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PRODUCTION OF SYNTHESIS GAS AND HYDROGEN
BY THE STEAM-IRON PROCESS:

Pilot Plant Study of Fluidized and Free-Falling Beds!
by

S. J. Gasior,2 A, J. Forney,? J. H. Field,3

Daniel Bienstock,? and H. E. Benson*

SUMMARY

Pilot plant studies showed the technical feasibility of fluidized-bed
operation for producing hydrogen and synthesis gas by the steam-iron process,
A mixture of iron and iron oxide from 20- to 100-mesh was partially reduced
with a simulated producer gas and then oxidized with steam and/or carbon
dioxide,

Results of tests show the effects of pressure, temperature, bed height,
gas-to-solids ratio, type of iron oxide, and composition of gas on the gas
and solids conversions during reduction and oxidation.

A baffled free-fall solids system was also found operable. The short
residence time of about 5 seconds limited conversion of the solids.

INTRODUCTION

Hydrogen has been produced commercially on a small scale for many years
by the Messerschmitt® and Lane® processes. 1In both processes, a fixed bed of
granular iron oxide is treated with a reducing gas such as producer gas and is
then oxidized with steam to produce hydrogen. Because of the inefficiency of
the cyclic operation and the low reaction rate resulting from the necessary
use of large granules of iron oxide in the fixed bed, the cost of producing
hydrogen by this method is relatively high. Use of fluidized beds for the

!Manuscript completed January 1961.

2Chemical engineer, Pittsburgh Coal Research Center, Bureau of Mines,
Pittsburgh, Pa.

SProject coordinator, Pittsburgh Coal Research Center, Bureau of Mines,
Pittsburgh, Pa.

*Formerly with Bureau of Mines, Pittsburgh, Pa.; presently with Peoples
Natural Gas Co., Pittsburgh, Pa.

SMesserschmitt, A., Process of Producing Hydrogen: U.S. Patent 971,206,
Sept. 27, 1910.

®Lane, H., Process for the Production of Hydrogen: U.S. Patent 1,078,686,
Nov. 18, 1913.




steam-iron process has been proposed by many investigators’ 10 to improve the
gas-solids contact and to provide for continuous operation by movement of the
solids between the oxidation and reduction zones. Because small particles
with high specific surface areas are used in fluidized operation, a faster
reaction rate was anticipated than that for fixed-bed operations.

The Bureau of Mines constructed a pilot plant to study the continuous
steam-iron process as a possible means of producing synthesis gas or hydrogen
more economically than by oxygen-steam coal-gasification processes, As pro-
duction of synthesis gas containing carbon monoxide and hydrogen is of
interest to the Bureau, several experiments were made with carbon dioxide
and steam to oxidize the reduced iron and thus produce synthesis gas rather
than hydrogen. The supposed advantage of producing hydrogen and synthesis
gas by this method lies in the elimination of investment and operating cost
of the oxygen plant required for modern gasification processes.

Both fluidized and free-falling solids systems have been investigated.
In free-fall, the solids are dropped through the reaction zone countercurrent
to the rising gas. The solids are impeded only by a spiral rod arrangement
in the reactor, which serves to disperse the solids and thus minimize gas or
solids channeling.

Operation of the steam-iron system using either the fluidized bed or
free-fall of solids involves a continuous flow of an iron and iron oxide
mixture through a reduction unit where it is partially reduced with producer
gas. The flow of solids continues through an oxidizer where the solids are
oxidized with steam or steam and carbon dioxide to produce hydrogen or syn-
thesis gas. The iron and iron oxide mixture is then returned to the reduction
unit to repeat the process. To approach countercurrent operation the solids
are fed at the top of the reaction zone and the gas at the bottom. The object
of the experimental program was to determine the operability of the process
and the maximum gas utilization and solids conversion obtainable in each step.
From equilibrium and economic considerations, the most suitable operating
range for the oxidation and reduction is between 700° and 900° C. and at
pressures up to 300 p.s.i. Therefore, the following goals were established
for the operation of the process:

1. Utilization of approximately 65 percent of the hydrogen and carbon
monoxide in producer gas while reducing iron oxide from 5 to 35 percent at
about 750° C. This would result in producer gas consumption of about 6.6
cubic feet per pound of solids.

