Fischer-Tropsch Reactors

Ben Jager

Sasol Process Development Twente (SPDT)
University of Twente: Chemical Technology
PO Box 217
7500 AE Enschede, The Netherlands

Presented at the AIChE Meeting, New Orleans
March 31st to April 4th, 2003

Copyright Sasol, 2003
Fischer-Tropsch technology

- Converts synthesis gas to liquid hydrocarbons
- \[2H_2 + CO \rightarrow -CH_2- + H_2O \]
- Product spectrum depends on:
 - temperature, catalyst, pressure, gas composition
- High temperature Fischer-Tropsch
 - 350 °C: gasoline and light olefins
- Low temperature Fischer-Tropsch
 - 250 °C: distillate and waxes
Fischer-Tropsch product Distribution

Product Distribution for Fe-catalyst
(per 100 carbon atoms)

<table>
<thead>
<tr>
<th>Product</th>
<th>Low Temperature 220 - 250°C</th>
<th>High Temperature 330 – 350°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>C₂-₄ olefins</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>C₂-₄ paraffins</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Gasoline</td>
<td>18</td>
<td>36</td>
</tr>
<tr>
<td>Distillate</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>Oils and waxes</td>
<td>48</td>
<td>9</td>
</tr>
<tr>
<td>Oxygenates</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>
Worldwide Interest in Fischer-Tropsch

• **LTFT**
 – Conversion: stranded, remote NG to superior diesel
 – Several projects under consideration
 – Sasol – Qatar Petroleum: Oryx plant for start up in 2006
 – ~ $ 25 000 per daily barrel – total project cost

• **HTFT**
 – Less interest
 – Complex product slate
 – Techno-economic feasibility studies more complex
 – Initial investment higher
 – Provides interesting opportunities
Fischer-Tropsch reactors

High temperature (350°C)
Gasoline & olefins

Low temperature (180-250°C)
Waxes & diesel

Conventional technology

Advanced technology

Synthol

Arge

Advanced Synthol

Slurry
Design Issues

- Catalytic process
- Process conditions
- LTFT - Three phase
 - Multi Tubular Fixed Bed or Slurry Phase Reactors
 - hydrodynamics
 - solid separation
- HTFT – Two phase
- Heat removal – highly exothermal
Multi Tubular Fixed Bed Reactors

- Since 2nd WW used commercially by:
 - Sasol: Arge process (Fe)
 - Shell: SMDS process (Co)
- Heat removal through tube walls
- Gas recycle
 - Enhances heat transfer
 - Conversions: per pass, overall
 - Recompression costs
- Liquid recycle
 - Need for effective distributor
- Pressure drop
Axial and radial temperature profiles
- catalyst activity
- temperature level
- gas & liquid flows
- tube diameters

- Optimise max. ave. and peak temperatures
- Plug flow?
- Cost of reactor
 - Mechanically complex
 - Scale up
 - Catalyst replacement
Slurry Phase Reactor

- Well mixed reactor
- High average temperature and reaction rates
- CSTR behaviour conversion, selectivity
- Easier control
 - virtually isothermal operation
- Higher volumetric conversion rates
- On-line catalyst removal and addition
 - selectivity control
Slurry Phase Reactor (cont.)

- Lower operating cost
 - 70% less catalyst consumption
 - reduced maintenance costs
- Lower capital cost
 - simpler construction
- Solid Separation
 - internal devices
 - crucial development
 - optimisation of catalyst properties
 - effective and relatively cheap
• High reactor capacity
• Good turndown ratio
• Pressure drop reduced 65-85%
• Plug flow behaviour
 – staging in reactors
 – interstage fresh feed
 – series operation with water knock out
LTFT Catalysts

- Cobalt or Iron based
- Oxidized by water
- Co cat has longer life but more expensive
- Fe cat inhibited by water
- Fe cat has water gas shift activity
- Co cat more active at higher conversions
- Recycles or series reactors
- Water gas shift activity for low H_2/CO gas
LTFT Catalysts (cont).

