor	356.8 356.77 998.4229363 624 796 30 8,120 146.96 1.165	· · ·
	Tca = Inlet temperature of cold fluid (°F) Tcb = Outlet temperature of cold fluid (°F) Delta T1 Delta T2 Log mean temperature difference (°F) Overall heat transfer coefficient (Btu/h/ft²/°F) Heat transfer area (ft²) Operating pressure (psia) Pressure factor Materials correction factor Module factor	356.8 356.77 998.4229363 624 796 30 8,120 146.96 1.165 3.2	· · ·
	Tca = Inlet temperature of cold fluid (°F) Tcb = Outlet temperature of cold fluid (°F) Delta T1 Delta T2 Log mean temperature difference (°F) Overall heat transfer coefficient (Btu/h/ft ² /°F) Heat transfer area (ft ²) Operating pressure (psia) Pressure factor Materials correction factor Module factor (includes all of the supporting equipment and connections and installation)	356.8 356.77 998.4229363 624 796 30 8,120 146.96 1.165 3.2	· · ·
	Tca = Inlet temperature of cold fluid (°F) Tcb = Outlet temperature of cold fluid (°F) Delta T1 Delta T2 Log mean temperature difference (°F) Overall heat transfer coefficient (Btu/h/ft²/°F) Heat transfer area (ft²) Operating pressure (psia) Pressure factor Materials correction factor Module factor (includes all of the supporting equipment and connections and installation) Purchased cost of heat exchanger in 1987	356.8 356.77 998.4229363 624 796 30 8,120 146.96 1.165 3.2 \$95,000	· · ·
	Tca = Inlet temperature of cold fluid (°F) Tcb = Outlet temperature of cold fluid (°F) Delta T1 Delta T2 Log mean temperature difference (°F) Overall heat transfer coefficient (Btu/h/ft²/°F) Heat transfer area (ft²) Operating pressure (psia) Pressure factor Materials correction factor Module factor (includes all of the supporting equipment and connections and installation) Purchased cost of heat exchanger in 1987 (mild steel construction, shell and tube floating head)	356.8 356.77 998.4229363 624 796 30 8,120 146.96 1.165 3.2 \$95,000	
	Tca = Inlet temperature of cold fluid (°F) Tcb = Outlet temperature of cold fluid (°F) Delta T1 Delta T2 Log mean temperature difference (°F) Overall heat transfer coefficient (Btu/h/ft ² /°F) Heat transfer area (ft ²) Operating pressure (psia) Pressure factor Materials correction factor Module factor (includes all of the supporting equipment and connections and installation) Purchased cost of heat exchanger in 1987 (mild steel construction, shell and tube floating head) CE index for process equipment in 1987	356.8 356.77 998.4229363 624 796 30 8,120 146.96 1.165 3.2 \$95,000 320	
	Tca = Inlet temperature of cold fluid (°F) Tcb = Outlet temperature of cold fluid (°F) Delta T1 Delta T2 Log mean temperature difference (°F) Overall heat transfer coefficient (Btu/h/ft²/°F) Heat transfer area (ft²) Operating pressure (psia) Pressure factor Materials correction factor Module factor (includes all of the supporting equipment and connections and installation) Purchased cost of heat exchanger in 1987 (mild steel construction, shell and tube floating head) CE index for process equipment in 1987 CE index for process equipment in 1995	356.8 356.77 998.4229363 624 796 30 8,120 146.96 1.165 3.2 \$95,000 320 373.9	

5.	Heat Exchanger 4	~~~~~~	
	Q = Load (Btu/h)	89,063,026	
	Tha = Inlet temperature of not fluid (°F)	007.24	
	The = Outlet temperature of hot huld ("F)	400	
	Pressure of not gases (psia)	15	
	T ca = Inlet temperature of cold fluid (°F)	350.8	
	I cb = Outlet temperature of cold fluid (°F)	356.79	
		310.4528363	
		43	
	Log mean temperature difference (°F)	136	
		30	
	Heat transfer area (11-)	21,903	
	Operating pressure (psia)	146.96	
	Pressure factor	1.165	
	Materials correction factor	1	
	Module factor	3.2	
	(includes all of the supporting equipment and connections and installation)		
	Purchased cost of heat exchanger in 1987	\$180,000	
	(mild steel construction, shell and tube floating head)		
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of heat exchanger in 1995		\$784,068
6.	Heat Exchanger 5		
	Q = Load (Btu/h)	310,639,429	
	Tha = Inlet temperature of hot fluid (°F)	450.00	
	Thb = Outlet temperature of hot fluid (°F)	150	
	Pressure of hot gases (psia)	150	
	Tca = Inlet temperature of cold fluid (°F)	121.4	,
	Tcb = Outlet temperature of cold fluid (°F)	356.77	
	Delta T1	93.23133627	
	Delta T2	29	,
	Log mean temperature difference (°F)	55	
	Overall heat transfer coefficient (Btu/h/ft ² /°F)	30	
	Heat transfer area (ft ²)	189,208	
	Operating pressure (psia)	146.96	
	Pressure factor	1.165	
	Materials correction factor	1	
	Module factor	3.2	
	(includes all of the supporting equipment and connections and installation)		
	Purchased cost of heat exchanger in 1987	\$946,038	
	(mild steel construction, shell and tube floating head)	·	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of heat exchanger in 1995		\$4.120.882

7.	Cathode Gas Expansion Turbine		
	Turbine size (hp)	104,190	
	Purchased cost in 1987	\$10,432,285	
	(assumes that the cost of expansion turbine is same as that		
	of a compressor of similar size)		
	Module factor	1.00	
	CE index for process equipment in 1987	\$320	
	CE index for process equipment in 1995	\$374	
	Installed cost of turbine in 1995		\$12,189,473
_			
8.	Air Compressor for Fuel Cell		
	Inlet pressure (psia)	14.70	
	Outlet pressure (psia)	\$150	
	Compressor size (MW)	224.43	
	Purchased cost in 1987	\$24,374,545	
	Module factor	1.00	
	CE index for process equipment in 1987	320	
	CE index for process equipment in	1995373.9	
	Installed cost of air compressor in 1995		\$28,480,133
•			
9.		405 77	
	Turbine output (MW)	165.77	
	The cost of steam turbine is already included in base case.		
10.	Condenser		
	Q = Load (Btu/h)	398.353.905	
	Tha = Inlet temperature of hot fluid ($^{\circ}$ E)	121.36	
	Thb = Outlet temperature of hot fluid (°F)	121	
	Pressure of hot gases (psia)	2	
	Tca = Inlet temperature of cold fluid ($^{\circ}$ E)	70.0	
	Tcb = Outlet temperature of cold fluid (°F)	100.00	
	Delta T1	21 35924367	
	Delta T2	51	
	Log mean temperature difference (°E)	34	
	Overall heat transfer coefficient (Btu/h/ft ² /°E)	500	
	Heat transfer area (ft ²)	23,300	
	Operating pressure (nsia)	146.96	x
	Pressure factor	1 165	
	Materials correction factor	1.105	
	Module factor	32	
	(includes all of the supporting equipment and connections	0.2	
	and installation)		
	Purchased cost of best exchanger in 1987	\$190.000	
	(mild steel construction, shall and tube floating board)	φ130,000	
	(This steel construction, shell and tube hoating head) CE index for process equipment in 1997	220	
	CE index for process equipment in 1907	272 0	
	Installed cost of heat exchanger in 1005	313.9	\$807 609
	installed cost of fleat exchanger III 1990		9021,020