2, Utilization of about 55 percent of the steam or steam and carbon
dioxide during oxidation of the solids from 35 to 5 percent reduced at about
750° C,

7Barr, Frank T., High-Pressure Hydrogen: U.S. Patent 2,449,635, Sept. 21,
1948,
8Marshall, W. H. Jr., Hydrogen: U.S. Patent 2,198,560, Apr. 23, 1940.
°Reed, H. C., and Berg, C. H., Hydrogen: U.S. Patent 2,635,947, Apr. 21,
1953.
19Johnson, W. B., Synthesis of Methane: U.S. Patent 2,686,819, Aug. 17,
1954,



These gas conversions are about 5 percent less than those defined by
equilibrium at 750° C.

Thermodynamic Equilibrium Considerations

The equilibrium relationships obtained from the literature'! for the

systems Fe,O, -H,-FeO-H,0 and FeO-H,-Fe-H,0 for temperatures of 500° to 900° C.
are shown in figure 1 and table 1. Figure 2 and table 1 show the equilibrium
relationships for the systems Fe,0Q, -CO-FeO-CO, from 700° to 900° C.!2 Equi-
librium relationships were calculated to include the 500° to 700° C. range.

TABLE 1, - Thermodynamic data for steam-iron process

Equilibrium [Oxidation |Equilibrium |Oxidation
Temperature, ratio, of CO, ratio, of H,,
°C. Phase co, /co percent H, O/H, percent
300 . ieieeinnennnn, Fey0, /Fe 1.06 51 0.214 18
550 0iieiiesiiian. | Feg0, /Fe 1.00 50 .283 22
Fey0, /FeO 1.05 51 461 32
60000...000!'-‘!-.. FeO/Fe .91 48 .334 25
Fey0, /Fe0 1.68 63 1,12 53
700..--...-...--.-. FeO/Fe .678 40 .420 30
Fe;0, /FeO 2.40 71 2.35 70
800.«evvvvveruennas | Fe0/Fe .552 36 .501 33
Fez0, /FeO 3.24 76 - -
900...--....---.... FeO/Fe '466 32 .580 37

The equilibrium data established the theoretical limiting conversions for
reduction and oxidation. For example, hydrogen can reduce FeyO, to iron at
500° C. until the H,0/H, ratio reaches 0.,21/1 or about 18 percent of the
hydrogen is converted to water. Beyond about 560° C., FeO is formed first in
the reduction of FeyO,. Thus at temperatures above 560° C., the limiting con-
versions for both changes in solid phases must be considered., For example, at
800° C., Feg0, is reduced to FeO on reaction with hydrogen until the H,0/H,
ratio reaches 2.35/1 or 70 percent of the hydrogen is converted to water vapor.
However, for the reduction of FeO to iron at 800° C., the equilibrium H,O/H,
ratio is 0.51/1, and only 33 percent of the hydrogen can be converted to water
vapor. This shows that the Fey,0, phase must be present to yield high gas
conversions in reduction; conversely, the iron phase must be present to yield

llEmmett, P. H., and Shultz, J. F., The principle cause of discrepancies
among equilibrium measurements of the systems Fegy0, -H, -Fe-H, 0,
FezO, -H,-FeO-H,0, and FeO-H,-Fe-H,0: Jour. Am. Chem. Soc., vol. 55,
1933, pp. 1376-1389.

12Eastman, E. D., and Evans, R. M., Equilibria Involving the Oxide of Iron:
Jour. Am. Chem. Soc., vol, 46, 1924, pp. 888-903.
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The equilibrium relationship applies

equally to the conversion of carbon dioxide to carbon monoxide or water to

hydrogen when oxidizing iron or FeO.

Conversions below theoretical are to

be expected, particularly in the reduction of iron oxide with producer gas.
The presence of moisture and carbon dioxide in the producer gas restricts
the utilization of hydrogen and carbon monoxide.

