

Upgrading F-T Products From Germany to the 1950's

Swatroleur

German Hydrocarbon Needs 1939-1945

Limited natural liquid hydrocarbon sources¹

nem

- Significant coal resources
- War increased demand for
 - Fuel
 - Lubricants
 - Chemicals
 - Personal Care Products
 - Food

All could be partially supplied from F-T plants¹

F-T Reaction and Products

CO and H2 combine to produce linear and slightly branched products¹

- Paraffins—Predominantly Linear
- Olefins—both terminal and internal
- Alcohols—Mostly to completely terminal
- Aldehydes
- Acids

Product distribution varies with catalyst and conditions

German Fuel Situation prior to WWII

- Germany has limited domestic oil production, but has significant coal reserves¹
- WWI demonstrated need for alternative sources for liquid fuels^{1,2}
- Romania, Poland, Russia and Austria supplied some crude oil, but supply was not consistent
- Domestic production of fuels and lubricants needed for energy security

Coal Liquefaction and Shale Oil⁴

- Low Temperature Carbonization of Lignite
 - Produced 3% of oil containing 20% creosote
 - Octane varied from 38 to 48
- Hydrogenation of coal, coal tar, and lignite
 - Good Diesel Fuel
- High Temperature Carbonization
 - Further processed or mixed to produce fuel
- Distillation of Shale Oil
 - Handled similar to Coal Tar

Coal Hydrogenation Product Properties

Property	Typical Value	Conventional D2
Gravity	0.85 to 0.885	0.83
Aniline Point	31 to 53°C	
Aromatics and Unsaturates	38 to 49%	20-25%
Boiling Index	255 to 265	
Cetane Rating	30 to 45	41
Pour Point	-35 to -70°C	-5 to -20°C
Viscosity— Engler@20°C	1.45 to 1.81	THOMMAN HILLS AND

Shale Oil Properties³

Property	Typical
Gravity	0.916
Cetane Rating	35
Neutralization Index	0
Ash	0.02%
Water	0.09%
Sulphur	4.4%
Saponification No.	4.4%
Conradson Carbon	0.15%
Asphalt	0.06%

PAL NOLLOWER

Swintholetun

Synthetic Diesel Fuels

Low Temperature-Low Pressure Carbonization of Coal¹⁷

- Coal Tar not suitable as fuel
- High Temperature Hydrogenization of Coal¹⁷
 - Acceptable diesel fuel
- FT Fuel Known as "Kogasin II"¹⁷
- Not Suitable as diesel fuel for then-current engines
 - Exceptional ignitability, however
 - 5% Higher Fuel Consumption
 - 25% Higher Exhaust Gas Temperature
- Excellent Blend Component with Coal-derived products^{17,18}

FT Diesel Typical Properties¹

	Summer	Winter
Diesel Fuel Dist Range	150-320°C	150-250°C
Cloud Point	-6°C	-26 °C
Pour Point	-12 °C	-34 °C

Swinitroleum

German Diesel Fuel Specifications^{4,17}

Property	Wehrmacht Diesel Kraftstoff	Sonder Diesel Kraftstoff	Luftwaffe K1	Mineral Oil; FT Synthesis; Hydrogenation	Lignite Oil	
Clearance	The Fuel must b	e clear, free fron	n all solid matter			
Gravity@15oC	0.810 to 0.865			0.88 Max	0.90Max	
				For U-Boat	0.84-0.87	
Viscosity,Engler@ 20°C	1.1° to 2°			1.2° to 2.6°		
	1			Must flow freely	without	
Pour Point	Winter:	-30°C Max	-45°C Max	separation		
	Summer:	-10°C Max				
Flash Point, PM	55°C	21°C	50°C	55°C		
Neutralization No.	0.4 mg Max		1% Max	1.50%		
Water	0.5% Max		0.5% Max			
Ash		0.05% Max				
Sulphur	1% Max		1% Max	1.3% Max		
Conradson Carbon	0.05% Max		1% Max	0.8% Max	1% Max	
Lower Heat Value	9900 Kcal/kg. Min			9900 Kcal/kg Min		
lgnitability	45 Cetane Min		50 Cetane Min	No Specification		
				(In practio	ce 50-5 5)	
Volatility	80% Min Distilled at 360°C		60% Min Dist	lled @ 350°C		
	All Diesel fuels must mix together without		All Diesel fue	els must mix		
Compatibility	precipitation			together withou	ut precipitation	