11.	Pump		
	Horsepower	106	
	Size exponent	1	
	Purchased cost in 1987	\$12,000	
	(includes motor, coupling, base:cast iron, horizontal)		
	Module factor	1.5	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of pump in 1995		\$21,035
			+=1,000
12	Fuel Cell Stack		
	Fuel cell power output (kW)	77 989	
	Linit cost per kilowatt	\$180	
	Total cost	\$100	\$14 038 020
	101210031		\$11,000,0 <u>2</u> 0
13	Fuel Cell Invertor		
10.	Unit cost per kilowatt	\$100	
	Total cost	φ100	\$7,798,900
			4. ,. 00,000
14.	Fuel Cell Controls		
	Unit cost per kilowatt	\$140	
	Total cost	\$110	\$10,918,460
			<i>•••••••••••••••••••••••••••••••••••••</i>
15.	Fuei Ceil and Component Assembly		
	Unit cost per kilowatt	\$110	
	Total cost	<i>Q</i> (1.0)	\$8,578,790
			<i>vvvvvvvvvvvvv</i>
	Total Direct Cost		\$93,973,387
			÷••,•• •,••
	Total Direct Cost for Three Trains		\$281,920,162

TABLE 7.7 Sizing and Cost Estimation for Major Equipment Used for CO_2 Removal in Membrane Process in Case 4

1.	First-Stage Membranes		
	Membrane area (ft ²)	2,346,506	
	Unit cost of membrane	\$13.00	
	Total cost		\$30,504,579
			- , •
2.	Second-Stage Membranes		
	Membrane area (ft ²)	1,287,497	
	Unit cost of membrane	\$13.00	
	Total cost		\$16,737,465
3.	Compressor between First and Second Stages		
	Inlet pressure (psia)	25.00	
	Outlet pressure (psia)	150.00	
	Compressor size (hp)	9,747	
	Purchased cost of reciprocating compressor in 1987	\$1,600,000	
	(includes electric motor drive and gear reducer)		
	Size factor for compressor	1	
	Materials correction factor	1	
	Module factor	2.6	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of compressor in 1995		\$4,860,700
4.	Recycle Compressor		
	Inlet pressure (psia)	140.00	
	Outlet pressure (psia)	150.00	
	Compressor size (hp)	46	
	Purchased cost of reciprocating compressor in 1987	\$38,000	
	(includes electric motor drive and gear reducer)		
	Size factor for compressor	1	
	Materials correction factor	1	
	Module factor	2.6	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of compressor in 1995		\$115,442

5.	Heat Exchanger after Compressor		
	Q = Load (Btu/h)	19,116,496	
	Tha = Inlet temperature of hot fluid ($^{\circ}$ F)	472.66	
	Thb = Outlet temperature of hot fluid ($^{\circ}$ F)	212	
	Pressure of hot gases (psia)	150	
	Tca = Inlet temperature of cold fluid (°F)	70.00	
	Tcb = Outlet temperature of cold fluid (°F)	150.00	
	Delta T1	322.66	
	Delta T2	142	
	Log mean temperature difference (°F)	220	
	Overall heat transfer coefficient (Btu/h/ft²/°F)	30	
	Heat transfer area (ft ²)	2,895	
	Operating pressure (psia)	445	
	Pressure factor	1.08	
	Materials correction factor	1	
	Module factor	3.2	
	(includes all of the supporting equipment and connections		
	and installation)	*	
	Purchased cost of heat exchanger in 1987	\$50,000	
	(mild steel construction; shell and tube floating head)		
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of heat exchanger in 1995		\$201,906
6.	CO ₂ Product Gas Compressors		
	Compressor 1 (hp)	4,276	
	Compressor 2 (hp)	4,276	
	Compressor 3 (hp)	4,276	
	Purchased cost of centrifugal compressor 1 in 1987	\$900,000	
	Purchased cost of centrifugal compressor 2 in 1987	\$900,000	
	Purchased cost of centrifugal compressor 3 in 1987	\$900,000	
	(includes electric motor drive and gear reducer)		
	Size factor for compressor	1	
	Module factor	2.6	
	CE index for process equipment in 1987	320	
	CE index for process equipment in 1995	373.9	
	Installed cost of Compressor 1 in 1995		\$2,734,144
	Installed cost of Compressor 2 in 1995		\$2,734,144
	Installed cost of Compressor 3 in 1995		\$2,734,144
	Total Direct Cost		\$162,204,286
	Total Direct Cost for Three Trains		\$486,612,859

ī

8 CO₂ Pipeline Transport and Sequestering

8.1 Pipeline Transport of CO₂

Once the CO₂ has been recovered from the fuel-gas stream, its transportation, utilization, and disposal remain significant issues. In a previous study for METC (Doctor et al. 1994), the issues associated with the transport and sequestering of CO₂ were considered in greater detail; that information serves as the basis for this work. The CO₂ represents a large-volume, relatively low-value by-product that cannot be sequestered in the same way as most coal-utilization wastes (i.e., by landfilling). Large volumes of recovered CO₂ are likely to be moved by pipeline, and if sequestering were required, new pipelines would likely need to be constructed. In some cases, existing pipelines could be used, perhaps in a shared mode with other products. Costs for pipeline construction and use vary greatly on a regional basis within the United States. The recovered CO₂ represents more than 3 million normal cubic meters per day of gas volume. It is assumed that the transport and sequestering process releases approximately 2% of the recovered CO₂.

8.2 CO₂ Sequestering

Proposals have been made to dispose of CO_2 in the ocean depths. However, many questions of engineering and ecological concern associated with such options remain unanswered, and the earliest likely reservoir is a land-based geological repository (Hangebrauck 1992). A portion of the CO_2 can be used for enhanced oil recovery, which sequesters a portion of the CO_2 , or the CO_2 can be completely sequestered in depleted gas/oil reservoirs and nonpotable aquifers. Both the availability of these zones and the technical and economic limits to their use need to be better characterized. Levelized costs were prepared; they take into account that the power required for compression will rise throughout the life cycle of these sequestering reservoirs. The first reservoirs to be used will, in fact, be capable of accepting all IGCC CO_2 gas for a 30-year period without requiring any additional compression costs for operation. The pipeline transport and sequestering process represents approximately 26 mills/kWh for the CO_2 -recovery cases.

9 Conclusions — Energy Cycle/Economic Comparisons

9.1 Energy Consumption and CO₂ Emissions

An adjustment of 9.7% between the oxygen-blown and air-blown KRW IGCC cases was needed to make the coal feed rates match. A second minor adjustment was required because the design basis coal was different for these two sets of studies. Efficiencies calculated previously were matched, while the CO_2 emission rates for the air-blown cases decreased slightly by 4.2%.

