liquid-nitrogen bath surrounding the trap was gradually lowered, and the escaping gases were collected in a 5-gallon sample vessel containing gas-saturated brine. Following removal of the gases, the hydrocarbons, which were liquid at 10° C., were collected in an ice-cooled trap and weighed, or measured, and the weight calculated from the specific gravity.

In some of the more recent tests (those having "X" before the test number), the vapors from the converters, after passage through the air-cooled and ice-cooled traps were led through a column of active charcoal in an 18-inch (length) by 2-inch (diameter) brass vessel When iron catalysts were tested, carbon dioxide was removed before the gas entered the charcoal adsorber. The continuously collected sample of the exit gases from the charcoal adsorber and a sample of vapors periodically recovered from the charcoal by steaming were analyzed by use of a mass spectrometer. Seven-component mixtures containing H2, CO, and C1 to C5 hydrocarbons could be analyzed with the desired accuracy. The liquid product recovered from the steaming of the charcoal was collected and weighed. This liquid product probably contained only little dissolved C2 to C4 hydrocarbons, whereas the liquid recovered by cooling to liquid-nitrogen temperatures and subsequent stabilization at 0° C. contained an appreciable quantity of these hydrocarbons.

The substitution of adsorption on charcoal for condensation at liquid-nitrogen temperatures and the independent instrumentation of each unit with geared needle valve and indicating flow meter for setting the feed gas rate, recording flow meter, back-pressure regulator, automatic pressure control on the liquid-vapor bath, combined with multiple-point temperature recorders, made it possible to operate these units with only two 8-hour shifts of three operators per shift.

SYNTHESIS-GAS MANUFACTURE

The gas used in the Fischer-Tropsch synthesis was manufactured at the Bureau of Mines in the water-gas generator previously described. Natural gas, steam, and carbon dioxide were passed over a nickel catalyst at 1,000° C. to obtain the two gas mixtures ordinarily used in the synthesis, that is, $2H_2 + 1CO$ for cobalt catalysts and $1H_2 + 1CO$ for iron catalysts. The proportions of steam and carbon dioxide were varied to produce the desired hydrogen: carbon monoxide ratios. The synthesis gas contained 0.5 to 1.0 percent of methane and the same percentage of nitrogen, and less than 0.1 percent of carbon dioxide.

CONDITIONING PROCEDURES

All the catalysts as charged in the test converters were present in the form of oxides, oxide-hydrates, carbonates, or oxide-carbonate mixtures. Before use in the synthesis they were subjected to special conditioning treatment, which was usually a two-step procedure. The first step was the reduction of the catalyst. Using hydrogen at atmospheric pressure, two reduction procedures were employed. In the slow method, hydrogen was passed over the catalyst at a space velocity (volume of gas per hour per bulk volume of catalyst) of about 20 for about 24 hours. During the first 20 hours the temperature was gradually raised to a minimum of 360° C. and held at that point 4

hours longer. In the very early experiments before the conditions were standardized, reduction periods were sometimes 40 hours or longer, and temperatures sometimes rose as high as 370° C. Most of the iron catalysts and half of those in the cobalt group were reduced by this slow procedure. The rest of the cobalt catalysts were reduced by a rapid procedure in which the catalyst was heated to 400° C. in an atmosphere of nitrogen. Hydrogen was then run in for 2 hours at a space velocity between 3,000 and 3,500.

After reduction, the catalysts were in a highly active state and produced large amounts of methane and minor amounts of higher hydrocarbons from hydrogen-carbon monoxide gas. An induction procedure was desirable to reduce the methane yield and increase that of normally liquid hydrocarbons. Induction was carried out with synthesis gas by one of three procedures, identified as the rapid, intermediate, and slow methods. The rapid method required a period of 10 hours at atmospheric pressure to bring the catalyst up to the final operating conditions. The induction was started at a temperature at which the contraction was not greater than 20 percent, and this temperature was maintained for 2 hours. This initial temperature was usually 160° C. for cobalt catalysts and 225° to 230° C. for firon catalysts. The temperature was increased to a value at which the contraction was 30 percent and held at that point for 2 hours. In this manner the contraction was permitted to increase by 10percent increments to 60 percent or more. If, however, a temperature of 200° C. in the case of cobalt catalysts, or 260° C. in the case of iron catalysts, was reached with little or no contraction, no further temperature increases were made, and the catalyst was reported to be inactive.

In the intermediate induction procedure, the reaction was started at a temperature at which the contraction was not greater than 30 percent. The induction period was approximately 36 hours. During this time the contractions gradually increased to a conversion of 50-60 percent, or the temperature rose to 260° C. for iron catalysts or 200° C. for cobalt catalysts, whichever condition was reached first. Most of the inductions by this procedure were conducted at atmospheric pressure; however, in a few cases the pressure was 100 pounds per square inch.

The slow induction method, used primarily for cobalt catalysts, involved a rigid temperature schedule. Following reduction, the temperature in the converter was dropped to 150° C. and synthesis gas introduced at atmospheric pressure at a space velocity of 100 at NTP. After a half hour at 150° C., the temperature was increased gradually and uniformly so that at the end of another hour it was 175° C. After 48 hours at 175° C., the temperature was increased to 180° C. and maintained there for 24 hours, and then increased to that temperature (usually 185° C.) necessary to give 70-percent contraction. During operation, contraction was maintained at about 70 percent by increasing the temperature to a maximum of 200° C. This induction procedure is identified as the "slow method with temperature schedule." A modification of the slow method, using a contraction schedule, was used in some of the experiments with cobalt catalysts. After the synthesis gas was passed over the reduced

⁴⁶¹ Storch, H. H., Hirst, L. L., Fischer, C. H., and Sprunk, G. C., Hydrogenation and Liquefaction of Coal, Part I: Bureau of Mines Tech, Paper 622, 1941, pp. 18-23.

catalyst at 150° C. for 1½ hours, the temperature was increased until the contraction was between 45 and 50 percent or the temperature was 175° C. After 48 hours the temperature was increased to 180° C. as an upper limit for 24 hours. During operation, the contraction was held between 65 and 75 percent.

Iron catalysts 10C, 47C, and 80A were simultaneously reduced and inducted by a special procedure, using H2 + CO gas mixtures at atmospheric pressure, followed by operation at elevated pressure. The details are given in table 22.