Diesel Blend Example

FT Diesel Fraction of 100 Cetane blended with tar oils to give desired Cetane Product

- For a 30 Cetane Blend—10%
- For an 83 Cetane Blend—60%

Medium Pressure FT process was preferred over Low Pressure Process

Olem

Other Products from F-T Process

Olefins used as feedstocks for other products

- Synthetic base oil^{17,21}
 - 10% of overall base oil production
 - 45% of aircraft lubricants
- Higher carbon number alcohols via Oxo (hydroformylation) Process
- Same carbon number alcohols via hydration
- Alcohols and acids from F-T water extraction³⁰

Synthetic Base Oil Research^{7,21}

- Polymerization of olefins^{7,21,24,25}
- Alkylation of Aromatics with F-T olefins^{21,25}
- Chlorination and direct polymerization
- Chlorination/de hydrochlorination followed by polymerization²⁴
- Polymerization of ethylene followed by thermal cracking.^{7,21,25}
- Oxidation of cyclohexane and formation of diesters with alcohols from OXO process²⁵
- Alkylation of mineral oils with FT olefins²⁵
- Cannizzaro Reaction of aldehydes followed by esterification with fatty acids²⁵

Current Commercial Products Derived from German Work

- Poly alpha Olefin (PAO) fluids⁷
- Synthetic Ester Fluids
 - Especially diesters
- Synthetic Alkyl Aromatics
- Ethylene-Propylene Co-Polymer Oils

F-T Derived Olefins

- Isolated from F-T Light Oil
- Produced by Cracking F-T Wax⁷
- Used as feed for several processes
 - Base oil⁷
 - Synthetic detergent alcohols via two processes³⁰
 - OXO Synthesis⁷
 - Hydration
 - Other detergents³⁰
 - Alkyl sulfates
 - Aromatic sulfates

Detergents from F-T Wax/Olefins⁷

Synthetic Detergents

Alkyl sulfates produced by Mersol Process^{7,30}

- Reaction with SO₂ and Cl₂
- Aryl Sulfates from alkylation of Toluene and sulfonation
- Alkylsulfonates are superior to alkylsulfates derived directly from olefins
- All were used to supplant natural soaps to some extent.

Alcohols from F-T Reaction

- Isolated from LT and HT Raw F-T Products⁶
- Recovered from F-T Water
- Produced via OXO process³⁴
- Produced directly via Synol Process^{7,30}
 - Low H₂/CO ratio
 - High Temperature
- Used for detergent, plasticizer and base oil production^{30,}

F-T Wax Uses³⁰

At least 5 grades of wax produced

- Uses
 - Coatings
 - Water-Proofing
 - Filler for Rubber Products
- Small Volume compared to fuel uses

nem

Typical Wax Production from a MP F-T Plant

Wax Description	Melting Point, °C	Production, kg/day	Disposition
Soft Wax (Gatch)	35-45	22359	Fatty Acid Synthesis
Block Paraffin	50-52	2200	Olefins for Synthetic Oils
Plastic Wax	70-75	2688	Cardboard, Candles, Paints
Catalyst Wax	80-90	6360	IL SALUBE A STREET
R.B Hard Wax	90-95	8976	Paper, Wood Barrels, Stratter

Fatty Acid Synthesis³⁰

3HI . NOILIGH

3 Plants Converted 80,000 tons/yr into Fatty Acids

Fatty Soaps

- 3 Plants alone converted 80,000 tons/yr of wax into Fatty Acids
- Significant source of soap for cosmetic use
- Some fraction had significant odor which limited use to 30% in natural soap
- Odor attributed to branched chain soaps
- Acids also used for:
 - Lubricants, lube additives and grease thickeners
 - Preservatives
 - Converted to alcohols and used as plasticizers
 - Mineral floatation

NOIGHT

Fatty Esters

Esterification with Glycerol produced fatty esters

- Margarine Substitute
- Contains even and odd carbon number compared to only even numbers for natural fats
- Physiological testing indicated no harm
 - Animal and human testing
 - Concern by some researchers about long term toxicology

Den

Post-War Oil Industry

- Perceived Shortage of Crude Oil
- Perceived Need for Additional Hydrocarbon Resources
 - Coal
 - Natural Gas

Knowledge that Germany Possessed Significant Technology

noleun

Post War Upgrading of F-T Products Information Sources

British and US interrogation of German scientists

- US Navy Technical Mission in Europe
- British Intelligence Objective Sub-Committee
- Combined Intelligence Objectives Sub-Committee
- Bureau of Mines Information Circular
- Technical Oil Mission Microfilm Reels

Nem

Post War F-T Upgrading Most Significant Effort

Shell Conversion of F-T Product^{51,52,53,54}

- Solid Paraffin wax converted into liquid products with essentially no change in molecular weight
- Products are branched chain paraffins where the branches "consist substantially exclusively of methyl groups" USP 2,475,358
- Initial conversions accomplished with AICl₃ and cracking suppressor

moleun

Subsequent Upgrading Efforts

Shell improved AICl₃ process^{53,54}

- Continuous Vapor Phase Conversion
- Continuous Liquid Phase Conversion
- Others further improved process
 - New Catalysts
 - New Conditions
 - Same Products
- Outcome is our modern hydroisomerization/hydrocracking technology

A . NOITIBL

Mechanism now well understood and support observation that branching is mostly methyl groups

Conclusions

- Germans successfully produced many useful products utilizing F-T process technology
- Successfully developed foundation for many current products
 - Synthetic base oils and fuels
 - Chemical feed stocks
 - Chemical processes

Post War Efforts led to many current catalytic hydrocarbon conversion processes

nen

References

- Complete References from the written paper are included in the following slides.
- Reference numbers in the preceding slides refer to the same reference numbers used in the written paper

noieun

References 1-8

Syntroleum

AHT . NOITIBL

US Navy Technical Mission in Europe, Technical Report no. 248-45, The Synthesis f Hydrocarbons and Chemicales from CO and H2, September, 1945, page 8.

Ibid, page 11

3. British Intelligence Objectives Sub-Committee Final Report No. 1697 (Interrogation No. 667), Item 30, Synthetic Oil Production in Germany—Interrogation of Dr. Bütefisch, January 1946, page 2.

4. Combined Intelligence Objective Sub-Committee Item No. 30, File No. XXXI-58, Compilation of German Fuels and Lubricants Specifications, 28 August 1945, page 6.

5. Combined Intelligence Objectives Sub-Committee Item No. 30, File No XXXI-23, Metallgesellshaft-Lurgi Frankfurt am Main, September 14, 1945, page 8.

6. British Intelligence Objectives Sub-Committee Final Report No. 1722, Item No. 22, Additional Information Concerning the Fischer-Tropsch Process and Its Products, 1946, page 149-159.

7. U.S Department of the Interior, Bureau of Mines Information Circular 7370, Report on the Investigation by Fuels and Lubricants Teams at the I.G. Farbenindustrie A.G. Leuna Works, Nerseburg, Germany, July 1946, pp 52-57 & 59.