Data on energy consumption and CO_2 emissions for all seven cases appear in Tables 9.1-9.7. The IGCC power plant performance and emission factors within traditional battery limits have been bounded to clarify what in the net energy cycle falls outside the plant battery. The most significant contributor to the net CO_2 emissions for the CO_2 -recovery cases is the makeup power to match the base case performance.

9.2 Capital Costs for KRW Integrated Gasification Combined-Cycle Power Generation

Capital costs for each of the IGCC power plants appear in Tables 9.8-9.13. For convenience in comparison, the O_2 -blown and air-blown cases are next to each other. The large cost difference between these two systems for the coal preparation system is a consequence of the fact that the air-blown system employs the sulfator section off-gases for coal drying. The O_2 -blown case requires an air-separation system and compression. Here the air-blown case is lower in cost as a consequence of needing only compression. From this section of the plant forward, the O_2 -blown case shows lower costs for comparable plant subsystems as a consequence of the reduced gas volumes being handled.

Whenever a standard turn-key package system was part of the design, a zero percent contingency was taken. In addition, throughout the study, the Handy-Whitman Index was employed to bring all capital estimates to a fourth quarter of 1994 dollar basis. The plant cost for the O₂-blown base case comes to 1,332/kW; for the air-blown case, it is slightly lower, at 1,253/kW. For the optimal O₂-blown CO₂-recovery case, this cost increases to 1,687/kW, while for the optimal air-blown CO₂-recovery case, this cost rises to 1,773/kW.

9.3 Costs of Electricity

The costs of electricity appear in Tables 9.14-9.20. Following this, Table 9.21 summarizes the major costs for each of the combined-cycle cases. For the air-blown cases, the cost of limestone and the cost of ash disposal have been adjusted to typical values as given by the TAG study (EPRI 1993). A comparison of the cost of electricity for the CO₂-release base cases found the cost of the air-blown IGCC case to be 58.29 mills/kWh and the cost of the O₂-blown IGCC case to be 56.86 mills/kWh. There was no clear advantage for the optimal cases employing glycol CO₂ recovery; the cost of the air-blown IGCC was 95.48 mills/kWh, and the cost of the O₂-blown case was slightly lower, at 94.55 mills/kWh.

TABLE 9.1 Energy Consumption and CO_2 Emissions for Oxygen-Blown Base Case: KRW IGCC with No CO_2 Recovery

	Electricity	CO2 release
Mining and Transport	MW	kg/h
Raw Coal in Mine	-2.36	2,356
Coal Rail Transport	-0.05	523
Subtotal	-2.41	2,879
IGCC Power Plant		
Coal Preparation	-0.85	0
Gasifier Island	-36.82	6,153
Power Island	-7.02	320,387
Subtotal	-44.70	326,540
Power - Gas Turbine	298.80	
Power - Steam Turbine	159.40	
GROSS Power	458.20	
NET Power	413.50	
Pipeline/Sequester	0.00	0
Energy Cycle Power Use	-47.11	
NET Energy Cycle	411.09	329,419
CO2 emission rate/net cycle	0.801	kg CO2/kWh
Power use/CO2 in reservoir	N/A	kWh/kg CO2
TABLE 9.2 Energy Consumption and CO_2 Emissions for Air-Blown Base Case: KRW IGCC with No CO_2 Recovery

	Electricity	CO2 release	
Mining and Transport	MW	kg/h	
Raw Coal in Mine	-2.36	2,356	
Coal Rail Transport	-0.05	523	
Limestone Mining	-0.25	250	
Limestone Rail Tansport	-0.02	156	
Subtotal	-2.67	3,286	
IGCC Power Plant			
Coal/Limestone Preparation	-3.49	11,374	
Gasifier Island	-20.12	137	
Power Island	-10.58	315,029	
Subtotal	-34.19	326,540	
Power - Gas Turbine	302.66		
Power - Steam Turbine	176.97		
GROSS Power	479.63		
NET Power	445.44		
	0.00		
ripeline/Sequester	0.00	0	
Energy Cycle Power Use	-36.87		
NET Energy Cycle	442.76	329,825	
CO2 emission rate/net cycle	0.745	kg CO2/kW	
Power use/CO2 in reservoir	N/A	kWh/kg CO	

- h
- 2

TABLE 9.3 Energy Consumption and CO_2 Emissions for Case 1: Oxygen-Blown KRW IGCC with Glycol CO_2 and H₂S Recovery and Gas Turbine Topping Cycle

	Electricity	CO2 release	
Mining and Transport	MW	kg/h	
Raw Coal in Mine	-2.36	2,356	
Coal Rail Transport	-0.05	523	
Subtotal	-2.41	2,879	
IGCC Power Plant			
Coal Preparation	-0.85	0	
Gasifier Island	-36.82	6,153	
Power Island	-7.02	320,387	
Glycol Circulation	-5.80	-260,055	
Glycol Refrigeration	-4.50		
Power Recovery Turbines	3.40		
CO2 Compression (to 2100psi)	-17.30		
Subtotal	-68.90	66,485	
Power - Gas Turbine	284.80		
Power - Steam Turbine	161.60		
GROSS Power	446.40		
NET Power	377.50		
Pipeline/Sequester			
Pipeline CO2		260,055	
Pipeline booster stations	-1.64	1,637	
Geological reservoir (2% loss)	0.00	-254,854	
Subtotal	-1.64	6,839	
Energy Cycle Power Use	-72.95		
NET Energy Cycle	373.45	76,202	
Derating from O2-Base Case	37.64		
Make-up Power	37.64	37,637	
TOTAL	411.09	113,840	
CO2 emission rate/net cycle	0.277	kg CO2/kWh	
Power use/CO2 in reservoir	0.148	kWh/kg CO2	

TABLE 9.4 Energy Consumption and CO_2 Emissions for Case 2: Oxygen-Blown KRW IGCC with Membrane CO_2 Recovery, Glycol H₂S Recovery, and Gas Turbine Topping Cycle

	Electricity	CO2 release	
Mining and Transport	MW	kg/h	
Raw Coal in Mine	-2.36	2,356	
Coal Rail Transport	-0.05 52		
Subtotal	-2.41	2,879	
IGCC Power Plant			
Coal Preparation	-0.85		
Gasifier Island	-36.82	6,153	
Power Island	-7.02	320,387	
Glycol Circulation	-0.90	-232,505	
Glycol Refrigeration	-3.00		
Membrane Compression	-19.00		
CO2 Compression (to 2100psi)	-20.00		
Subtotal	-87.60	94,034	
Power - Gas Turbine	262.80		
Power - Steam Turbine	154.80		
GROSS Power	417.60		
NET Power	330.00		
Pipeline/Sequester			
Pipeline CO2		232,505	
Pipeline booster stations	-1.46	5 1,464	
Geological reservoir (2% loss)	0.00) -227,855	
Subtotal	-1.46	6,114	
Energy Cycle Power Use	-91.47	,	
NET Energy Cycle	326.13	3 103,028	
Derating from O2-Base Case	84.90	5	
Make-up Power	84.96	5 84,964	
TOTAL	411.09	187,992	
CO2 emission rate/net cycle	0.45	7 kg CO2/kWh	
Power use/CO2 in reservoir	0.37.	3 kWh/kg CO2	

TABLE 9.5 Energy Consumption and CO_2 Emissions for Case 3: Oxygen-Blown KRW IGCC with Glycol CO_2 Recovery, Methanol H₂S Recovery, and Fuel Cell Topping Cycle

	Electricity	CO2 release
Mining and Transport	MW	kg/h
Raw Coal in Mine	-2.36	2,356
Coal Rail Transport	-0.05	523
Subtotal	-2.41	2,879
IGCC Power Plant		
Coal Preparation	-0.85	
Gasifier Island	-36.82	6,153
Power Island	-11.24	320,387
CO2 Recovery	-4.54	-260,055
CO2 Compression (to 2100psi)	-24.93	
Subtotal	-78.39	66,485
Power - Gas Turbine	246.70	-
Power - Steam Turbine	171.80	
GROSS Power	418.50	
NET Power	340.11	
Dinalina/Saguastar		
Pipeline CO2		260.055
Pipeline booster stations	-1.64	1 637
Geological reservoir (2% loss)	0.00	-254 854
Subtotal	-1.64	6,839
Encome Cuelo Devuer Lies	80 AA	
Energy Cycle Power Use	-82.44	76 303
NET Energy Cycle	330.00	70,202
Defailing from O2-blown Base Case	75.03	75.020
Make-up Power	/5.03	151 222
IOTAL	411.09	151,232
CO2 emission rate/net cycle	0.368	kg CO2/kWh
CO2 Sequestering power use	75.03	MW
Power use/CO2 in reservoir	0.294	kWh/kg CO2

TABLE 9.6 Energy Consumption and CO₂ Emissions for Case 4: Oxygen-Blown KRW IGCC with Membrane CO₂ Recovery, Methanol H₂S Recovery, and Fuel Cell Topping Cycle

	Electricity	CO2 release	
Mining and Transport	MW	kg/h	
Raw Coal in Mine	-2.36	2,356	
Coal Rail Transport	-0.05	523	
Subtotal	-2.41	2,879	
IGCC Power Plant			
Coal Preparation	-0.85		
Gasifier Island	-36.82	6,153	
Power Island	-11.22	320,387	
CO2 Recovery	-21.80	-272,137	
CO2 Compression (to 2100psi)	-28.70		
Subtotal	-99.40	54,403	
Power - Fuel Cells	247.40		
Power - Steam Turbine	165.80		
GROSS Power	413.20		
NET Power	313.80		
Pineline/Sequester			
Pipeline CO2		272 137	
Pipeline booster stations	-1 71	1 713	
Geological reservoir (2% loss)	0.00	-266 694	
Subtotal	-1.71	7,156	
Energy Cycle Power Use	-103.52		
NET Energy Cycle	309.68	64.438	
Derating from O2-blown Base Case	101.41	- ,	
Make-up Power	101.41	101,413	
TOTAL	411.09	165,852	
CO2 emission rate/net cycle	0.403	kg CO2/kWh	
CO2 Sequestering power use	101.41	MW	
Power use/CO2 in reservoir	0.380	kWh/kg CO2	

TABLE 9.7 Energy Consumption and CO_2 Emissions for Optimal Air-Blown Case: KRW IGCC with Glycol CO_2 Recovery, In-Bed H₂S Recovery, and Gas Turbine Topping Cycle

	Electricity	CO2 release		
Mining and Transport	MW	kg/h		
Raw Coal in Mine	-2.36	2,356		
Coal Rail Transport	-0.05	523		
Limestone Mining	-0.25	250		
Limestone Rail Tansport	-0.02	156		
Subtotal	-2.67	3,286		
IGCC Power Plant	····			
Coal/Limestone Preparation	-3.49	11,374		
Gasifier Island	-21.11	137		
Power Island	-11.10	315,029		
CO2 Recovery	-17.21	-285,499		
CO2 Compression (to 2100psi)	-32.21			
Subtotal	-85.11	41,041		
Power - Gas Turbine	274.39			
Power - Steam Turbine	186.50			
GROSS Power	460.88			
NET Power	375.77			
Pipeline/Sequester				
Pipeline CO2		285,499		
Pipeline booster stations	-1.80	1,798		
Geological reservoir (2% loss)	0.00	-279,789		
Subtotal	-1.80	7,508		
Energy Cycle Power Use	-89.58			
NET Energy Cycle	371.30	51,834		
Derating from O2-blown Base Case	39.79			
Make-up Power	39.79	39,794		
TOTAL	411.09	91,628		
CO2 emission rate/net cycle	0.223	kg CO2/kWh		
CO2 Sequestering power use	39.79	MW		
Power use/CO2 in reservoir	0.142 kWh/kg CO2			

TABLE 9.8 Capital Costs for Air-Blown and Oxygen-Blown Base Cases with No CO_2 Recovery

		KRW O2-Blown		KRW Air-Blown
		Base Case		Base Case
·		413.50 MW		445.44 MW
System	cont.*	Capital Cost, \$K	cont.*	Capital Cost, \$K
Direct Costs				
Coal Handling & Preparation	0.0%	\$8,339	0.0%	\$18,208
Limestone Handling & Prep.			0.0%	\$10,388
Air-Separation Plant/Comprs.	0.0%	\$66,249	0.0%	\$10,099
Gasification	20.0%	\$99,714	20.0%	\$118,866
Fines and Ash Handling	15.0%	\$2,650	15.0%	\$6,628
Acid Gas Treatment (H2S)	10.0%	\$12,286	10.0%	\$37,902
Sulfur Recovery (Claus)	0.0%	\$6,777		
Tail-Gas Treatment (SCOT)	0.0%	\$6,116		
Sour-water Stripping	10.0%	\$4,408		
Wastewater Treatment	30.0%	\$5,116		
Gas Turbine System	5.0%	\$77,837	5.0%	S80,654
HRSG System	5.0%	\$25,808	5.0%	\$28,407
Steam Turbine System	0.0%	\$47,900	0.0%	\$52,722
Sub-total	ł	\$363,199		\$363,873
Indirect Costs				
General Facilities	10.5%	\$38,136	10.5%	\$38,207
Engineering Fees	8.0%	\$29,056	8.0%	S29,110
Process Contingency	7.9%	\$28,727	9.3%	\$34,011
Project Contingency	20.0%	\$91,823	20.0%	\$93,040
Sub-total	1	\$187,742		\$194,367
Total Plant Cost-TPC		\$550,941		\$558,241
Cost(\$/kW-net output)		\$1,332		\$1,253
Interest & Inflation (AFUDC)**	20.5%	\$112,943	20.5%	\$114,439
Total Plant Investment-TPI		\$663,884		\$672,680
Royalties	0.6%	\$2,179	0.6%	\$2,183
Initial Inventory	3.3%	\$11,986	3.3%	\$12,008
Start-up Costs	4.6%	\$16,707	4.6%	\$16,738
Spare Parts	2.2%	\$7,990	2.2%	\$8,005
Working Capital	3.3%	\$11,986	3.3%	\$12,008
TOTAL		\$714,731		\$723,622

TABLE 9.9 Capital Costs for Case 1: Oxygen-Blown KRW IGCC with Glycol CO₂ and H₂S Recovery and Gas Turbine Topping Cycle

		Net Power
		Case #1
		_377.5 MW
System	cont.*	Capital Cost, \$K
Direct Costs		
Coal Handling & Preparation	0.0%	\$8,339
Air-Separation Plant/Comprs.	0.0%	\$66,249
Gasification	20.0%	\$99,714
Fines and Ash Handling	15.0%	\$2,650
Glycol (H2S)	10.0%	\$17,756
Sulfur Recovery (Claus)	0.0%	\$6,777
Tail-Gas Treatment (SCOT)	0.0%	S6,116
Sour-water Stripping	10.0%	\$4,408
Shift System	10.0%	\$21,571
Glycol (CO2 Recovery)	10.0%	\$28,597
Wastewater Treatment	30.0%	\$5,116
Gas Turbine System	5.0%	\$77,837
HRSG System	5.0%	\$25,808
Steam Turbine System	0.0%	\$47,900
Sub-total		\$418,838
Indirect Costs		
General Facilities	10.5%	\$43,978
Engineering Fees	8.0%	\$33,507
Process Contingency	8.2%	\$34,291
Project Contingency	20.0%	\$106,123
Sub-total		\$217,898
Total Plant Cost-TPC		\$636,737
Cost(\$/kW-net output)		\$1,687
Interest & Inflation (AFUDC)**	20.5%	\$130,531
Total Plant Investment-TPI		\$767,268
Royalties	0.6%	\$2,513
Initial Inventory	3.3%	\$13,822
Start-up Costs	4.6%	\$19,267
Spare Parts	2.2%	\$9,214
Working Capital	3.3%	\$13,822
TOTAL		\$825,905

TABLE 9.10 Capital Costs for Case 2: Oxygen-Blown KRW IGCC with Membrane CO_2 Recovery, Glycol H₂S Recovery, and Gas Turbine Topping Cycle

		Net Power
	l	Case #2
		330.0 MW
System	cont.*	Capital Cost, \$K
Direct Costs		,
Coal Handling & Preparation	0.0%	\$8,339
Air-Separation Plant/Comprs.	0.0%	\$66,249
Gasification	20.0%	\$99,714
Fines and Ash Handling	15.0%	\$2,650
Glycol (H2S)	10.0%	\$17,756
Sulfur Recovery (Claus)	0.0%	\$6,777
Tail-Gas Treatment (SCOT)	0.0%	\$6,116
Sour-water Stripping	10.0%	\$4,408
Shift System	10.0%	\$19,980
Membrane (CO2 Recovery)	10.0%	\$110,448
Wastewater Treatment	30.0%	\$5,116
Gas Turbine System	5.0%	\$77,837
HRSG System	5.0%	\$25,808
Steam Turbine System	0.0%	\$47,900
Sub-total		\$499,097
Indirect Costs	1	
General Facilities	10.5%	\$52,405
Engineering Fees	8.0%	\$39,928
Process Contingency	8.5%	\$42,316
Project Contingency	20.0%	\$126,749
Sub-total		\$261,399
Total Plant Cost-TPC		\$760,496
Cost(\$/kW-net output)		\$2.305
Interest & Inflation (AFUDC)**	20.5%	\$155,902
Total Plant Investment-TPI		\$916,397
Royalties	0.6%	\$2,995
Initial Inventory	3.3%	\$16,470
Start-up Costs	4.6%	\$22,958
Spare Parts	2.2%	\$10,980
Working Capital	3.3%	\$16,470
TOTAL	l	\$986,271

TABLE 9.11 Capital Costs for Case 3: Oxygen-Blown KRW IGCC with Glycol CO₂ Recovery, Methanol H₂S Recovery, and Fuel Cell Topping Cycle

		Net Power
		Case #3
		340.11 MW
System	cont.*	Capital Cost, \$K
Direct Costs		
Coal Handling & Preparation	0.0%	\$8,339
Air-Separation Plant/Comprs.	0.0%	\$66,249
Gasification	20.0%	\$99,714
Fines and Ash Handling	15.0%	\$2,650
Chilled Methanol (H2S)	10.0%	\$22,825
Sulfur Recovery (Claus)	0.0%	\$6,777
Tail-Gas Treatment (SCOT)	0.0%	\$6,116
Sour-water Stripping	10.0%	\$4,408
Glycol (CO2 Recovery)	10.0%	\$31,555
Wastewater Treatment	30.0%	\$5,116
Molten Carbonate Fuel Cells	15.0%	\$285,637
Steam Turbine System	0.0%	\$47,900
Sub-total		\$587,286
Indirect Costs		
General Facilities	10.5%	\$61,665
Engineering Fees	8.0%	\$46,983
Process Contingency	12.0%	\$70,599
Project Contingency	20.0%	\$153,307
Sub-total		\$332,554
Total Plant Cost-TPC		\$919,840
Cost(\$/kW-net output)		\$2,705
Interest & Inflation (AFUDC)**	20.5%	\$188,567
Total Plant Investment-TPI		\$1,108,407
Royalties	0.6%	\$3,524
Initial Inventory	3.3%	\$19,380
Start-up Costs	4.6%	\$27,015
Spare Parts	2.2%	\$12,920
Working Capital	3.3%	\$19,380
TOTAL		\$1,190,627

TABLE 9.12 Capital Costs for Case 4: Oxygen-Blown KRW IGCC with Membrane CO_2 Recovery, Methanol H₂S Recovery, and Fuel Cell Topping Cycle

		Net Power
		Case #4
		313.77 MW
System	cont.*	Capital Cost, \$K
Direct Costs		
Coal Handling & Preparation	0.0%	\$8,339
Air-Separation Plant/Comprs.	0.0%	\$66,249
Gasification	20.0%	\$99,714
Fines and Ash Handling	15.0%	\$2,650
Chilled Methanol (H2S)	10.0%	\$22,825
Sulfur Recovery (Claus)	0.0%	\$6,777
Tail-Gas Treatment (SCOT)	0.0%	\$6,116
Sour-water Stripping	10.0%	\$4,408
CO2 Recovery - Membrane	10.0%	\$181,868
Wastewater Treatment	30.0%	\$5,116
Molten Carbonate Fuel Cells	15.0%	\$281,920
Steam Turbine System	0.0%	\$47,900
Sub-tota	I]	\$733,882
Indirect Costs		
General Facilities	10.5%	\$77,058
Engineering Fees	8.0%	\$58,711
Process Contingency	11.6%	\$85,073
Project Contingency	20.0%	\$190,945
Sub-tota	1	\$411,786
Total Plant Cost-TPC		\$1,145,668
Cost(\$/kW-net output)		\$3,651
Interest & Inflation (AFUDC)**	20.5%	\$234,862
Total Plant Investment-TPI		\$1,380,529
Royalties	0.6%	\$4,403
Initial Inventory	3.3%	\$24,218
Start-up Costs	4.6%	\$33,759
Spare Parts	2.2%	\$16,145
Working Capital	3.3%	\$24,218
TOTAL		\$1,483,273

TABLE 9.13 Capital Costs for Optimal Air-Blown Case: KRW IGCC with Glycol CO_2 Recovery, In-Bed H_2S Recovery, and Gas Turbine Topping Cycle

		Net Power
		Glycol CO2
		375.77 MW
System	cont.*	Capital Cost, \$K
Direct Costs		
Coal Handling & Preparation	0.0%	\$18,208
Limestone Handling & Prep.	0.0%	\$10,388
Air-Separation Plant/Comprs.	0.0%	\$10,099
Gasification	20.0%	\$118,866
Fines and Ash Handling	15.0%	\$6,628
Glycol H2S	10.0%	\$37,902
Shift/Glycol CO2/Compression	10.0%	\$60,321
Gas Turbine System	5.0%	\$80,654
HRSG System	5.0%	\$28,407
Steam Turbine System	0.0%	\$52,722
Sub-total	l	\$424,194
Indirect Costs		
General Facilities	10.5%	\$44,540
Engineering Fees	8.0%	\$33,936
Process Contingency	9.4%	\$40,043
Project Contingency	20.0%	\$108,542
Sub-total	l	\$227,061
· · · · · · · · · · · · · · · · · · ·		
Total Plant Cost-TPC		\$651,255
Cost(\$/kW-net output)		\$1,733
Interest & Inflation (AFUDC)**	20,5%	\$133,507
Total Plant Investment-TPI		\$784,762
Royalties	0.6%	\$2,545
Initial Inventory	3.3%	\$13,998
Start-up Costs	4.6%	\$19,513
Spare Parts	2.2%	\$9,332
Working Capital	3.3%	\$13,998
TOTAL		\$844,149

	Annua	l Net Powe Net Energ	Net Power () Capacity f r Production (y-cycle Power	MW) = factor= (MW)= (MW)=	413.50 65% 2,354,469 411.09
OPERATING COSTS	Basis	Units	Unit Cost		Annual Cost
Fuel - Illinois #6 Coal (ROM) Coal - prepared	4,110 3,845	T/D T/D	\$35.00	\$/T	\$34,126,136
Consumable material Catalyst, etc. Miscellaneous					\$1,640,000 \$603,730
Ash/Sorbent Disposal	491.4	T/D	\$11.00	\$/T	\$1,282,432
Plant Labor Oper Labor (w benefits) Supervision/support	23.0 25%	men/shift of above	\$25.50	\$/h	\$5,137,198 \$1,284,300
Maintenance	2.7%	of Direct			\$9,806,370
Insurance & Local Taxes	0.9%	of Direct			\$3,268,790
Other - % of Oper Labor	12.5%	of above			\$642,150
By-Product Credit	102.1	TPD	\$30.00	S/T	(\$726,857)
Net Operating Cost					\$22,938,113
COSTS OF ELECTRICITY	Constant (\$)		Basis (KS)		Annual (KS)
Capital Charge Fuel	0.111 1.025		\$714,731 \$34,126		\$137,253
Operating & Maintenance	1.000		\$22,938		
Cost of Electricity - Levelized Capital Charge Fuel Operating & Maintenance	mills/kWh 33.70 14.86 9.74				
Total Cost of Electricity Energy-cycle Cost of Electricity	58.29 58.64		Basis (MW) Basis (MW)	413.5 411.1	

TABLE 9.14 Operating Costs for Oxygen-Blown Base Case: KRW IGCC with No CO_2 Recovery

TABLE 9.15 Operating Costs for Air-Blown Base Case: KRW IGCC with No CO_2 Recovery

			Net Power ((MW) =	445.44
			Capacity	factor=	65%
	Annu	al Net Pow	er Production	(MW)=	2,536,335
		Net Energ	gy-cycle Power	(MW)=	441.26
OPERATING COSTS	Basis	Units	Unit Cost		Annual Cost
Fuel - Illinois #6 Coal (ROM)	4109.7	T/D	\$35.00	\$/T	\$34,126,164
Coal - prepared	3,845	T/D			
Consumable material					
Limestone	1100.8	T/D	\$11.20	\$/T	\$2,925,032
Nahcolite	4.9	T/D	\$261.25	\$/T	\$301,676
Zinc Ferrite	1.1	T/D	\$6,270.00	\$/T	\$1,659,216
Miscellaneous					\$603,730
Ash/Sorbent Disposal	1248.2	T/D	\$11.00	\$/T	\$3,257,569
Plant Labor					1
Oper Labor (w benefits)	23.0	men/shift	\$25.50	\$/h	\$5,137,198
Supervision/support	25%	of above			\$1,284,300
Maintenance	2.7%	of Direct			\$9,824,580
Insurance & Local Taxes	0.9%	of Direct			\$3,274,860
Other - % of Oper Labor	12.5%	of above	- ·		\$642,150
By-Product Credit					SO
Net Operating Cost					\$28,910,311
COSTS OF ELECTRICITY					
Levelizing Factors	Constant (\$)		Basis (K\$)		Annual (K\$)
Capital Charge	0.111		\$723,622		\$144,212
Fuel	1.025		\$34,126		
Operating & Maintenance	1.000		\$28,910		
Cost of Electricity - Levelized	mills/kWh				
Capital Charge	31.67				
Fuel	13.79				
Operating & Maintenance	11.40				
Total Cost of Electricity	56.86		Basis (MW)	445.4	
Energy-cycle Cost of Electricity	57.40		Basis (MW)	441.3	

TABLE 9.16 Operating Costs for Case 1: Oxygen-Blown KRW IGCC with Glycol CO₂ and H₂S Recovery and Gas Turbine Topping Cycle

			Net Power (1	MW) =	377.50
			Capacity f	actor=	65%
	Annua	I Net Powe	er Production ((MW)=	2,149,485
		Net Energ	y-cycle Power	(MW)=	373.45
OPERATING COSTS	Basis	Units	Unit Cost		Annual Cost
Fuel - Illinois #6 Coal (ROM)	4,110	T/D	\$35.00	\$/T	\$34,126,136
Coal - prepared	3,845	T/D			
Consumable material				·	
Catalyst, etc.					\$1,895,096
Miscellaneous					\$603,730
Ash/Sorbent Disposal	491.4	T/D	\$11.00	\$/ T	\$1,282,408
Plant Labor					
Oper Labor (w benefits)	23.0	men/shift	\$25.50	\$/h	\$5,137,198
Supervision/support	25%	of above			\$1,284,300
Maintenance	2.7%	of Direct			\$11,308,637
Insurance & Local Taxes	0.9%	of Direct			\$3,769,546
Other - % of Oper Labor	12.5%	of above			\$642,150
By-Product Credit	102.1	TPD	\$30.00	S/T	(\$726,857)
Net Operating Cost					\$25,196,207
COSTS OF ELECTRICITY					
Levelizing Factors	Constant (\$)		Basis (K\$)		Annual (K\$)
Capital Charge	0.111		\$825,905		\$203,238
Fuel	1.025		\$34,126		+ <u>-</u> 00, <u>-</u> 0
Operating & Maintenance	1.000		\$25,196		
Pipeline	1.000		\$51,387		
Cost of Electricity - Levelized	mills/kWh		001,001		
Capital Charge	42 65				
Fuel	16.27				
Operating & Maintenance	11.77				
Pineline	23.91				
Total Cost of Electricity	94.55		Basis (MW)	377.5	
Energy-cycle Cost of Electricity	95.58		Basis (MW)	373.5	
			. /		