Table 22.—Simultaneous reduction-induction of iron catalysts by special procedures

Catalyst NoTest No	I		_
Test NoFirst period:	- 10C	47C	- 80A.
First period:	.1 62	80	81.
Gas mixture		1	- 01.
Gas mixture Time, hours Temperature, ° C	- 1月2十1CO	1H2+1CO	1Tr 14G0
Temperature 9 C	- 15	15	1H2+1CO.
Processo	.1 240	235	
Space velocity, NTP. Second period:	Atmospheric_	Atmospheric.	
Second period:	150	200	
Gos mistima		400	200.
Gas mixture Time, hours	2H2-1CO	OFF LIGIO	
Time, hours Temperature, ° C	62.5	2H ₂ +1CO	2H2+1CO.
Temperature, ° C Pressure	240	25.5	28.5.
Pressure Space velocity, NTP	Atmount	240	240.
Space velocity, NTP Operating conditions:	Atmospheric.	Atmospheric	Atmospheric.
Operating conditions:	100	200	200.
Gas mixture Temperature, ° C	917 1 0000		111
Temperature, ° C Pressure, nounds per square fact.	2Π₂+3CO		1日2十100.
Pressure, pounds per square inch.	250	960	
Space velocity, NTP	100-135	100	100.
	150	200	200.
			-UU-

Three iron catalysts, 10K, 10M, and 47F, tested in tests X12, X15, and X16, respectively, were reduced by a modification of the slow reduction method as follows: The temperature was slowly raised to 360° C. over a period of 10 hours while hydrogen flowed over the catalyst at a space velocity of 100 per hour. After 4 hours at 360° C. the reduction was concluded. The induction procedure followed a contraction schedule. Synthesis gas was passed over the reduced catalyst at 200° C. and 100 pounds per square inch gage pressure for t hour. Contraction was maintained between 45 and 50 percent for 3 days by increasing the temperature at the rate of 3° C. per hour. After the 3-day period an operating contraction, not greater than 60 percent, was maintained by increasing the temperature 20° C. per hour. The maximum operating temperature was 255° C. The tests were operated at a pressure of 100 pounds per square inch.

REACTIVATION PROCEDURES

Standard treatment of the catalysts included reactivation once a week while products were being recovered. This reactivation was used also at any time that the contraction during a test fell below 60 percent for cobalt or 50 percent for iron catalysts, and remained below these limits for 3 hours at maximum permissible temperature (200° C. for cobalt and 260° C. for iron catalysts). Hydrogen was passed over the catalyst at operating temperature for a short time, and then the temperature was raised 10° C. above the operating temperature for 2 hours. The temperature was then lowered to 170°

C. for cobalt catalysts and to 220° C. for iron catalysts. Synthesis gas was then admitted and the temperature slowly increased until the desired contraction was obtained.

In a few instances more drastic reactivation procedures were used. One of these consisted in a re-reduction with hydrogen of the catalyst at 400° C. for several hours. Another involved reoxidation by air or oxygen followed by re-reduction with hydrogen. Following these more drastic reactivations it was considered necessary to reinduct the catalyst. Reactivation by solvent extraction was not used in any of these tests.

EFFECT OF VARIATIONS IN METHODS OF CATALYST PREPARA-TION, REDUCTION, INDUCTION, AND SYNTHESIS CONDITIONS ON ACTIVITY AND DURABILITY

IRON CATALYSTS

Data on iron-catalyst preparation conditions are given in tables 16 to 19, inclusive, and on activity in the synthesis in tables 23 to 27. inclusive. The discussion that follows includes an abstract of the results of recent work by the Kaiser Wilhelm Institut für Kohlenforschung, Mülheim-Ruhr, Germany, 88 on preparation and induction and testing of iron catalysts.

^{**} Leva, M., Translations of German Documents on the Development of Iron Catalysts for the Fischer-Tropsch Synthesis, Part I. (Technical Oil Mission Reel 101, Document PG-21559-NID, Report on the Middle-Pressure Synthesis with Iron Catalysts): Office of Synthetic Liquid Fuels Report, Pittsburgh, Pa., 1947, pp. 1-48.

[Al] tests made with peller catalysts: 1Hz + 1CO at atmospheric pressure.¹ All metal ratios are atomic except in cases of catalysts 15A and 44A, where they are weight ratios] Table 23.—Tests on iron catalysts