Chemical and Free Energy Change Considerations

The steam-iron process involves the following chemical reactions:

Fe;O, + 4H, — 3Fe

FeO + Hy

FeO + CO

Fe304 + Hy

Fe, O4

Feao4

(NI

+ 4H,0 (fig. 3)
Fe + H,0 (fig. 4)
Fe + CO, (fig. 5)
3Fe0 + H 0 (fig. 6)
3Fe + 4CO, (fig. 7)
3Fe0 + CO, (fig. 8)
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The effect of temperature on the free energy change (AF) and enthalpy (AH)
for each of the above reactions is shown in the figure listed opposite the
reaction. The temperature-versus-AF plot indicates whether or not the reac-
tion can take place within the temperature limits specified, For example,
the data in figure 3 show that the reaction FeyO, + 4H; = 3Fe + 4H,0 cannot
be expected to proceed to the right at 400° C. owing to the high positive
value of the free energy change for the system, Conversely, the reaction can
be expected to proceed to the left spontaneously.

Calculations of the theoretical heat requirements for the steam-iron
reactor are shown in the appendix. The choice of reaction temperatures was
based upon equilibrium data, kinetics, and practical experience obtained
from pilot plant studies. Because equilibrium data indicated that conver-
sions increased with an increase in temperature during reduction and increased
with a decrease in temperature during oxidation, conditions were chosen so
that the solids-inlet and gas-outlet temperatures were 800° C. for reduction
and 750° C. for oxidation. Theoretical gas conversions at these conditions
are 70 percent for reduction and 60 percent for oxidation, accompanied by an
incremental solids conversion of about 30 percent. As shown in the appendix,
to sustain the endothermic reduction, the temperature of the producer gas
to the reductor must be about 940° C. Because the oxidation reaction is
exothermic, the temperature of the inlet steam is only 416 ° C.
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EXPERIMENTAL PROCEDURE

Description of Apparatus: Reactor

The experimental work was conducted in the pilot plant shown in figure 9;

the flowsheet for the system is shown in figure 10.

One reactor is provided

so that either reduction or oxidation is conducted at one time. The original
reactor was made from a 10-foot length of 2-inch schedule 160, 347 stainless

FIGURE 9. - Pilot Plant for the Preparation of Synthesis Gas
or Hydrogen by the Steam-lron Process.

steel pipe. After about 10,000 hours of service at 600° to 900° C. and 15 to

300 p.s.i.g., consider-
able metal creep had
occurred, and a new
reactor, 20-feet long,
fabricated from 2-inch
schedule 160, 321 stain-
less steel pipe, was
installed.

Heat is supplied
by individually con-
trolled nickel-chromium
alloy wire-wound heat-
ers. The temperature is
held within a * 10° C.
range up to 900° C. The
solids are gravity-fed
by a star feeder into
the top of the reactor
and are removed from the
bottom through a level
control-discharge valve.
A spiral rod (see fig.
11) inserted into the
reactor helps disperse
the solids and reduce
slugging.

The gases are
metered into the bottom
of the reactor and flow
upward through the sol-
ids. The reacted gas
passes from the top of
the reactor and enters
the tail gas system., It
flows through a series
of traps and filters
where entrained solids
and condensibles are
collected, The gas then
passes through a pressure
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FIGURE 10. - Schematic Flowsheet of the Pilot Plant for the Preparation
of Synthesis Gas or Hydrogen by the Steam-Iron Process.

letdown valve where the pressure is reduced to about 0.3 p.s.i.g. The prod-
uct gas is metered at low pressure and vented. A recorder-analyzer continu-
ously monitors the carbon dioxide content of the gas. A representative
sample of the product gas is obtained from the exit-gas system for analysis
by mass spectrometry. A gas saturator located in the feed-gas line permits
the addition and control of the water vapor content of the simulated producer
gas during reduction experiments.

