L-53

December 22, 1947

LETDOWN IN STAGES OF THE CO2 SCRUBBING WATER

BY E. E. DONATH

SUMMARY

During discussions with Dr. R. C. Dressler, the possibility was mentioned of recovering CO $\not\vdash$ H₂ by letdown in stages of CO₂ scrubbing water. It was thought that this principle might have application in the proposed Gas Synthesis Demonstration Plant. One of the principal costs of pressure water scrubbing of CO₂ from gases is involved in the losses of CO $\not\vdash$ H₂. When the scrubbing water is aerated prior to recirculation, this loss is usually quoted to be from 3 to 5% of the gas scrubbed. Since the cost of manufacture of CO $\not\vdash$ H₂ is a major contributing factor in the cost of manufacturing gasoline by the Fischer-Tropsch process, any saving of gas losses is desirable.

The idea of partial letdown and subsequent recovery of CO $/-H_2$ for recycle is not new. Mention is made of this principle by C. C. Wright and R. F. Michell. However, no reference has been noted to the separation of H_2S and CO_2 by means of letdown in stages during the removal off these two constituents from gas streams.

In the present paper, calculations are shown for three cases of stepwise letdown:

- a) Letdown to one intermediate stage at 64 psig resulting in a recovery of 81% of the CO \vdash H₂ which otherwise would have been lost in the scrubbing water.
- b) Letdown to 3 psig whereby 505 of the CO2 and 98% of the CO $/-\ \rm H_2$ is recovered for recycle to the gas generator.
- c) Letdown in two intermediate stages (64 psig and 10-21 psia) to recover 81% of the CO \not H_2 and a second stream representing 50% of the CO_2 .

The Production of Hydrogen and Synthesis Gas by the Oxygen Gasification of Solid Fuels, presented at the American Chemical Society Meeting, September 15-19, 1947.

-2- L-53

It is to be noted that figures, tables and graphs given are the result of calculations. The data, which are the basis for the calculations, were taken mainly from actual plant operation of a CO_2 pressure w ater scrubbing operation at the M.O.W. Plant, Louisiana, Missouri, and published solubility data. Although the calculations indicate the general feasibility of such an operation, it is believed that it would be desirable to conduct laboratory trials to confirm the results given. Also, it would be desirable to make a brief economic study of the proposed operation. It appears that the saving may amount to about 3-4% of the CO /— H_2 , corresponding to 0.2-0.3¢/1000 cu.ft. assuming the CO_2 saturation calculated from the M.O.W. data.

The data from the M.O.W. CO_2 scrubbing p lant, given in Appendix 1, show 51% CO_2 saturation. With these figures for a gas of the analysis

0.7% H₂S 10.0% CO₂ 44.7% H₂ 44.6% CO

the following figures were obtained by calculation, assuming for 100 cu.m. gas at 20°C and 25 ata. water circulation rate of 89 cu.m., corresponding to 0.67 gal/cu.ft.:

a) Letdown to 64 psig (5.5 ata.)

Letdown pressure 64 psig (5.5 ata.) Cu.ft. per 1000 cu.ft scrubbed gas

	Dissolved at 25 ata. in the scrubbing water	Released at 5.5 ata.	Remaining dissolved at 5.5 ata.	<pre>% of originally dissolved in 5.5 ata. release gas</pre>	Analysis of 5.5 ata. release gas
H ₂ S	7	0.3	6.7	4	0.5
CO ₂	100	8.0	92.0	8	10.0
H_2	18.1	15.0	3.1	83	45.5
CO	22.9	18.4	4.5	80	44.0
Total	148.0	41.7	106.3	28	100

SIM of the GO \neq H₂ can be recovered by partial letdown of the scrubbing water and the GO \neq H₂ loss reduced from 4.6% to 0.9%. The 5.5 ata, letdown gas can be recycled to the water scrubber, its GO₂ content (10%) being the same as that of the original gas, and its H₂S content (0.5%) being even lower.

b) Lotdown to 3 psig (1.2 ata.)

Lotdown Pressure & paig (1.2 ata.)
Gu.ft. per 1000 cu.ft. scrubbed gas

November and the state of the s	Dissolved at 25 ctc. in the scrubbing water	Released at 1.2 ata.	Remaining dissolved at 1.2 ata.	% of originally dissolved in 1,2 ata. release gas	Aralysis of 1.2 ata. release gas
Hzs	7	1.7	5,3	25	2
cos	100	50.0	50.0	50	54
H ²	18.1	17.7	0.4	38	20
CO	22.9	22.4	0.5	\$ 98	24
Total	148.0	91.8	56.2	62	100

50% of the originally dissolved $\rm CO_2$ is recovered together with 98% of the $\rm CO \neq H_2$. The $\rm CO \neq H_2$ loss in the scrubbing water is 0.1% of that originally present. The 1.2 ata. gas with 54% $\rm CO_2$ content could be recycled into the gasification.

c) Letdown in 2 intermediate stages

Cu.ft. per 1000 cu.ft. scrubbed gas

sis consequence of the second	Dissolved at 25 ata. in the scrubbing water	Roleased at 5.5 ata. (64 psig)	Released at O.65 ata. 2000 or l.4 ata. at 6000	Remaining dissolved	~ *****************
H ₂ S	. 7	0.3	1.8	4,9	
coz	100	8.0	49.0	43.0	
H ²	18.1	15.0	3.0	0.1	
CO	22.9	18.4	4.4	0.1	
Total	148.0	41.7	58.2	48.1	

. % of gas originally dissolved obtained in

	5.5 atta. release gas	0.65 ata. 20°C or 1.4 ata. 50°C release gas	Analysis of First	release gas Second
HZS	4	26	0.5	3.2
co_2	8	49	10.0	84.0
H_2	33	13,5	45 ₆ 5	5.1
CO	80	19	44.0	7.7
Total	28	40	100.0	100.0

In the gas of the first release stage 81% of the dissolved $CO \neq H_2$ can be recovered and recycled to the CO_2 scrubbing. In the second release stage 50% of the originally dissolved CO_2 is recovered in a gas with 84% CO_2 . This gas could be recycled to the gasification zone to increase the CO/H_2 ratio. In this case about 25% of the originally present H_2S returns to the gasification zone.

The detailed calculations are given in the following part of the report.
Water Scrubbing of Synthesis Gas

Gas to be scrubbed at 25 ata.

.		Solubility 200
0.7% H ₂ S	P H2S = 0.18 atm.,	2.53 1/1 atm.
10.0% 002	P CO ₂ = 2.5 atm.,	0.878 1/1 atm.
44.7% H ₂	PH ₂ =11.2 atm.,	0.0182 1/1 atm.
44.6% CO	P CO =11.12 atm.,	0.0232 1/1 atm.

Scrubbing at 20°C, solubility of $CO_2 = 2.2 \text{ 1/1}$ or 0.878 1/1 atm., for 100 cu.m. CO_2 (= 1000 cu.m. gas) with 51% saturation (see Appendix 1).

¹⁾ See TASCHENBUCH FUER CHEMIKER UND PHYSIKER

 $\frac{100}{2.2 \times 0.51} = 89 \text{ cu.m. H}_20 \text{ are required.}$

Then 89 cu.m. H₂O dissolve:

(89 x 0.18 x 2.58 = 41.3 cu.m.)	7 cu.m. H2S (total)	% by Vol. 4.7
(89 x 2.5 x 0.878 = 195 cu.m.)	100 cu.m. CO ₂ (total)	67.6
89 x 11,2 x 0.0182	18.1 cu.m. H ₂ (= 4.1%)	12.2
89 x 11.12 x 0.0232	22.9 cu.m. CO (= 5.1%)	15.5

In 1 cu.m. water the following gas quantities are dissolved:

 H₂S
 0.079 cu.m.

 CO₂
 1.12 cu.m.

 H₂
 0.203 cu.m.

 CO
 0.257 cu.m.

For the letdown in stages the following figures are obtained (p = $\frac{v}{\sqrt{V}}$

						·		1)
	ر = Solub.	•		V = 1.		1	V = 0.1		
Gas	Solub. 1/1 atm.	v	Patm =		u.m. d Released (p x V)	Patm =		Released (p x V)	
H ₂ s	2.58	0.079	0.022	0.057	0,022	0.029	0.076	0.003	
co2	0.878	1.12	0.597	0.523	0.597	1.146	1.01	0.11	
H ₂	0.0182	0.203	0.199	0.004	0.199	1.72	0.031	0.172	
င၁	0.0232	0,257	0.251	0.006	0.251	2.09	0.048	0.209	
Total		1.659	1.069	0.590	1.069	4.98	1.165	0.494	
			l .					i	

Millimeters, 6 mm. lines secented, cm. lines heary.

							.*	,	
			•						
			•	e for the					
				»					
		•	•						
v = 0	v =	0.2		v =			V =	2.0	
Patm =	Patm =		i.m. i Released (p x V)	Patm =		l.m. Rolessed (p x V)	Patn =	Dissolved (p x)	m. Reloased (p x V)
								\F\\/	15 17
0.031	0.028	0.073	0.006	0.030	0.0775	0.0015	0.017	0.045	0.034
0.031	0.028		0.006	0.030			0.017		
I	•	0.073	ŀ		0.0775	0.0015	0.017	0.045	0.034
1.28	1.04	0.073	0.21	1,21	0.0775	0.0015	0 .017 0 . 39	0.045	0.034 0.78
1.28	1.04 0.93	0.073 0.91 0.017	0.21	1,21	0.0775 1.06 0.054	0.0015 0.06 0.149	0.017 0.39 0.101	0.045 0.34 0.002	0.034 0.78 0.201
1.28 11.15 11.08	1.04 0.93 1.15	0.073 0.91 0.017 0.027	0.21 0.186 0.230	1,21 2,98 3,51	0.0775 1.06 0.054 0.081	0.0015 0.06 '0.149 0.176	0.017 0.39 0.101 0.127	0.045 0.34 0.002 0.003	0.034 0.78 0.201 0.254
1.28 11.15 11.08	1.04 0.93 1.15	0.073 0.91 0.017 0.027	0.21 0.186 0.230	1,21 2,98 3,51	0.0775 1.06 0.054 0.081	0.0015 0.06 '0.149 0.176	0.017 0.39 0.101 0.127	0.045 0.34 0.002 0.003	0.034 0.78 0.201 0.254
1.28 11.15 11.08	1.04 0.93 1.15	0.073 0.91 0.017 0.027	0.21 0.186 0.230	1,21 2,98 3,51	0.0775 1.06 0.054 0.081	0.0015 0.06 '0.149 0.176	0.017 0.39 0.101 0.127	0.045 0.34 0.002 0.003	0.034 0.78 0.201 0.254

With these data the following figures are obtained	With	these	data	the	following	figures	arg	obtained
--	------	-------	------	-----	-----------	---------	-----	----------

Letdown pressure ata.	23.5	7.7	5.ე	3,1	1.1	0.64	
Released % of Total	0	23.3	29.8	38.1	64.4	76.3	
H ₂ S	0	2.5	3.8	7.6	27.9	43.0	
co ₂	. 0	5.4	9.8	13.7	53.2	70.5	
H ₂	0	73.3	84.7	91.6	98.0	99.0	
CO	00	68.5	81.4	89.5	97.7	98.8	
Letdown gas analysis % H ₂ S		0.4	0.6	0.9	2.1	2.7	
coz		15.5	22.2	33.3	55.8	61.5	
н ₂		38.5	34.8	29.4	18.6	15.8	
CO		45.6	42.4	36.4	23.5	20.0	~
% н ₂ s/% со ₂	•	2,5	2.7	2.9	5.7	4.4	

From these figures a diagram, Fig. 1, is prepared. It shows under a) which amount of the originally dissolved total gas and of the individual components is released at various letdown pressures. Under b) the analysis of the released gas at various pressures can be seen.

Assuming that by partial release a gas with the same CO₂ content (10%) as the originally scrubbed gas shall be obtained, a letdown pressure of 5.5 ata. is required. Then the following figures are obtained from Fig. 1.

Letdown Pressure	5.5 ata. (64 psig)					
	% of originally dissolved in release gas	Analysis of release gas % by Vol.				
Total	28	100				
H ₂ s	4	0.5				
co ₂	8	10				
HS	. 83	45.5				
CO	80	44				

-7- L-53

This means that a recovery of 80% of the originally dissolved CO and H_2 is possible. The CO and H_2 loss of 4.6% based on CO \neq H_2 contained in the scrubbed gas can be reduced by 3.7% to 0.9%. The gas released at 5.5 ata. after compression can immediately be recycled to the CO_2 scru bbing plant.

In the gasification, assuming that CO_2 f rom the water scrubbing is required, the water can be let down either in one step, to obtain a CO_2 rich gas, or in two steps to obtain in the first letdown stage a CO /- H_2 fraction and in the second a CO_2 rich fraction. For the one stage letdown and the recovery of 50% of the originally dissolved CO_2 the followin g data are obtained from Fig. 1:

Letdown pressure

1.2 ata. (3 psig)

	<pre>% of originally dissolved in release gas</pre>	Analysis of release gas % by Vol.
Total	62	100
H_2S	25	2
CO ₂	50	54
H_2	98	20
CO	98	24

Recycling of 50% of the CO_2 originally d issolved means a recovery of 98% of the $CO \not\vdash H_2$ and recycling of 25% of the H_2S .

For the two stage letdown in the first stage a pressure of 5.5 ata. may be assumed. Then the following figures are obtained:

5.5 aba. (64 psig)

1.0

	% of originally dissolved in	In 1 cu.m. water of 8.5 ata.				
	roleass gas	Dissolved ouana	Released cu.m.			
Total	28	1.191	0.468			
H ₂ S	Ÿ.	0.076	0.003			
60 ₂	8	3.03	0.09			
12	33	0.034	0.159			
CO	30	0.051	0.206			

This gives for the second stage letdown the following figures (p = $\frac{v}{\sqrt{r}V}$):

	٦,		1	2 1		, V	= 0.5		V =	0.1	
Gas	Solub. 1/1 atm.	v	Patem =	Diss.		Paim :	= cua Diss. (p x λ)	Rel.	ł.	cua Diss. (p x λ)	Rel.
H ₂ S	2.58	0.076	0.021	0.055	120.0	0.025	0.064	0.012	0.028	0.073	0.003
co_2	0.878	1.03	0.55	0.48	0.55	0.75	0.656	0.374	105	0.925	0.105
\mathbf{z}_{H}	0.0182	0.034	0.033	0 .00 06	0.0334	0.066	0.0012	0.0328	0.29	0.005	0.029
со	0.0232	0.051	0.050	0.001	0.050	0.098	0.0023	0.0487	0.41	0.010	0.041
Total		1.191	0.654	0.5366	0.6544	0.939	0.7235	0.4675	1.778	1.013	0.178

With these data the following figures are obtained:

Second stage letdown .				1		
pressure ata.	1.78	0.94	0.65	1.78	0.94	0.65
	Palan	sed % of d	المسالمين ا	Palana	-3 d -5 1	
					ed % of to	
	before	seconi s	rtage 🕝 🗀	dissol	ved before	first stage
Total gas	15	39	55	11	28	4 0
H ₂ S CÖ ₂	Ŧ	16	27.5	4	15.5	26.4
	10	36	53	9	33	49
$^{ m H_2}$	85	96,5	93	14.5	16.4	16.7
CO	80.5	95,5	9 8	16.1	19.1	19.6
econd stage letdown				ļ		
as analysis AR2S	1.7	2.6	3.2			
%CO ₂	59.0	80°0	84.0			
% H ₂	16.3	7.0	5.1			
%co*	23	10.4	7.7			

If the second stage labels a is made at 8000 instead of the previously assumed 8000, the following figures result (p = $\frac{v}{\sqrt{v}}$)

, V = 1				7 2 0.5			, V =	V = 0.2			
Ca.s	À 600 Solub. 1/1 atm.	V	P _{ortin} i	ou. Viss. <u>(p.x.A.)</u>	n. Rsl. (p x V)	o _{o,tra} =	cuar Dissa (p x.A.)(Rel.	£ 200 Car-m	ou. Disa. (p x l)	Rel
H ₂ S	1,19	0.076	0.0346	0,041	0 .03 5	0.045	0.053	0.023	0.055	0.065	0.023
cos	O ₀ 359	1,03	0.78	0.27	e. 7 s	1.2	0.43	0,60	1.84	0.66	0,37
\mathbb{H}_2	0.015	0.034	0.033	1000.0	0.088	0.068	0.001	0.033	0-16	0.003	0.031
CO	0.0149	0.051	0.050	0.601	0.050	0.099	0.002	0.049	0.24	0.004	0.04
Teta.	<u>l</u>	1,191	0.88	0.313	0.878	1.41	0.486	0.705	3.00	0.732	0.45
	With these	data	the fol	llowing	ligures	for the	bacond	stage	letdown at	60°C	•

are obtained:

Second stage letdown pressure ata. (at 60°C) 3.0	1.4	0.9	3.0	1.4	0.9	
	stage solve			Released in second stage as % of total dissolved before first stage			
Total gas	41	63	7 8.5	29.5	45.5	56.5	
H ₂ S	14.5	30	46	14	29	44	
co ₂	36	58.3	73.8	33	53.7	68	
H ₂	91	97	98	15.5	16.5	16.7	
CO	92	96	98	18.4	19.2	19.6	
Second stage letdown gas analysis				e.			
%H2S	2.4	3 "3	4.0				
%c02	80.5	85.2	86 ~5				
7H2	6.8	4.6	3.8				
%co	10.3	6.9	5.7				

APPENDIK 1

CO2 Scrubbing, M.O.W., December 14 & 15, 1943

Scrubbing water GFM = 1051

= 3.97 ev.m./min.

Gas

SCFT/11 = 3500

399.4 cu.m./min.

5 002 in out gas

0,20

Temp. of water

430F

± 6°€

% CO2 in in gas

17.3

40 cu.m. $H_20/1000$ cu.m. gas with 173 cu.m. CO_2 p = 490 psig = 35.4 atm.; r_{CO_2} = 6.12 atm.

Dissolved 173/40 = 4.33 cu.m. CO_2 /cu.m. H_2O resp. $\frac{4.33}{6.12}$ = 0.708 cu.m./cu.m. \times etm.

Solubility 6°C:

- a) 8.5 cu.m./cu.m. H20
- b) 1.377 ou.m./cu.m. x atm.

Saturation:

(a) =
$$\frac{4.33}{8.5}$$
 = 51%

b) =
$$\frac{0.708}{1.377}$$
 = 51%