Field Information Agency, Technical (FIAT) Final Report No. 276, Kaiser Wilhelm Institut Fuer Kohlenforschung, Muelheim, Ruhr. Interrogation of Dr. Helmuth Pichler and Prof. Karl Ziegler,3 October 1945.

References 9-17

9. Combined Intelligence Objective Sub-Committee Item No. 30, File No. XXV-1. Kaiser Wilhelm Institut Fur Kohlnforschung, Mulheim, page 6

10. US Navy Technical Mission in Europe Report 5811, The Progress of the Research Commission on "Continued Development of the Gasoline Synthesis from CO and H2, Especially in the Direction of a Direct synthesis of Isoparaffins.", translated by W. Oppenheimer, December 1942, page 15.

11. See Ref 7, page 55.

12. See Ref. 8, page 7.

13. U.S Department of the Interior, Bureau of Mines Bulletin 488, The Isosynthesis, by Helmut Pichler and Karl-Heinz Ziesecke, 1950.

14. See Ref 11, page 59.

15. See Ref 11, pages 85-86

16. See Ref 11, pages 15-17.

17. US Navy Technical Mission in Europe Technical Report No. 187-45, German Diesel Fuels, August 1945, page 3

roletu

References 18-29

See Ref 17, page 8.

8.

See Ref 17, page 9.

0. See Ref 6, page 143.

21. Combined Intelligence Objective Sub-Committee Item No. 30, File No. XXXII-68, The Manufacture and Application of Lubricants in Germany, page 7.

22. Department of the Interior, Bureau of Mines, Information Circular 7366, Review of ischer-Tropsch and Related Processes for Synthetic Liquid Fuel Production, August 1946, bage 1095.

3. See Ref. 7, page 60.

4. Combined Intelligence Objectives Sub-Committee Item No. 30, File No. XVIII----5, Io. 3, Synthetic Lubricating Oil Production in France, 24 March 1945, page 1.

5. Combined Intelligence Objectives Sub-Committee Item No. 30, File No. XXXII-68, The Manufacture and Application of Lubricants in Germany, July 1945, pages 10-13.

- 26. See Ref. 7, pages 81-83.
- 27. See Ref. 7, page 69.
- 28. See Ref. 21, pages 28-30.
- 9. See Ref.5, page 42.

ninolem

References 30-40

30. Department of the Interior, Bureau of Mines, Report of Investigations 4467, Some Chemicals From Synthetic Liquid Fuels Processes, June 1949, page 27.

31. Combined Intelligence Objectives Sub-Committee Item No. 20, File No. VI-22, X-18 & XV-5, The Fischer-Tropsch Process, 1945.

32. See also USP 2,199,200 and 2,238,846

33. See Ref 7, pages 87-92.

34. British Intelligence Objective Sub-Committee Interrogation Report No. 736, Interrogation of Dr. Roelen, 20-21 October, 1945.

35. See Ref. 30, page 24-25.

36. See Ref. 6, page 153.

37. See Ref. 7, pages 93-97.

- 38. See Ref 30, pages 19-20.
- 39. See Ref. 30, page 25.
- 40. See Ref. 7, pages 98-99.

nolem

References 41-50

- 41. See Ref. 30, pages 26-27.
- 42. See Ref. 30, page 27.
- 43. See Ref. 30, pages 22-23.
- 44. See Ref. 30, page 26
- 45. See Ref. 6, page 148
- 46. See Ref. 6, pages 144-145.
- 47. See Ref. 6, pages 144-149
- 48. See Ref. 6, page 154.
- 49. See Ref. 6, page 162.
- 50. See Ref. 6, page 166

nolem

References 51-54

51. US Patent No.2,658,746, Production of Improved Diesel Engine Fuels by Catalytic Isomerization of High Boiling Paraffins.

52. US Patent No. 2,475,358, Hydrocarbon Conversion.

53. US Patent No. 2,668,866, Isomerization of Paraffin Wax

54. US Patent No. 2,688,790,Isomerization of Paraffin Wax

moleum