Brownsville Design Conditions The following yields and operating conditions were pre-

The following yields and operating conditions were predicted by HRI in Case VI Process Specs. Sect. 350 and are the goal we are shooting for:

	Per Reactor	<u>Total</u>
Syn. Gas Feed Rate (MMSCFH) Recycle/F.F. ratio Catalyst Holdup Tons Steam Prod'n. M#/Hr. Cat. bed Density #/C.F. Reactor Press. Reactor Effluent Temp. °F. % CO Conv. (on F.F.) % H2 Conv. (on F.F.) % H2+CO Conv. (on F.F.) Fresh Feed Comp: Mol % CO H2 CO2 N2+ A CH4 H2O	5.0 1.0 99 215.5 100 425 650 98.2 86.3 90.4 33.14 61.12 1.30 2.95 1.07 0.43	10.0 1.0 198 431

In the design, the water-gas shift reaction was assumed to be in equilibrium $(H_2)(CO_2)$ = 22 at 650°F) at the reactor outlet. $(CO)(H_2O)$

The predicted yields were as follows:

	BPOD	$rac{ ext{BPOD}}{ ext{Ex} ext{ Casinghead}} \ 10_n^{\prime\prime} ext{ RVP Gaso.*}$
Casinghead C4's Casinghead Gaso. Synthetic C4's Synthetic Gaso. (DB) Poly Gaso. Total Gaso.	150 179 164 4781 <u>915</u> 6189	6079
Gas Oil Waxy Btms. Poly Tar Total Oil	946 103 <u>99</u> 7337	947 103 <u>95</u> 7224
Water Sol. Chemicals 213,168% Water Sol. Simple Solution	/day 631 9144	631
Total Synthetic Oil plus WSC Bbls/MMSCF of Syn. Gas	31.8	32.6

^{*} From PR TDC 802 - 37P page 88

The total C_3^+ yield, including water soluble chemicals can be calculated from the breakdown of the reactor effluent streams reported in the HRI Process Specs. for Sect. 350 (Case 6 design) as follows:

Table A

Total C₃+ Design Yields For Two Reactors
And 10,000,000 SCFH of Fresh Feed

	#/Hr. Flash Vapor	#/Hr. Stripper Feed	Net Reactor Effluent	#/Gal.	#/Bbl.	ВРН
N C C C C C C C C C C C C C C C C C C C	21,865 4,412 69,529 7,447 11,554 6,062 5,649 5,871 4,435 388 6,251 2,466 408 121 60 17	73 20 2,666 10 179 232 306 710 1,249 5,565 6,183 4,7,719 7,924 2,970 2,970 2,970 2,970 2,930 4,540 64,309	21,938 4,432 72,195 4,457 11,733 6,955 6,581 5,684 5,684 11,8648 7,840 7,940 7,940 2,930 2,930 4,540 209,347	8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33	349.9 349.9 349.9 349.9 130.5 110.5 181.5 211.6 2207.2 237.2 2486.2 276.9 296.2 296.	36.18 36.40 26.85 26.56 53.59 36.38 31.43 29.69 25.68 8.84 10.03 7.48 15.01 335.92
Water	Sol. Chem	S.	8,882		336.0	26.30
Water T	otal Out		104,045 322,274			362.22
Total In (F.F.)		322,571		870	O BPD	

The total C_3^+ and WSC in the reactor effluent amounts to 362.2 BPH or 8700 BPD. The difference between this figure and the lower corresponding figure reported above in the predicted yield table is, of course, due to the poly contractions and the C_3 , C_4 and other losses.

The total C_3 + Incl. WSC leaving the reactors amounts to 91,225%/Hr. which divided by 14=6,516 CH₂ radicals per hr. which is 74.05% of the 8,800 Mols of CO fed to the reactors in the fresh feed.

The other design factors used in these correlations were similarly calculated as follows:

```
% CO in F.F. to WSC = 7.2

% CO in F.F. to CO<sub>2</sub> Made = 14.73

% CO in F.F. to CH<sub>1</sub> Made = 5.1

% H<sub>2</sub> in F.F. to H<sub>2</sub>O Made = 34.9
```