CONTENTS

	Page		Page
Summary	1	Reactions catalyzed by the cobalt carbonyls-Con	
Introduction	3	The oxo reaction—Continued	
Acknowledgments	4	Other reactions occurring under oxo	
Structure and properties of metal carbonyls	5	conditions	49
Composition and effective atomic number		Hydrogenation of olefins	50
of metal carbonyls and the nature of the		Polymerization of olefins	50
metal-carbon-oxygen bond	5	Hydrogenation of aldehydes	50
Spectra and structures of cobalt carbonyls	8	Acetal formation	50
Dicobalt octacarbonyl, $Co_2(CO)_{8}$	8	Aldol formation	50
Tetracobalt dodecacarbonyl, $Co_4(CO)_{12}$	12	Ketone formation	51
Cobalt hydrocarbonyl, HCo(CO) ₄ , and		Kinetics	51
cobalt deuterocarbonyl, DCo(CO) ₄	12	Effect of partial pressures of carbon	
Proton magnetic resonance of HCo(CO) ₄	13	monoxide and hydrogen	51
Cobalt carbonyl anion, [Co(CO) ₄]	14	Effect of temperature	$\frac{52}{50}$
Dicobalt octacarbonyl	15	Effect of solvent	$\frac{52}{52}$
Preparation	15	Effect of bases	52
Analysis	16	Kinetics at low pressures (under	F 0
Reactions with bases	16	100 atm.)	53
Formation of cobalt carbonyl anion		Mechanism of hydroformylation	54
by electron transfer	18	Function of carbonyls	54
Mechanism of the reaction	20	Early postulations as to mechan-	F.C.
Reaction with alkynes	21	ism	56
The infrared spectra of acetylenic		Later work	57
dicobalt hexacarbonyls	23	Nature of the olefin in the inter-	60
Structure of acetylenic dicobalt		mediate complexes	60
hexacarbonyls	23	Hydrogenation of organic compounds with	61
Physical constants of diphenyl-	0.5	synthesis gas	OT
$acetylene dicobalt hexacarbonyl_{-}$	25	Homogeneous character of the hydro-	61
Stability of acetylenic dicobalt	o.e	genation Hydrogenation of double bonds in con-	01
hexacarbonyls	$\begin{array}{c} 26 \\ 26 \end{array}$	jugated systems	62
Cobalt hydrocarbonyl	$\frac{20}{26}$	α,β -Unsaturated aldehydes and ke-	0
Preparation	$\frac{20}{27}$	tones	62
Stability	$\frac{27}{30}$	Conjugated diolefins and styrenes	$\tilde{62}$
Reactions of HCo(CO) ₄	30	Polynuclear aromatic compounds_	63
Dissociation of iron pentacarbonyl in	30	Reduction of aromatic alcohols and	
amines	30 30	ketones	64
Dissociation in piperidineEffect of amine structure on the dis-	30	Hydrogenation of thiophene and sub-	
sociation of Fe(CO) ₅	31	stituted thiophene	68
Mechanism	31	Lengthening the carbon chain (homologa-	
The iron pentacarbonyl-aqueous alkali sys-	01	tion) of alcohols	69
tem	32	tion) of alcohols	
The iron carbonyl-acetylene complex	02	conditions	71
$F_{e_2}C_{10}H_4O_{8}$	35	The reaction of acetylenes	73
Structure	$\frac{35}{35}$	Polymerization of acetylenes by dico-	
Preparation and properties	38	balt octacarbonyl	73
Iron hydrocarbonyl, H ₂ Fe(CO) ₄	41	Reactions of acetylenes under hydro-	
Propagation	41	formylation conditions	74
Preparation Decomposition in the gas phase	41	Reaction of 1-pentyne under hy-	 4
Decomposition in solution	42	droformylation conditions	74
Reaction with acetone and 1-hexene	$\frac{12}{42}$	Alkynes as inhibitors of hydrofor-	74
Reactions catalyzed by the cobalt carbonyls	44	mylation reactions	74
		Reaction of diphenylacetylene un-	75
The oxo reaction Introduction	44 44	der hydroformylation conditions_	75
The principal reaction	$\frac{44}{45}$	Stoichiometric reaction of acety-	75
The principal reaction	40	lene with cobalt hydrocarbonyl	10
Commercial charge stocks and products	45	Reaction of allenes with dicobalt octacar- bonyl	75
Scope and limitations of the reac-	10	Some catalytic properties of iron carbonyls	76
tion	45	Bibliography	79

ILLUSTRATIONS

Fig.		Pag		
	Infrared spectra of cobalt carbonyls in the gaseous state			
2	Infrared spectra of cobalt carbonyls in solution			
3.	3. Ultraviolet spectra of cobalt carbonyls in the gaseous and solution states			
4.	4. Infrared spectra illustrating complex formation in dimethylamine			
5	Infrared spectra illustrating complex formation in pyridine	2		
6	Infrared spectra of dicobalt octacarbonyl and acetylenic dicobalt hexacarbonyls	2		
7	Potentiometric titration at 26° C, of 25 ml, of aqueous HCo(CO), with 0.1 N NaOH	2		
8.	Potentiometric titration of 0.0181 molar Fe ₂ C ₁₀ H ₄ O ₈ with 0.50 N KOH; initial volume 75 ml	3		
9.	Potentiometric titration of 0.0181 molar Fe ₂ C ₁₀ H ₄ O ₈ with 0.50 N KOH; initial volume 75 ml Potentiometric titration of 0.00145 molar Fe ₂ C ₁₀ H ₄ O ₈ with 0.050 N KOH; initial volume 100 ml	3		
10	Infrared spectra of Fe ₂ C ₁₀ H ₂ O ₂	3		
11.	Rates of hydroformylation of olefins at 110° C. and 233 atm. with $1\text{CO} + 1\text{H}_2$. Rate of hydroformylation of cyclohexene at varying total pressures of $1\text{CO} + 1\text{H}_2$; 2.7 percent $\text{Co}_2(\text{CO})_8$,	4		
12.	Rate of hydroformylation of cyclohexene at varying total pressures of 1CO+1H ₂ ; 2.7 percent Co ₂ (CO) ₈ ,	-		
- 0	110° C Rates of hydroformylation of cyclohexene as a function of CO and H ₂ pressures	Ę		
13.	Rates of hydroformylation of cyclonexene as a function of CO and H ₂ pressures	į		
14.	Rate constants for oxo reaction of cyclohexene at 110° C. fitted to Martin's equation	٠		
15.	Use of Martin's equation and experimental points to determine effect of composition of synthesis gas on rate of oxo reaction; cyclohexene at 110° C. Rates of reduction of aromatic alcohols	į		
10	on rate of walking of one still alone at 110 C.	i		
10.	Rates of reduction of aromatic alconois			
17.	Hydroformylation of pinacol			
	my DI DO			
	TABLES			
				
1.	Monomeric and polymeric metal carbonyls			
2 .	Some substituted carbonyls			
3.	Volatilities of metal carbonyls			
4.	Bond distances and force constants of carbonyl groups.			
5.	Infrared spectra of cobalt carbonyls			
6.	Vibrations of Co ₂ (CO) ₈			
7.	Vibrations of HCo(CO) ₄			
8.	Infrared-active carbonyl stretching frequencies (cm1) of metal carbonyls; nearest combination band			
_	with frequency interval (Δ) from the lowest terminal carbonyl frequency			
9.	Products from reactions of [Co(CO) ₄] ₂ with bases			
10.	Acetylenic dicobalt hexacarbonyls			
11.	Physical constants for diphenyl-acetylene dicobalt hexacarbonyl in benzene solutions at 30° C			
12.	Specific reaction rate constant for the decomposition k, 10 ³ x/t a(a-x)			
13.	Specific reaction rate constants of HCo(CO) ₄ decomposition			
14.	Conductivities of 0.161-molar solutions of $Fe(CO)_5$. Analysis of a mixture of $H_2Fe_2(CO)_8$ and $NaHFe_2(CO)_8$.			
15.	Analysis of a mixture of H ₂ Fe ₂ (CU) ₈ and NaHFe ₂ (CU) ₈ .			
16.	Potentiometric titration of 0.0181 molar Fe ₂ C ₁₀ H ₄ O ₈ with 0.50 N KOH; initial volume, 75 ml.			
17.	Potentiometric titration of 0.00145 molar Fe ₂ C ₁₀ H ₄ O ₈ with 0.050 N KOH; initial volume, 100 ml			
18.	Solubility of the iron carbonyl-acetylene complex and its monohydrate at 25° C., g./100 ml. of solvent			
19.	Products and yields from the reaction between NaHFe(CO) ₄ and C ₂ H ₂			
20.	Spontaneous decomposition of iron hydrocarbonyl in heptane solution at 25° C.			
21.	Reactions of H ₂ Fe(ĈO) ₄ and HCo(ĈO) ₄ at atmospheric pressure and room temperature			
22.	Free energy and equilibrium values for the hydroformylation of ethylene			
23.	Rates of hydroformylation of olefins at 110° C. Distribution of hydrogenated products from the cobalt-carbonyl-catalyzed reaction of isobutylene and			
24.	Distribution of hydrogenated products from the conait-carbonyl-catalyzed reaction of isobutylene and			
٥,	t-butyl alcohol with synthesis gas			
<i>z</i> ə.	variation in rate of hydroformylation of dissolutylene with composition of synthesis gas			
26.	Effect of bases on the rate of hydroformylation of cyclohexene			
27.	Product distribution from hydroformylation of isomeric pentenes. Hydrogenation of polynuclear aromatic hydrocarbons with $1H_2+1CO$ and $Co_2(CO)_8$ as catalyst.			
28.	nydrogenation of polynuclear aromatic hydrocarbons with 1H ₂ +1CO and Co ₂ (CO) ₈ as catalyst.			
29.	Reaction of aromatic alcohols and ketones with synthesis gas and cobalt catalyst at 180°-185° C			
ას.	Decarbonylation experiments (185° C. for 3 hours) Specific reaction-rate constants, k, for reduction of aromatic alcohols			
JI.	Specific reaction-rate constants, k, for reduction of aromatic alcohols.			
32.	Effect of solvent on specific reaction-rate constant, k, of reduction of benzhydrol			
	Apparent heats and entropies of activation for hydrogenation of benzhydrols under oxo conditions			
34 .	Reduction of thiophene compounds with synthesis gas (2H ₂ :1CO) and a cobalt catalyst at 180°-190°C			
აე.	Reaction of substituted benzyl alcohols with $2H_2 + 1CO_{}$			
3h	REPUBLIVE FULDS OF FAGOTION OF CUINCTITUTOR DANGED GLOCADOLS			