	1	4 e	I de la companya da l	0	· IMIT				BUREAU OF A	LINES	RESEARCE	i.
weight ratios]		Is Space.	0.00 1		2.96 3.04 2.26 1.97		1, 99 1, 28 1, 83	. 1.24.6.4.2.1. . 1.24.6.4.2.1. . 03.27.0.7.0.1.	88.22 11.22 12.24 12.25 13.25	4. c. 8. c.	3.33	1, 96 6, 92 2, 95 5, 52
are weigh		Liquids plus solids solids t strams t print cubic cubic	4.5 4.5 5.1.2 55.2		18.5 22.7 21.7 27.5 18.9	*	28.3 21.1 12.4	22, 11,24,0 11,34,0 11,58,0 11,5,0 11	4 8 6 4 4 6 8 8 6 9 6 9 6 9 6 9 6 9 6 9 9 9 9 9 9	11.9	10.4 8.6 18.6	16.3 18.8 18.8 54.7
1 44A, where they s	H. Carolina	Ci-Ci gases, gran	Poor activity do do do do do do do do do d		30.3 23.1 9.0 Poor activity		52.4 24.4	25 25 25 25 25 25 27 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 29 29 29 29 29 29 29 29 29 29 29 29	Poor acrivity 60 60 60 60 60 60 60 60 60 60 60 60 60	Poor activity	22.2 11.6 Poor activity do	21.1 21.8 18.2 Poor activity.
15A an		Con- trac- tion, percent;	32 32 44 45 45 45 112 112 112 112 112 112 112 112 112 11		23,33,33,33,33,33,33,33,33,33,33,33,33,3			128282824 178228824 1 18228824 1 182288	1 188 188 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1	: :		23 24 21 25 21 31 18.2 Poor
catalysts		Space veloc- ity 2	134 172 172 144 160 160 167 199 199 199 197 193 193		160 140 140 104 104 104		108 108 1148 1148	141 161 105 156 175 175 105	1882 1882 1882 1883 1883 1883 1883 1883	189	154 112 179 1120	150
cases of		Tem- pera- ture,	244 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		288888888888888888888888888888888888888		262 262 260 247 261	2558 2558 2558 250 250 250 250 250 250 250 250 250 250	2222 2222 2222 2222 2223 2223 2233 223	245	255 255 255 255 255 255 255 255 255 255	252 242 255 242 242
except in STS		Dura- tion of test, hours	20.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	59.0 113.6 128.0 124.6 21.4 21.4 39.4		25.55.25 12.55.25 12.55.55 5 5 7	21.24.25.25.25.25.25.25.25.25.25.25.25.25.25.	12.0 11.1.8 11.1.8 10.9.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10	245.0 21.5 12.5	 	97.8 45.0 114.6 59.0 100.0
are atomic		Test No.	58a 80a 80a 77a 80a 78a 55a 55a 83a 45a 63a 83a 83a 83a 83a 83a 83a 83a 83a 83a 8	CATALYSTS	29a 29a 29a 22a 22a		<u> </u>		24 4 5 2 2 3 4 5 2 2 3 4 5 2 2 3 5 2 3 5 2 5 2 5 2 5 2 5 2 5 2 5			58a 58a 673a 73a 75a
essure. All metal ratios are atomic except in cases of eatalysts 15A and 44A, where they NPROMOTED IRON CATALYSTS	procedures	Induction	Intermediate do levee table 22 Intermediate do do do do do do do do do d	PROMOTED IRON CATA	IntermediateRapiddodo		Intermediate	do	kapid do Intermediate	doRapid	IntermediatedodoRapidIntermediate	-do-
TNPRC	Conditioning	Reduction	Slow Special Slow Special Slow Special Slow Special Slow I I Slow I Slow I	PROMO	Slow. do.		do F	do 15		dodo	do	do.
			Fero, ex FeCis, KrCos. do. Fero, ex Fe(Xos)s, XaOH Fero, ex sponge from Fero, ex Lavino from oxide i. do. Fero, ex limonite ore Fero, ex Fer(Sos)s, genited Fero, ex Fer(Sos)s, genited Fero, ex Fe(Xos)s, genited Fero, ex Fe(Xos)s, genited Fero, ex Fe(Xos)s, genited Fero, ex Fe(Xos)s, NagCos.		5A Fe ⁺³ ; Cu::4:1, ex Fe(NO ₃) ₃ , Cu(NO ₃) ₁ , KOH. 5A Fe ⁺³ : Cu::4:1, ex FeCl ₃ , Cu(NO ₃) ₁ , KOH. 6A Fe ⁺³ : Fe ⁺² : Cn::8/3:4/3:1, ex FeCl ₃ , FeSO ₄ .7H ₂ O ₄ .		Fets: Cu :: 4:1, ex Fe(NO2)3, Cu(NO2)3, NH,OH, (NH,)2CO2. Fets: Cu :: 4:1, ex Fe(NO2)3, Cu(NO3)3, NaOH, Na2B,O7.	FeO : ThO ₂ :: 5: 1, ex FeSO ₇ 7H ₂ O, Th(NO ₃), NaOH Fe ⁵ : Cu : Zn :: 4:1:1, ex Fe(NO ₃), Cu(NO ₃) ₂ Zn(NO ₃), Fe ⁵ : Cu : Al :: 4:1:1, ex Fe(NO ₃), Cu(NO ₃) ₃ Al(NO ₃), Fe ⁵ : Cu : Al :: 4:1:1 ex Fe(NO ₃), Cu(NO ₃), Con(NO ₃),	K4C03.	Fe ⁺⁷ : Cu :: 4:1; FeSO, (anhydr.), CuSO,, K;CO ₃ Na ₂ B ₄ O ₃ . Cu :: 4:1; FeSO, (anhydr.), CuSO ₄ , NaOH, Na ₂ B ₄ O ₃ .	Fe ⁴⁴ : Co :: 4: 1; Fe ⁴⁴ +Co : Cu :: 4: 1, Fe ⁵ O ₁ (anhydr.), Co(NO ₃), Cu(NO ₃), Cellie, K.CO ₃ , Na:B ₄ O ₃ , Fe ⁴⁴ : Cu :: 4: 1; Fe ⁴ (NO ₃), More Cu :: 4: 1; Fe ⁴ (So), Cu :: 4: 1; Fe ⁴ (NO ₃), Th(NO ₃), KiCO ₃ .	Fe ⁴³ : Cu :: 4 : 1; FeCl ₂ , CuCl ₃ , Co(NO ₃) ₂ , Tb(NO ₃) ₄ , KgCO ₃ . Fe ⁴³ : Cu :: 4 : 1; FeCl ₂ , CuCl ₃ , KgCO ₃ .
		Cata- Nyst No.	47.4 47.7 47.7 48.4 48.4 50.8 50.8 68.4 69.4 70.4 80.4 81.4	į	5.3 6.4		9A	20.4 21.4 22.4		24C 25A 1	894 404 434 1444 514	67.4 Fe 85.4 Fe

1 Tests 57, 73, and Sig were operated at 100 pounds gage pressure.

2 Volume of synthesis gas per volume of catalyst per hour.

3 Stabilized at 0° C.

4 Grams per cubic meter of feed gas.

8 Examine unibers of the figuid products ranged from 35 to 173, the average being 94. Specific gravity of the liquid products ranged from 0.673 to 0.760, with the average at 0.725.

8 Examine unibers of the liquid products ranged from 10 to 10

[Pellets:1H1+1CO synthesis gas; slow reduction and intermediate induction for all tests except No. 62 (see table 22 for special conditioning procedure)] Table 24.—Tests on unpromoted iron catalysts

	5 2	.] .	cent	, oken	nin -	0.4	10.00 44	သက် သောက်လေ	1.6	00 00 00 00 00 00 00 00 00 00 00 00 00	ရှိလ လောက	6,89 614	4 II.	444 6 – 6	? !
	ed gase		voiume percent	оріхонопі поц	neO	36.2	30.05 0.05 0.05	27.2	57.6	52.7	28.9 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	35. 2 32. I		46.7	
	Unreacted gases	12/2	30 /	trogen	ΛĦ	63.4	88.0	45.2	8.6	7. O c	0 -1 c	- အတွင် တွင်	6 5 8 6 0 6 6 0 6	46.2	
			qnə	199J 'əunioa 189	o.),	18. 43	242	15.94	15.15	00.0	15.18	1.3	27.7	6.9 12.9 13.0	3.88
-	biu g s	pii 1 nodu	800,I	ploiv outh-oor	สธ	3, 19	4.4.4 12.5	2.28	T 5	888	10.65	- E		 518	- 8
				eight percent ons hydrocar- sus	il	65 14 0 65	5.45 5.03 6.00 6.00	67.9		: :	52.73		- :-	37.8 46.8	1 1 1 1
		olids 1		oM animo	भ	101	152	121	lucts 70	822		3	39	¥.8	nets
		Liquids plus solids	٤	rams per eubic Preter	a	122	48,83	21.6.7	of proc 27.9	සුදි සිදි සිදි	 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0	62.8 45.5		 	of prod
	lucts	Liquid	o •	эвсійс ктауіцу қтала рег сирі сепілівіст	g	0.708		682			713		809		recovery
	Hydrocarbon products			total weight, smars	,	25.55 4.52 4.53 4.53	4.000	21:1: 4.8:1:1	2 6 E	8.48 7.01 7.01	34.9	25.55 25.05 20.05		25.1	N_0
,	drocart	(f)	lo -1	Velght percent total hydroca bons	1	27.0 6.55.8 7.0	55.0	35.1 28.8	59.3		50.5		10.9		
Ė	디	stabilizer gases (C1-C4)	эi	due reur Prefer)	r.∓8	3 55 52 2 53 53 53 2 5	96.7	40.1		4.010			8.69	
		lizer gas	11; 11;	softno ufbold oorog omulov		37.6	8.8.2 6.0 6.0 6.0 6.0	80.9 53.1	30.6	18.3	200		# % 0.0		
		C. stabí	յզն	giaw natusoloM	8	ន់ដូដូដូ ខ្លួន	288	31.2					4 0 20 4 0		
		8	'91	urulov laboT srodil	,	4:1-6:	25.4.7	—- જો જો જો જો	13.6	38.6	28.5 34.0		33.7 7.7 1.7	J. (
) tio:	0.100	Contraction, p	33	1888	3893	# 83 ∞	88 4.	£ \$ 5	388	23.55	868	54.5	-
			ε 4	Space velocity	152	12.45	145	178	126		38 Z	244	200	12.0	-
			Pressure		Atmos	do do	do.	do.	35 p. s. f. a	35 D.S. 1.3	00 p.s.i.a	6 p.s.i.a	tmos	(f) p. s. f. a.	
_		'o'	o *	T'entperntare	90	 885									
	8.11	noy '	[SƏ]) to nottsand	8.5	104 113 104 104 104	8.5.8 1.8.8 1.8.8	ξξξξ ≎1-«	00 x	91.1	923.3 113.5 5	8 2	요요 있답	9.4.0 0.4	The state of the s
				aN IsaT	362	200	30°				727		740 1	- 	a series
		Ċ	Catalyst No.		10B, Part A.		Part B.	10C.			10D		Part C.		1 Specific prayity and