The superficial linear velocity of the gas in the reactor is about 0.6
foot per second for proper solids fluidization. At higher velocities the
solids tend to blow out of the reactor, and at lower velocities they tend
to cake or agglomerate, depending upon the temperature and degree of reduc-
tion. The solids-bed height is maintained at the desired level by an air-
actuated discharge valve. The valve is activated by the pressure drop across
the fluidized bed. The rate of solids flow through the reactor depends upon
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-

the solids feed rate., Solids residence
time is therefore dependent upon the feed
rate and the bed height. The gas velocity
during solids free-fall tests is limited to
the terminal settling velocity of the sol-
ids. Velocities as high as 3 feet per
second with steam were attained during oxi-
dation, and as high as 5 feet per second
with hydrogen during reduction, with very
little solids carry-over. Solids measur-
ing 20 to 100 U.S. Tyler mesh were used.

Oxidation is performed with steam or
carbon dioxide or with mixtures of these
gases in ratios of 3, 2, and 1. Steam is
obtained in the desired quantities by
metering distilled water into the gas pre-
heater, which serves as a boiler. The
preheater is a stainless steel pipe 1 inch
in diameter and 36 inches long. A finned-
type divider constructed of strips of steel
is inserted into the pipe for better heat
transfer. Heat is supplied to the pre-
heater by strip heaters. The carbon dioxide
is obtained from high-pressure cylinders.

Composition of Simulated Gas

Simulated producer gas is blended to
the following composition and supplied to
the steam-iron system for reduction:

Percent Percent
Component: by volume Component: by volume
Co,.... 5-6 H,O0.... 0-3
CO..... 9-30 CH*.... 0-7
Hyoouuo 10-27 N..... 49-54

Composition of Commercial Producer Gas

of commercial producer gas.®

The composition of the simulated producer gas is based on the composition
Analyses of producer gases from the principal

solid fuels are approximately as follows:

Gas composition, volume-percent
Fuel: Co, co H, CH, N,
Bituminous coaliseesseeseeanccans 4,7 25.0 14.5 | 3.1 52.7
COKB.ivineooasnsessancsssosssnsanns 3.6 31.0 9.3 .7 44,3
Anthracite.sieeceseeessoosssvesasns 5,0 27.1 16.6 .9 50.4%4

13Battelle Memorial Institute, Economics of Fuel Gas From Coal:

McGraw-Hill

Book Co., Inc., New York, N.Y., 1950, p. 1l4.
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FIGURE 12. - Blender Used for Mixing lron Oxide Solids for the Steam-Iron Process.



Sampling Procedure and Analysis

Solids Blender
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At the completion of each experiment the solids are transferred from the
bottom receiver hopper to the blender shown in figure 12. The solids are
under an inert atmosphere during transfer. After blending for one-half hour
a sample is taken.

FIGURE 13. - Apparatus for Analyzing Solids by Steam Oxidation for the Steam-lron Process.
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FIGURE 14. - Schematic of Apparatus for Analyzing Solids by Steam Oxidation
for the Steam-lron Process.

Solids analyzer

Because of the many solids analyses required for control purposes, a
procedure for the relatively rapid determination of the degree of reduction
and carbon content of the solids was developed as follows: A 3-gram sample
is charged to the oxidizer shown in figures 13 and 14. The sample is oxidized
for 2 hours at 900° C. with steam flowing at about 0.3 cc. per minute. Gases
evolved from the oxidation are collected in a 5-liter flask by displacement
of a saturated sodium sulfate solution. At the completion of the oxidation,
the entire system is purged with 500 cc. of helium. An Orsat analysis of the
gas is made, From the volume and composition of the gas, the degree of
reduction and the carbon content of the solids can be calculated as shown in
the appendix.

Solids Sampler

A spot sample of the solids is obtained during each steady-state period
using the solids sampling apparatus shown in figure 15. The spot sample is
processed as described above, except for the blending.

Comparison of Chemical and Indirect Method of Analysis

As a check on the indirect or gas evolution method, chemical analyses of
the solids are also made to determine the degree of reduction and the carbon
content of the solids. The iron content of the solids is determined oxodimet-
rically with dichromate; the carbon content, gravimetrically by combustion.
Usually the results from the two methods agree as follows:




