The Use of Vegetable Oils as Renewable Basestocks

S. Z. Erhan
 National Centor on Agricultural Utilizzatom Research USDAARS, Peothat icko4:

Lubricants and Hydraulic OHIS

- Lubricant market in the U.S. is about $\$ 8$ billion
- More than 90% of all lubricants arelbased on petroleum
- Hydraulic oils comprise about 10% of all lubricants
- The demand for biodegradable lubritaints is expected to grow at about 10% annual rate

Concerns

© Environmental
© Pollution- Air, Water and Soil
© Ecological Balance
© Handling and Toxioity
今 Health
© Contamination

- Disposal
© Biodegradability
© Cost

Primary Functions of Lubricants

© Reduce friction and minimize wear
© Dissipate heat
© Disperse deposits

- Inhibit rust/corrosion

S Seal critical contact joints

Consumption of lubricants

Commercial Uses of Biodegradeable Lubricants
© Chain saw lubricants © Marine lubricants
© Drilling oils
\triangle Pump oils
๑ Food industry fluids
\triangle Gear olls
\triangle Greases
© Hydraulic fluids
Δ Reilioad Iubricants

- Shock thsorbe tipes

O Mould redease ois
STwo stroke enghedre

Blodegradability is delivered by basestoplt not tadifives

Basestock: 80-100\% of Lubricant

Flowchart
of Lubricant
Development

Screening protocols depend on application

Basestock Screening

Lubricity more dependent on additives than on basestock

© Biodegradability
s Viscosity
\& Low Temperature Solidification

- Volatility
© Oxidative Stability
今 Deposite Forming
\& Hydrolytic Stability
A Solvency / Miscibility
Seal Compatibility
Special Requirements
(e.g, heat conductivity transparency, density: electric resistance, eto.)

Types of Additives Used in Lubricants

© Viscosity Index Improvers: (Few \%)
© Oxidation Inhibitors: (0.5-1\%)
© Detergent Dispersants (2:20\%)
© Rust Inhibitors (~1\%)
© Antiwear Agents (Few \%)
© Pour Point Depressants (~1\%)

Options in biodegradable basestocks

Comparison of Major Basestocks

Rate of Oxidation

Stearic (18:1) Rate

Oleic (18:1) 10

Bond Dissociation Energies (D.E.)

D.E.

Bond Bond Type Fatty Acid Kcal/mole
$\mathrm{CH}_{2}-\mathrm{H}$
Aliphatic
na
104
$\mathrm{CH}: \mathrm{H}$
Aliphatic
Stearic
96
$\mathrm{CH}=\mathrm{CHCH}-\mathrm{H}$
Allylic
Oleic
85
$\mathrm{CH}=\mathrm{CHCH} \cdot \mathrm{H}$
$\mathrm{CH}=\mathrm{CH}$
Doubly
Linoleic
76
Allylic Linolenic

Sample analysis in micro oxidation

Preparation Injection Microoxidation Was uns it $17 T_{2}$

- \%evaporation (negligible for vegetable oils)
- \% solidified products
© \% oxypolymers

Investigating oxidative stability: micro oxidation

Oxypolymerization of Vegetable Oils

* Fast oxypolymerization with increasing polyunsaturation.
* Test sufficiently accurate for kinetic studies.

Oxidative Stabilities of Biofluids

Micro oxidation, min at $150^{\circ} \mathrm{C}$

Low temperature performance

Mod. SBO Improves Low T Behavior

VO* / dilluent** (50:50)
 VO / dilluent (50550) $+1 \%$ PPD mod. SBO / dilluent (50:50) modi SBO / thlluent (50:50) $+1 \%$ PPD mod. SBO / dilluent (65835) $+1 \%$ PPD

Pour Point	Days at $-25^{\circ} \mathrm{C}$
2480	0
$30^{\circ} \mathrm{C}$	1
$18^{\circ} \mathrm{C}$	0
836	87
440'0	4

* Vo - high olect ($>80 \%$ oleic) Vegetable of
** diflient-low pour pt polyalphadefin of symithetto ester

Approaches to Improve the Drawbacks of Vegetable Oils

Δ Genetic modification to alter F.A.
 © Chemical modifification

© Polymerization

- Reduction

今 Branched chains (methylation)
© Interesterification

- Separation techniques
- Fractionation
© Formulation
\triangle Addifive technology

Conclusions

© Government regulations restricting the use of petroleum lubricants provide an opportunity for vegetable oil based lubricants.
© Veg. oils are non-toxic, biodegradeable, renewable, and possess good boundary lubrication, a high viscosity index, a high flash point, low wear and a high load carrying capacity.

- High oleic vegetable oils with improved oxidative stability and low temperature properties show great promise ás lubricant base stocks.
Δ Further improvements in genetic engineering and chemical modifications coupled with optimized additive techinology will lead to a range of veg. oil products for environmentally sensitive markets,