1 Specific gravity and bromine number of liquid product were 0.67-0.76 and 39-152, respectively.
2 On CO2- and O-free basis.
4 Olume of Co2 and O-free basis per bour per volume of catalyst.
4 Grams per cubic meter of feed gas.
5 Kilograms per cubic meter of bulk volume of catalyst per hour.

[Catalyst 10A i; pellets; $1H_2+1$ OO i; atmospherio pressure; slow reduction; rapid induction] Test 25; unpromoted iron TABLE 25.

		$B\Omega$ 1	REA	\U	0	F	M	[]]	l E	S	R	ES	ðŀ.
	.	Nitro-			i.,			7 5	6	-1 co		ci ci	ov Hi
1 gases 4	Volume percent	Carhon monox- ide			50.6	·		30 7	34.1	97.9		33.1	42.2
Unreacted gases	Volu	Hydro- gen			62.0			63.6	90.0	58.4		64.7	53.0
		Total volume, cubic feet	1.71	19.95 19.95	893 939	% 55 55		11.08	16.92	8 53 8 53	17.09	20.26	8. 18
		Space- time yield 7	3.55	7. 21	4.04	 23 26		2.00 2.00 2.00 3.00 3.00	4.87	.0. \$\$	4.04	5.34	5,35
:	us solids ³	Weight percent of total bydro- carbons			46.7	roducts		8.5 5.5	61.4	49.7	ob. 1 roducts	41.2	46.6
	Liquids plus solids 3	Grams per cubic meter 5	22.6	4.6	26.4	4					9		
oducts	H	Total weight, grams	1.3	15.9	0.00 1.00	6.9 No reco		11.2	83	14.1	No 1900	30.5	11.5
Hydrocarbon products		Weight percent of total hydro- carbons			53.3			900	38.0	50.3	43, 8	58.8	53.4
Hydro	s (C1-C4)	Grams per cubic meter 6			30.2			88				50.9	40.4
	lizer gase	Olefin content, volume percent			33.1			23.5	38	32.5	8	44.8	40.8
	0° C. Stabilizer gases (C1-C4)	Molecu- lar weight			27.2			8.7.	26.7	25.6	× 4.	32.5	27.5
	0	Total volume, liters			7.7			10 O	12.2	12.5	19.	30.1	10.8
	Con-	tion, percent	16	4.6 6.6	326	 83	18	88 88	33	888	9 5	32	83
	Space	city 5	157	149	153	145	145	115	152	Z;	105	150	152
	Tem-	rure, C.		263	268	97	255	256 249 249	256	230	88	253	529
	Dura-	test, bours	7.6	45.6	11:	ر ري ن	27.0	% 4 04 4 04 ∞	108.1	ල ස්	8 5 8 5 8 0 8 0	118.8	45.8
		Test No.				1							

I Ferric hydrovide precipitated by K.,CO, from Fe (NO₁), 9H,O; 48 cc. catalyst used in this test. 3 Contains 0.2 percent C CO, 1 percent C H, 2.5 percent N, 9 Specific gravity and bromine number of liquid were 0.70-0.74 and 95-140, respectively. 4 On C O₇- and 0-free basis. 3 Volume of free gas per hour per volume of catalyst. 6 Grams per cubic meter of feed gas, 17 Kilograms per cubic meter of bulk volume of catalyst per hour.

[Catalyst 10A+10B 1; pellets; 1H;+1CO 2 at 100 pounds per square inch gage pressure; slow reduct Table 26.—Test 42; unpromoted iron

			cent.		Nitro-				66		80.0	બુને જિલ્લ	6.0	10.0	00 ⊂ ೧í ≂	ා ලා එන්.	9.76 9.0
	Three ofted	er gases	Volume percent	,	Car- bon monox-	ide		0 67	44.9	45.2	38.6	32.3	46,5	47.1	48.5	49.0	33.6
(uo	Three	0.00	^		dro-	0		51.4	52.9	52.0	20.6 50.6	63.5	6.8	42.9	47.5	47.8	57.4
cuon; intermediate induction]				- E	rol- ume, cubic feet			15.56	16.13	17.36	12,04	14.87	21.67	20,51	12, 76	11.02 10.03	3, 29
termedia					Space- time yield 7		00.	98	10.86	9.62	12.20	11.68	13.35	20,	9.62	10.68	6,47
action; m			spilos sul		Weight per- cent of total hydro-	carpons	25	67.4	83.0	0.07 0.07	4.	0.50	68.3	7.70	59.5	70.0	H. 7
			Liquids plus solids 3		Grams per cubic meter 6		22.8	74.7	62.3	76.0	66.7	99		39.1	27.5	96.0	62.2
	roducts				Total weight, grams		15.1	0.8		9	24.55 57.25 5.25	57.4	46.9	4:4	39.0	10.2	0.61
,	Hydrocarbon products			Trainh	per- cent of total hydro-	cal puris	45.4	25.6 25.6	17.0	21.0	200	27.5	32.8	40 5		0.5	
	Hydr	S (C+C)	5		Grams per cubic meter 6		19.0	17.8	22.8	20.2	26.7	28.82	16.4	35.6		51.6	
		oilizer gas		Olefin	con- tent, vol- ume		23.1	18.0	 	30.6	30.4	35.0	33.55	80.00	200	33.5	-
		9° C. Stabilizer gases (CC.)			Molec- ular weight	Ī	28.3	9,8	22.0	32.8	25.2	30.3	31.5	33.4	32 1	23.0	- -
				Ē	rotal rol- ume, liters	- j -	12.4	10.9	17.6	90	21.0	21.8	10.9	18.7	16.2	15.6	Pocinitor
		Con-	trac-	per-	cent —		988	8 4	4.4	64	88	[5]	218	:: :::	69	<u>6</u>	drovider
			Space reloc-	ity 5		1	17.5	165	181	88	17.	282	3	257	181	- 5	. ferrie hy
		Tem-	pera-		- · · -	737	247	- C-	250	248	248	244	241	245	250	. 25.7	was 42 co
		Dura-	tion of test.	hours		80 80 10	100.8	113,1	117.0	116.6	116.7	117.2	91.8	88	7 1-		alyst used
			Test No.			<u>מ</u>	0	e e	,				n_{-}				2 Compine 3 received was 42 cc. ferric hydroxide maginities at

part A, 33}\$ percent by weight). ed was 42 cc. ferrie hydroxide precipitated from Fe(NO3)+9H2O by K5CO3 (10A 66% percent+10B, 2. I percent CH4, 0.3 percent CO2. It and bromine number of liquid product were 0.08 and 133, respectively.

volume of catalyst per hour,

Table 27.—Tests on unpromoted iron catalysts

[1H₂ + 1CO at 100 pounds gage pressure; slow reduction; slow induction with contraction schedule]

200													
			Ö	·			Hyd	rocarb	on pro	ducts			
		hours	ture, °		percent	0° (stabi gases	lizer	Lie	utids p			
Catalyst No.		of test,	temperature,	velocity a		1.3 b	,/ш.3 в	per-		per-	rime.	4 °.	1.3 5
	Test No.	Duration	A verage	Space vel	Contraction,	CH4, g./m.	C1-NC4.g./m	eight	φ g.⊞./:	eight	pace-1	CO2, g./m.³	H ₂ O. g./m.³
ink								#	-5	W	 co		
giuk	X-12a b c d	141 135 162 163	240 241 245 240	100 100 100 100	32 46 49 49	18.6 6.8 15.7 12.5	34.3 26.5 56.4 (d)	46.6 37.7 51.8 (4)	39, 3 43, 8 52, 6 432, 4	53. 4 62. 3 48. 2 (4)	3, 93 4, 38 5, 26 (4)	143, 0 165, 0 146, 6	15, 0 16, 0 15, 6
10M 47F	X-15a X-16a	116 164 116	248 240 250	100 100 100	42 8 12	12.6	35. 4	51.2	33. 7 o prod	48, 8	3.37	228. 1 182. 6	21. 4 17. 7
*	b	109	246	100	10				3, 3			27, 2	11. 9

. Volume of feed gas per hour per volume of catalyst,

b Grams per cubic meter of feed gas.

* Kilograms per cubic meter of catalyst per hour.

4 Sample or part of sample lost.

DELETERIOUS EFFECT OF CHLORIDES ON UNPROMOTED IRON CATALYSTS PREPARED FROM FERRIC SALTS

All the unpromoted iron catalysts in the 47 series prepared from ferric chloride solutions were inactive, regardless of the method of conditioning in the converter (tables 23 and 27). Catalyst 10M. from ferric nitrate but containing chloride, was also inactive (table 27. test X-15). X-ray diffraction data (given in a later section of this (paper) showed that these catalysts all contain a large proportion of BFe2O3.H2O in the freshly prepared, unreduced state, whereas all of the active unpromoted iron catalysts are chiefly aFe2O3 and aFe₂O₃·H₂O. Apparently the catalyst resulting from the reduction and induction of $\beta \text{Fe}_2 \text{O}_3 \cdot \text{H}_2 \text{O}$ is not suitable for catalysis of the hydrocarbon synthesis.

EFFECT OF ALKALI ON ACTIVITY OF UNPROMOTED IRON CATALYSTS

Catalysts 48A and 81A precipitated by sodium hydroxide and carbonate, respectively, were only slightly active. Some work was done at the Kaiser Wilhelm Institute for Coal Research 89 on the effect of alkali additions to unpromoted iron catalysts. The results show that precipitation with sodium carbonate without subsequent addition of potassium carbonate to the washed precipitate yielded catalysts of somewhat lower activity and durability than when potassium carbonate was added to the filter cake. Optimum activity and durability were obtained upon the addition of about 0.25 percent of potassium carbonate to the washed precipitate. In the Bureau of Mines work the active catalysts precipitated with potassium carbonate contained between 0.05 and 0.10 percent of residual potassium (see table 16). The potassium content varied with the rate of precipita-

Work cited in footnote 88, p. 91.

tion, but the activity of the catalyst in the synthesis appeared to be independent of the potassium content within the limits 0.05 to 0.10 percent.

The Kaiser Wilhelm Institute results also show that iron catalysts precipitated with ammonia without subsequent addition of potassium carbonate are as durable as those precipitated with sodium carbonate to which 0.25 percent potassium carbonate was subsequently added. A larger percentage of paraffin wax in the product was characteristic of the catalysts containing added potassium carbonate as compared with the ammonia-precipitated catalysts.

A possible explanation of the beneficial action of small amounts of potassium carbonate in otherwise unpromoted iron catalysts is that a characteristic spinel structure is preserved when potassium or ammonium ions are present, whereas the sodium spinel is more easily decomposed during the washing of the precipitate. The fact that the Kaiser Wilhelm Institute eatalysts prepared by precipitation with sodium carbonate without subsequent addition of potassium were very much more active than Bureau of Mines catalyst 81A is difficult to explain. Possibly the special induction procedure used by the Kaiser Wilhelm Institute activated its catalyst sufficiently to account for this difference. Further experiments are necessary.

EFFECT OF CONDITIONS OF PRECIPITATION OF ACTIVE UNPROMOTED IRON CATALYSTS

The active unpromoted iron catalysts were the 10 and 80A preparations precipitated from ferric nitrate by potassium carbonate and hydroxide, respectively. The conditions of preparation affected the activity of the unpromoted iron catalysts. Rapid precipitation, such as was used in 10F, produced a catalyst with moderate initial activity but a short life of only a few weeks. Rapid drying of the wet catalyst cake in 10B, parts B and C, gave poor catalysts.

The Kaiser Wilhelm Institute reported ⁹⁰ that iron catalysts precipitated at 20° to 60° C. and not heated to boiling were not as active or as durable as those boiled 1 to 5 minutes. This effect is probably an aging process, resulting in transition from one form of iron hydroxide to another. Most of the Bureau of Mines precipitations of iron hydroxide were male at 70° to 90° C., with a total time of precipitation of 20 to 30 minutes. In the case of catalyst 10F, the time of precipitation was 2 to 3 minutes. The low activity and durability of 10F as compared with the other preparations of catalyst 10 indicate the desirability of some aging of the precipitate.

EFFECT OF DIFFERENT INDUCTION PROCEDURES AND OPERATING PRES-SURES FOR UNPROMOTED IRON CATALYSTS

The desirability of the "intermediate" as compared with the "rapid" induction procedure is illustrated by comparison of runs 36 (catalyst 10B, part A) and 25 (catalyst 10A). In test 25 (table 25) at atmospheric pressure, a yield of 48.4 grams of liquid plus solid hydrocarbons per cubic meter of synthesis gas was obtained in the second week of the run at 263° C., which corresponded to a spacetime yield of 7.21 kilograms of oil plus wax per cubic meter of bulk

volume of catalyst per hour. From the second to the lifteenth week the production of liquid hydrocarbons tapered off slowly to about 35 grams per cubic meter.

In test 36 (table 24) of catalyst 10B, part A, at atmospheric pressure, the average operating temperature was 250° C., 10° lower than in run 25. The maximum yield (42.2 grams per cubic meter of oil plus wax), obtained in the second week of the test at 253° C., was similar to the high yield in run 25 at 263° C. The maximum spacetime yield was 6.16 kilograms per cubic meter of catalyst per hour. The only obvious difference between the two tests was the longer induction period in run 36.

Test 72 (table 24) was a 4-week pressure test (100 pounds per square inch) on catalyst 10D. The highest liquid-plus-solid hydrocarbon yield was 62.8 grams per cubic meter at 238° C., obtained in the first week. This was higher than the first-week yields in other runs on iron catalysts. In the next 2 weeks liquid-hydrocarbon production decreased but increased again to 50.6 grams per cubic meter in the last week of the run at 250° C. The maximum spacetime yield was 11.55 kilograms of liquids plus solids per cubic meter of catalyst per hour in the first week. The better yield obtained in run 72 indicated the desirability of pressure operation for longer catalyst life and higher liquid-hydrocarbon productivity.

Other tests on iron catalysts confirmed this observation. Test 42 (table 26) was of 16 weeks' duration, the catalyst used being a mixture of two-thirds catalyst 10A and one-third 10B, part A. This catalyst was inducted and operated at a pressure of 100 pounds per square inch at an average temperature below 250° C. In the second week of the test the liquid hydrocarbon yield was similar to that obtained in a corresponding period in tests 25 (table 25) and 36 (table 24). In succeeding weeks the yield increased, reaching a maximum in the sixth week, at 76.0 grams per cubic meter. This was 1.5 times the maximum yield in tests 25 and 36, which were operated at atmospheric pressure. The maximum space-time yield in test 42 was approximately twice that in tests 25 and 26. The average yield for all of test 42 was about 60 grams per cubic meter.

Because of the absence of certain analytical data on catalyst 10B, a duplicate preparation (10K) was tested in a more recent test (X12, table 27). Induction and operating conditions were similar to those for test 42. During 5 weeks of operation, catalyst 10K showed moderate activity, with yields of 40 to 50 grams per cubic meter at a space velocity of 100 and an average temperature of 240° C. Spacetime yields were somewhat lower than those in test 42.

The results of experiments done at the Kaiser Wilhelm Institute ⁹¹ on the activity and durability of unpromoted iron catalysts at various pressures show that the optimum pressure for $2H_2 + 3CO$ gas is 10 to 20 atmospheres. In these experiments, the catalyst was prepared by precipitation from ferric nitrate solution with sodium carbonate. After washing, 1 percent of potassium carbonate (based on dry catalyst) was added to the filter cake, which was then dried. The catalyst was inducted at 1/10 atmosphere and 325° C, with pure CO for 25 hours. Synthesis experiments were conducted at 1, 5, 10, 30, and 60 atmos-

Work eited in footnote 88, p. 91.

Work cited in footnote 88, p. 91.

pheres pressure of $2H_2 + 3CO$ gas, all of the tests being started at 235° C. The catalyst was virtually inactive at 1 atmosphere pressure during 2 days of testing at 235° to 250° C. At 5 atmospheres contractions of 30 to 40 percent were obtained, but the temperature necessary to maintain this activity was 250° C. on the sixth day and 270° C. on the ninth. At 10 atmospheres a contraction of 50 percent was maintained at 235° to 238° C. for 12 days and at 15 atmospheres for 28 days, whereas at 30 atmospheres for only 3 days, and at 60 atmospheres for only 1 day, before an increase in temperature was necessary. The contractions mentioned in the preceding two sentences were measured without prior removal of carbon dioxide from the end gas. Thus, a 50-percent contraction corresponds to about 80 percent after carbon dioxide removal.

A similar although smaller variation of durability and activity with operating pressure for cobalt catalysts is described in the literature review section of this paper. A possible explanation of the poorer results at 1 atmosphere as compared with 10 atmospheres is that a minimum partial pressure of hydrogen is required to hydrogenate the carbides as they are formed and thus keep active spots free for further carbide formation and hydrogenation. The optimum partial pressure of hydrogen appears to be somewhat higher for iron than for cobalt catalysts. At higher pressures, above about 30 atmospheres, the decreased durability of both iron and cobalt catalysts may be caused by corrosion by metal carbonyl formation and by action of organic acids on the catalyst surface.

In the literature review section of this paper it was noted that increasing operating pressure raises the boiling range of the products from cobalt catalysts. This is also true for iron catalysts. Data showing this effect were obtained by Ruhrchemie 22 and are given in

Table 28.—Effect of operating pressure on boiling range of product from an iron catalyst

[Tests made by Ruhrchemie in Germany]

	SULVI		
			2
Pressure			
Tessure			
CO conversion structures atmospheres	- 1		- 3
The state of the s	1 (* I	
CO conversion atmospheres Yield of liquid—solid products grams per cubic meter. Unsel of	95	_0,1	20 %
Almostina Granic Intelliges Granic and in a	90	70 7	20 75 Å
crasoring	90 1	88	
Classific grants per cubic meter. Diesel of l percent. Wax do	22 1		120 ±4
	57 I	30 [
); alx	21		22
wax do		25	22
and in susuime	19.1	45	
Utelins in Diasol oil	a		58 3
Olefins in Diesel oil do do do	68	63 [63 🕏
	41 (70.1	
- 1 To 1 T	71	49	46
	1		100
	'	'	2

Tests 62 (table 24) and 81 (table 23), with catalysts 10C and 80A, respectively, both of which were simultaneously reduced and inducted by synthesis gas at atmospheric pressure (see table 22 for induction procedures), were operated at 135 and 100 pounds per square inch, respectively. In the 5-week run of test 62 the first week yielded 53.3

grams per cubic meter at 241° C. The maximum yield was 70.6 grams per cubic meter at 250° C., corresponding to a space-time yield of 10.65 kilograms of oil plus wax per cubic meter of bulk volume of catalyst per hour. When the test was terminated, the production was still high at 62.9 grams per cubic meter. Test 81, of 3 weeks' duration, yielded 51 to 64 grams per cubic meter at 249° to 254° C. and 100 pounds per square inch operating pressure. The space-time yield was 10.05 to 11.18 kilograms of oil plus wax per cubic meter of bulk volume of catalyst per hour.