- **Cobalt based**
 - conversion proportional to H_2/CO
 - selectivity(α) benefits from:
 - low H_2/CO
 - High partial pressure CO

- **Iron based**
 - conversion proportional to pp ($\text{CO}+\text{H}_2$)
 - selectivity benefits from
 - low H_2/CO
 - low temperature
Catalysts particle size and activity

Multi tubular fixed bed reactor

- Diameter > 1mm for acceptable pressure drop
- Effectiveness factor below unity
- Selectivity negatively affected by CO and H2 diffusivities
 - higher pressure for Co cat
 - lower temperature for Fe cat
- H$_2$/CO difficult to adjust
- Limited benefit from catalyst activity increases
Catalysts particle size and activity (cont).

Slurry phase reactor

• 20 µm < diameter < 200 µm
 – lower limit due to solid separation
 – upper limit by
 • suspension of particles
 • effectiveness factor
• Effectiveness factor close to unity
• Effective use of increases in catalyst activity
• Benefits selectivity for Co catalyst
Reactor Capacities

• Capacities bbl/day

<table>
<thead>
<tr>
<th></th>
<th>MTFBR</th>
<th>SPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>3 000</td>
<td>3 000</td>
</tr>
<tr>
<td>Announced</td>
<td>9 000</td>
<td>17 000</td>
</tr>
<tr>
<td>Potential</td>
<td>10 – 15 000</td>
<td>> 30 000</td>
</tr>
</tbody>
</table>

• Shop fabrication vs. on site assembly
Sasol’s 2 500 bbl/day commercial Slurry Phase Distillate reactor
Multi tubular fixed bed reactor:

- Series reactors: 3 into 1
- Higher capacities due to:
 - better catalyst
 - optimised process conditions
 - optimised reactor
- Size limited by shop fabrication and transport limitations
Reactor Capacities (cont).

Slurry phase reactors:
- Higher capacities due to:
 - simpler construction for easier scale up
 - higher activity catalyst can be utilized
 - internal staging – plug flow
 - interstage fresh gas feed – optimal use of reactor volume
 - series reactor configuration with condensing trains
 - reduces recycles
 - higher partial pressures of reagents
 - inter reactor fresh gas feed
- Optimisation of gas loop
- Especially valid for multi reactor plants
- Heat removal becomes limiting
- Early on learning curve
Fischer-Tropsch reactors

High temperature (350°C)
- Gasoline & olefins

Low temperature (180-250°C)
- Waxes & diesel

Synthol
- Conventional technology

Advanced Synthol
- Advanced technology

Arge
- Advanced technology

Slurry
Sasol Advanced Synthol Reactor

- 19 Synthol Circulating Fluidised Bed reactors used during 1955 – 2000
- 16 CFB replaced by SAS reactors:
 - Four 8 m reactors of 11 000bbl/day
 - Four 10 m reactors of 20 000bbl/day
Sasol Advanced Synthol Reactor

(cont).

For the same capacity, the relative reactor sizes are:
Sasol Advanced Synthol Reactor
(cont).

- SAS reactors:
 - simpler structure and support
 - no circulating catalyst
 - all catalyst in use all the time
 - catalyst consumption reduced to 40%
 - easier to operate
 - cheaper – 40%
 - less maintenance - 15%
 - more heat transfer surface
 - greater capacity
Sasol Advanced Synthol Reactor
(cont).

- SAS design geared to replace existing CFB reactors
- Catalyst not used optimally
- Fe cat inhibited by water
- Parallel operations – recycles
- Low conversions per pass
 - Recycle
 - Series reactors
- Interstage removal of water
- Can use higher activity catalyst
- > 20 000bbl/day reactors indicated
In Conclusion

• GTL technology at early stage of development
• Incentive for improved FT technology
• New FT reactors early on learning curve
• Opportunities from
 – better use of more active catalysts
 – series in stead of parallel configurations
 – debottlenecking new limiting mechanisms
 • e.g. heat removal
 • heat management in GTL plants
• Optimal FT reactor design not in isolation
 Part of philosophy of overall plant design
• **Early on learning curve – opportunities**