			Net Power	(MW) =	330.00
			Capacity	factor=	65%
	Annu	al Net Pow	er Production	(MW)=	1,879,020
		Net Energ	gy-cycle Power	(MW)=	295.02
OPERATING COSTS	Basis	Units	Unit Cost		Annual Cost
Fuel - Illinois #6 Coal (ROM)	4,110	T/D	\$35.00	\$/T	\$34,126,136
Coal - prepared	3,845	T/D			
Consumable material					
Catalyst, etc. Miscellaneous					\$1,895,096 \$603,730
Ash/Sorbent Disposal	491.4	T/D	\$11.00	\$/T	\$1,282,408
Plant Labor					
Oper Labor (w benefits)	23.0	men/shift	\$25.50	\$/h	\$5,137,198
Supervision/support	25%	of above			\$1,284,300
Maintenance	2.7%	of Direct			\$13,475,622
Membrane Replacement (6 yr)	16.7%	of capital			\$18,407,981
Insurance & Local Taxes	0.9%	of Direct			\$4,491,874
Other - % of Oper Labor	12.5%	of above			\$642,150
By-Product Credit	102.1	TPD	\$30.00	\$/T	(\$726,857)
Net Operating Cost					\$46,493,502
COSTS OF ELECTRICITY					
Levelizing Factors	Constant (\$)		Basis (K\$)		Annual (K\$)
Capital Charge	0.111		\$986,271		\$242,336
Fuel	1.025		\$34,126		,
Operating & Maintenance	1.000		\$46,494		
Pipeline	1.000		\$51,387		
Cost of Electricity - Levelized	mills/kWh				
Capital Charge	58.26				
Fuel	18.62				
Operating & Maintenance	24.74				
Pipeline	27.35				
Total Cost of Electricity	128.97		Basis (MW)	330.0	
Energy-cycle Cost of Electricity	144.26		Basis (MW)	295.0	

TABLE 9.17 Operating Costs for Case 2: Oxygen-Blown KRW IGCC with Membrane CO_2 Recovery, Glycol H₂S Recovery, and Gas Turbine Topping Cycle

TABLE 9.18 Operating Costs for Case 3: Oxygen-Blown KRW IGCC with Glycol CO₂ Recovery, Methanol H₂S Recovery, and Fuel Cell Topping Cycle

	Annua	l Net Powe Net Energ	Net Power () Capacity f r Production (y-cycle Power	MW) = factor= (MW)= (MW)=	340.11 65% 1,936,586 336.06
OPERATING COSTS	Basis	Units	Unit Cost	<u>`</u>	Annual Cost
Fuel - Illinois #6 Coal (ROM) Coal - prepared	4,110 3,845	T/D T/D	\$35.00	\$/T	\$34,126,136
Consumable material Catalyst, etc. Miscellaneous					\$1,895,096 \$603,730
Ash/Sorbent Disposal	491.4	T/D	\$11.00	\$/ T	\$1,282,408
Plant Labor Oper Labor (w benefits) Supervision/support Maintenance	23.0 25% 2.7%	men/shift of above of Direct	\$25.50	\$/h	\$5,137,198 \$1,284,300 \$15,856,718
Insurance & Local Taxes	0.9%	of Direct			\$5,285,573
Other - % of Oper Labor	12.5%	of above	-		\$642,150
By-Product Credit	102.1	TPD	\$30.00	\$/T	(\$726,857)
Net Operating Cost					\$31,260,315
COSTS OF ELECTRICITY Levelizing Factors Capital Charge Fuel Operating & Maintenance Pipeline Cost of Electricity - Levelized Capital Charge Fuel Operating & Maintenance Pipeline	Constant (\$) 0.111 1.025 1.000 1.000 mills/kWh 68.24 18.06 16.14 26.53		Basis (K\$) \$1,190,627 \$34,126 \$31,260 \$51,387		Annual (K\$) S249,786
Total Cost of Electricity Energy-cycle Cost of Electricity	128.98 130.54		Basis (MW) Basis (MW)	340.1 336.1	

TABLE 9.19 Operating Costs for Case 4: Oxygen-Blown KRW IGCC with Membrane CO_2 Recovery, Methanol H₂S Recovery, and Fuel Cell Topping Cycle

	Annu	al Net Powe Net Energ	Net Power (Capacity er Production (y-cycle Power	(MW) = factor= (MW)= (MW)=	313.77 65% 1,786,606 309.41
OPERATING COSTS	Basis	Units	Unit Cost		Annual Cost
Fuel - Illinois #6 Coal (ROM) Coal - prepared	4,110 3,845	T/D T/D	\$35.00	\$/T	\$34,126,136
Consumable material					×
Catalyst, etc. Miscellaneous					\$1,895,096 \$603,730
Ash/Sorbent Disposal	491.4	T/D	\$11.00	\$/T	\$1,282,408
Plant Labor Oper Labor (w benefits)	23.0	men/shift	\$25.50	\$/h	\$5,137,198
Supervision/support	25%	of above	<i>423.0</i> 0	<i>\$</i> /11	\$1,284,300
Maintenance	2.7%	of Direct			\$19,814,807
Insurance & Local Taxes	0.9%	of Direct			\$6,604,936
Other - % of Oper Labor	12.5%	of above			\$642,150
By-Product Credit	102.1	TPD	\$30.00	\$/T	(\$726,857)
Net Operating Cost					\$36,537,767
COSTS OF ELECTRICITY					
Levelizing Factors	Constant (\$)		Basis (K\$)		Annual (K\$)
Capital Charge	0.111		\$1,483,273		\$287,547
Fuel	1.025		\$34,126		
Operating & Maintenance	1.000		\$36,538		
Pipeline	1.000		\$51,387		
Cost of Electricity - Levelized	mills/kWh				
Capital Charge	92.15				
Fuel	19.58				
Operating & Maintenance	20.45				
Pipeline	28.76				
Total Cost of Electricity	160.95		Basis (MW)	313.8	
Energy-cycle Cost of Electricity	163.21		Basis (MW)	309.4	

TABLE 9.20 Operating Costs for Optimal Air-Blown Case: KRW IGCC with Glycol CO₂ Recovery, In-Bed H₂S Recovery, and Gas Turbine Topping Cycle