Tests 62 and 81 may be compared with tests 42 and 72 to look for differences that may be due to the different induction procedures. In tests 62 and 81 a special induction procedure was employed, using synthesis gas at atmospheric pressure and 240° C. for 53 and 77 hours, respectively, whereas in tests 42 and 72 the induction was at 100 pounds gage pressure for 36 hours, during which the contraction schedule outlined on page 89 for the "intermediate" induction procedure was followed. The results show that there is no advantage in the special induction procedure.

The Kaiser Wilhelm Institute, 93 however, reports results which show a decided improvement in activity and durability of iron catalysts using special induction procedures at temperatures in the range 245° to 325° C. and synthesis gas $(2H_2 + 1CO)$ at atmospheric pressure or pure CO at 1/10 atmosphere. In the Kaiser Wilhelm Institute work, reaction tubes of 12 millimeters internal diameter were used. The catalyst was distributed evenly over a length of 30 centimeters within the tube, which was placed with its long axis horizontal. The catalyst charge contained 10 grams of iron, corresponding to about 15 cubic centimeters of freshly prepared catalyst. The volume of the reaction zone was 35 cubic centimeters, and hence the catalyst occupied less than one-half of the space. After induction, 4 liters per hour of $2\mathrm{H}_2 + 3\mathrm{CO}\,\mathrm{gas}$ was passed over the catalyst. In the Bureau of Mines work the reaction zone was an annulus 6.4 millimeters inside and 15.8 millimeters outside diameter and 30 centimeters long, with the long axis of the tube in the vertical position, and contained 40 to 50 grams of catalyst. In the Bureau of Mines tests, after induction, 4 liters per hour of 1H2 + 1CO gas was usually passed through the catalyst bed, but gas throughput was varied in some tests between 4 and 10 liters per hour. The reaction temperatures measured by the Kaiser Wilhelm Institute were those of the aluminum block furnace, whereas those reported by the Bureau of Mines were recorded by a thermocouple embedded in the catalyst.

⁹² Reichl, E. H., The Synthesis of Hydrocarbons and Chemicals from CO and H₂: U. S. Naval Technical Mission in Europe Report 248-45, 1945, p. 46.

M Work cited in footnote 88, p. 91.

Table 29.—Kaiser Wilhelm Institute results on induction of iron calalysts precipitated with Na_2CO_3 or NH_4OH , washed, and mixed with 0.25 percent (of their dry weight) of K_2CO_3 with $2H_2 + 3CO$ at 15 atmospheres. (B) Induction $2H_3 + 1CO$, 1 atmosphere, $2H^2$ C., for 5 days, synthesis with $2H_2 + 3CO$ at 15 atmospheres. (D) Induction with pure CO at 1/10 atmosphere, 325° C., 25 hours; synthesis with $2H_2 + 3CO$ at 15 atmospheres. (D) Induction with pure CO at 1/10 atmosphere, 325° C., 25 hours, synthesis with $2H_2 + 3CO$ at 15 atmospheres.

hours	135	280					330				270
(Contraction values findude CO ₂ content)	6			247	140	3	300				88.451
.e, 325°	69	268 37					200				265 50
ospher	99	290		241			000			273	250
/10 atm	22		255 51	22.05	55.47.		3			272 46	
C at]	3			240 52			8			278 43	251
pure (88			23.7 48			271			277	
a with	88	380				ė č	3			270	250
anenon	ន		256 51	235	235		COT	298		270 58	
H (a)	14	275 37	100				1.40	292		209 47	245 48
int)	13	270					9	588 438		264 56	235
(Contraction values include CO2 content)	11	360				٤	2			256	
at 13 a 1de CC	10		252 46	235	235 51	-	211			248	
es incl	t=	253				90	2	28. 28. 28.			
n valu	a	250 13	250 49	28.85	2000	Ę.	3		265	252	235 110
tractio	₹	245	85 85			8	:	283 44			
(Cor	63		245 48		325	- F		280		249	
, 1	-	245	245	335	47	æ				250	
		¥		ن 	<u> </u>			₹	п	<u>ن</u>	Q Q
3CO at 15 atmospheres]		° C. percent	° C. percent g/m³	o C percent	° C. percent			o C percent	° C Percent	o C percent g/m³	o C percent
synthesis with $2H_2+3C0$ at 1	Days	Temperature. Contraction Liquids - solids.	Temperature Contraction Liquids = solids	Temperature Contraction Liquids — solids	Temperature Contraction Liquids + solids	Days		Temperature Contraction Liquids = solids.	Temperature Contraction Liquids + solids	Temperature Contraction Liquids + solids	Temperature Contraction Liquids + solids

Table 29 contains data obtained by the Kaiser Wilhelm Institute for activity of an iron catalyst using four different induction procedures. These data are not directly comparable with the Bureau of-Mines results presented in tables 24 and 26, chiefly because the contractions reported in table 29 are measured without prior removal of carbon dioxide. The Kaiser Wilhelm Institute data of table 29 show that induction with pure CO at 1/10 atmosphere and 325° C. for 25 hours is the best of the four procedures used. The Kaiser Wilhelm Institute report of contains data which show that 325° C. and 1/10 atmosphere are the optimum induction conditions when pure CO is used. These data show also that the space velocity of the CO, which was 4 liters per hour in case (D), may be increased to 40 liters per hour and the total time of induction decreased from 25 to 2.5 hours.

During the 65 days of operation in test 42 (table 26) none of the difficulties which the Kaiser Wilhelm Institute report 94 describes as accompanying the use of a vertical bed of catalyst were noted. Although some "swelling" of the pellets was observed upon discharging the catalyst in test 42, there was no indication that the operation could not have been continued for a much longer period. It is possible that the special induction procedure used by the Kaiser Wilhelm Institute resulted in a catalyst which accelerated the rate of the carbon-forming reactions.