			Net Power (MW) =	375.77
			Capacity	factor=	65%
	Annua	l Net Powe	r Production ((MW)=	2,139,634
		Net Energ	y-cycle Power	(MW)=	371.30
OPERATING COSTS	Basis	Units	Unit Cost		Annual Cost
Fuel - Illinois #6 Coal (ROM)	4,110	Т/Д	\$35.00	\$/T	\$34,126,136
Coal - prepared	3 845	T/D	400100	<i>+</i> / -	<i>40 1,220,200</i>
coar - propuleu	5,015	1/2			
Consumable material					
Catalyst, etc.	-				\$0
Miscellaneous					\$603,730
Ash/Sorbent Disposal	491.4	T/D	\$11.00	\$/T	\$1,282,408
		·			
Plant Labor				.	
Oper Labor (w benefits)	23.0	men/shift	\$25.50	\$/h	\$5,137,198
Supervision/support	25%	of above			\$1,284,300
Maintenance	2.7%	of Direct			\$11,453,237
	0.00				¢2 017 74/
Insurance & Local Taxes	0.9%	of Direct			\$3,817,746
Other - % of Oper Labor	12.5%	of above			\$642,150
By-Product Credit	0.0	TPD	\$30.00	\$/T	\$0
Net Operating Cost					\$24,220,768
COSTS OF FLECTRICITY					
Levelizing Factors	Constant (\$)		Pasic (K\$)		Appual (K\$)
Capital Charge			5844 140		\$204 288
Capital Charge	1.025		\$24 126		5204,208
Operating & Maintenance	1.025		\$24,120		
Operating & Maintenance Dineline	1.000		\$24,221 \$51,387		
Cost of Electricity - Levelized	mille/kWb		\$51,567		
Canital Charge	A3 70				
Final	16 35				
Operating & Maintenance	11.32				
Pipeline	24.02				
Total Cost of Electricity	95.48		Basis (MW)	375.8	
Energy-cycle Cost of Electricity	96.63		Basis (MW)	371.3	

TABLE 9.21 Summary of Comparative Costs of IGCC Systems

Case Gasifier Oxidant H2S Recovery CO2 Recovery Topping Cycle Bottoming Cycle		BASE Oxygen Glycol none Turbine Steam	BASE Air In-Bed/ZnTi none Turbine Steam	Case #1 Oxygen Glycol Glycol Turbine Steam	Case #2 Oxygen Glycol Membrane Turbine Steam	Case#3 Oxygen Methanol Glycol Fuel Cell Steam	Case #4 1 Oxygen Methanol Membrane Fuel Cell Steam	ESD-24/Glycol Air In-Bed/ZnTi Glycol Turbine Steam
Component	Unit							
Base Plant Capital	\$/kW	\$1,332	\$1,253	\$1,485	\$1,703	\$2,560	\$2,746	\$1,487
CO2 Control Capital	\$/kW	\$0	\$0	\$202	\$602	\$145	\$905	\$246
Total Plant Capital	\$/kW	\$1,332	\$1,253	\$1,687	\$2,305	\$2,705	\$3,651	\$1,733
Power Plant Annual Cost	\$K	\$137,253	\$144,212	\$203,238	\$242,336	\$249,786	\$287,547	\$204,288
Power Cost								
Base Plant Power Cost	mills/kWh	58.29	56.86	70.64	101.62	102.45	132.19	71.46
Pipeline Cost	mills/kWh	0	0	23.91	27.35	26.53	28,76	24.02
Net Power Cost	mills/kWh	58,29	56.86	94.55	128.97	128.98	160.95	95.48
Coal Energy Input	10^6Btu/h	3839	3839	3839	3839	3839	3839	3839
Gross Power Output	MW	458.20	479.63	446.40	417.60	418.50	413.20	460.88
In Plant Power Use	MW	44.70	34.19	68,90	87.60	78.39	99.40	85.11
Net Plant Output	MW	413.50	445.44	377.50	330.00	340.11	313.80	375.77
Net Heat Rate	Btu/kWh	9284	8618	10170	11633	11288	12234	10216
Thermal Efficiency - HHV	%	36.78%	39.62%	33.58%	29.35%	30.25%	27.91%	33.42%
Out of Plant Power Use	MW	2.41	4.18	4.05	3.87	4.05	4.12	4.47
Net Energy Cycle Power	MW	411.09	441.26	373.45	326.13	336.06	309.68	371.30
Net Energy Cycle Heat Rate	Btu/kWh	9339	8700	10280	11771	11424	12397	10339
Thermal Efficiency - HHV	% _	36.56%	39.25%	33.21%	29.01%	29.89%	27.54%	33.02%
Net Energy Cycle Power	MW	411.09	441.26	373.45	326.13	336.06	309.68	371.30
Net Replacement [Added] Power	MW	0.00	(30.17)	37.64	84.96	75.03	101.41	39.79
Net Grid Power	МW	411.09	411.09	411.09	411.09	411.09	411.09	411.09

175

10 References

Clinton, W.J., and A. Gore, Jr., 1993, The Climate Change Action Plan, Washington, D.C., Oct.

Doctor, R.D., et al., 1994, Gasification Combined Cycle: Carbon Dioxide Recovery, Transport, and Disposal, ANL/ESD-24, Argonne National Laboratory, Argonne, Ill., Sept.

EPRI, 1993, Technical Assessment Guide (TAG) Volume 1: Electricity Supply-1993, Electric Power Research Institute, Palo Alto, Calif.

Gallaspy, D.T., et al., 1990a, Southern Company Service's Study of a KRW-Based GCC Power Plant, EPRI GS-6876, Electric Power Research Institute, Palo Alto, Calif., July.

Gallaspy, D.T., et al., 1990b, Assessment of Coal Gasification/Hot Gas Cleanup Based Advanced Gas Turbine Systems: Final Report, DOE/MC/26019.3004 (DE91002084), prepared by Southern Company Services, Inc., Birmingham, Ala., et al., for U.S. Department of Energy, Morgantown Energy Technology Center, Morgantown, W.Va., Dec.

Hangebrauck, R.P., et al., 1992, "Carbon Dioxide Sequestration," in *Proceedings of the 1992* Greenhouse Gas Emissions and Mitigation Research Symposium, sponsored by the U.S. Environmental Protection Agency, Washington, D.C., Aug. 18-20.

Hendricks, C., 1994, *Carbon Dioxide Removal from Coal-Fired Power Plants*, Kluwer Academic Publishers, Dordrecht, the Netherlands.

Smith, A., 1994, "Norway Pioneers Large Scale CO₂ Disposal in 1996," *Greenhouse Issues*, International Energy Agency, Glouchestershire, U.K., Aug.

Stone, R., 1994, "Most Nations Miss the Mark on Emission-Control Plans," *Science* 226(5193): 1939, Dec. 23.

DISTRIBUTION FOR ANL/ESD-34

Internal

ANL Publications and Record Services Dept. L. Welko (5) R. Weeks R.D. Doctor (102) M. Moniger

External

U.S. Department of Energy Office of Scientific and Technical Information (12) Manager, U.S. Department of Energy Chicago Field Office ANL-E Libraries ANL-W Library