TESTS ON PROMOTED IRON CATALYSTS

An active and durable promoted iron catalyst was 24A, tested in test 57 (table 23). This catalyst was prepared by precipitation with potassium carbonate from ferrous and cupric sulfate solutions. During 25 days of operation contractions of more than 50 percent were obtained at temperatures of 230° to 250° C. The space-time yields were, however, no greater than those with the unpromoted catalyst. Catalyst 85, prepared from ferrous and cupric chlorides, and 67A, from ferric, thorium, and cobalt nitrates, showed fair initial activities which dropped sharply during the second week of operation (see table 23).

Experiments on promoted iron catalysts at the Kaiser Wilhelm Institute 95 confirm the conclusion that additions of thoria, alumina, manganese oxide, or zine oxide to the iron catalyst do not enhance its activity or durability. These experiments include some work on carriers such as kieselguhr, alumina, and chromium oxide. Chromium oxide appears to be an inert carrier, whereas alumina and kieselguhr, when present in appreciable quantities, are detrimental to the activity of iron catalysts. Kieselguhr, however, has one desirable effect when used in an iron catalyst, namely, an appreciably higher water: carbon dioxide ratio in the products is obtained. Filtration and washing of ferric hydroxide are aided by the presence of kieselguhr. It was found that the addition of small amounts of potassium carbonate to iron-kieselguhr catalysts did not activate them as in the case of iron catalysts with no kieselguhr.

^{**} Work cited in footnate 88, p. 91.

** Leva, M., Translations of German Documents on the Development of Iron Catalysts for the Fischer-Tropseb Synthesis, Part 1. (Technical Oil Mission Reel 191, Document PG-21881-NID, Recent Investigations on Iron Catalysts); Office of Synthetic Liquid Fuels Report, Pittsburgh, 1947, pp. 68-158.

It is perhaps significant that a few of the reportedly "best" iron catalysts developed in Germany in recent years contain a small proportion of kieselguhr. These catalysts also contain an appreciable amount of calcium oxide or alumina and small amounts of potassium oxide. The details of preparation of a Ruhrehemie Fe-Cu-CaOkieselguhr catalyst are given in the Appendix. This catalyst was reduced at 300° C. with $3H_2+1N_2$ gas at a space velocity of $3{,}000$ volumes of gas per volume of catalyst per hour, for about 1 hour. The reduction occurs in stages, $Fe_2O_3 \rightarrow Fe_3O_4 \rightarrow FeO \rightarrow Fe$. It is stated that the reduced catalyst contained some of each of these compounds but not more than 5 to 8 percent of metal (Fe) based on the total iron present. The content of Fe+FeO, as determined by solubility in boiling 2-percent acetic acid, should not exceed 65 to 75 percent. The catalyst was inducted at 1 atmosphere and 130° C. for 12 to 24 hours. This catalyst when operated at 15 atmospheres of 1.26 H₂+1CO and 230° C. yielded a large proportion of wax. The contraction was 60 percent; CO conversion 80 percent; CO: H2 consumption ratio 1:1.24; CO converted to CO₂, 25.6 percent; CO converted to CH₄, 7 percent. The yield in grams per cubic meter of feed gas was 135 grams of liquids plus solids and 10 grams of C3+C4. It was calculated that addition of a second stage of operation would increase these figures to 168 and 13 grams, respectively. The product distribution was as follows:

Gasoline	200-320.	Percent by weight End point 16170 percent ole- 201 fins. 22
Hard wax	Above 460.	42

These data were obtained from a report cited above. 97

A sample of Ruhrchemie Fe-Cu-CaO-kieselguhr, 100:2.5:10:15parts by weight, catalyst was captured by the Technical Oil Mission,8 and tested by the Bureau of Mines (test X39, table 30). In text X39 the catalyst was not reduced. The induction procedure was different from that described by Ruhrchemic 99 and consisted of treatment with 2H₂ + 1CO gas at 255° C. for 3 days. The sample container was crushed during shipment, and all of the catalyst had spilled into the outer wooden packing box. Only about 10 percent of the original sample was recovered, the bulk of it having been lost in transit. It is possible that some contamination may have occurred during shipment. In test X39 the maximum yield was 90.6 grams per cubic meter of liquid hydrocarbons (pentane and higher) as compared with 135 grams reported by Ruhrchemie. The $C_3 + \acute{C}_4$ yield in test X39 was about 16 grams per cubic meter as compared with 10 grams per cubic meter in Ruhrchemie's test.

TABLE 30.—Test X-39: 51.0 grams of T. O. M. catalyst (Fe: Cu: CaO: kieselguhr:: 100 : 2.5 : 10 : 15 parts by weight)

[Sample 234, granules; inducted 3 days at 255° C., with 1 atmosphere of $2H_2+1$ CO; operated at 100 p. s. i. of $1H_2+1$ CO, except in test a, where the pressure was atmospheric]

(bours	ture,		Ħ		7	- Lydroc	arbon j	orodue	ts			
	test,	tempera	ity 1	, percent	()° (), stab	ilizer g	ases	Liquid	ls plus	solids	E	©
Test No.	Duration of	Average te	Space velocity	Contraction,	$CH_{i,g/m,i}$	C2, g/m.² (2)	C3+C; g/m.³	Weight,	g/m³ (8)	Weight, percent	Space-time yield a	CO ₂ , g/m.³ (H2O, g/m.3 (
abddd	74 114 115 115 115 ,115	254 234 233 236 233 233	96 99 99 100 99 100	53 65 61 60 56 60	9, 3 34, 9 8, 3 8, 7 10, 6 9, 6	10.3 2.4 5.6 4.3 8.0 5.0	8. 4 15. 7 14. 6 17. 4 17. 5 18. 6	37. 6 36, 9 28. 2 28. 5 34. 0 30. 8	46. 4 90. 6 70. 0 76. 4 70. 2 74. 4	62, 4 63, 1 71, 8 71, 5 66, 0 69, 2	8.97 6.93	278. 9 374. 9 275. 3 291. 4 251. 1 298. 7	42. 4 14. 2 21. 2 15. 7 14. 0 19. 1

Volume of feed gas per hour per volume of catalyst.

Tables 31 and 32 contain data on comparative tests 1 2 of six iron catalysts, the tests being conducted at the Braunkohle-Benzin A. G.

Table 31.—Composition of iron catalysts used in comparative tests at Braunkohle-Benzin A. G., Schwartzheide-Ruhland

[All figures are based on 10-cubic meter catalyst volume]

	Appar- ent density,	Fe,	Cu	Zn	V 00		Reduction and
Company	kilo- grams per liter	tons	Kilo	grams	K ₂ CO ₃ , per- cent of iron	Carrier	induction
Kaiser Wilhelm Institute.	1.02	6	60		0.75	None	21f ₂ +1CO, 325° O.
Lurgi	.79	3.9	390		30 percent K ₄ SiO ₄ .	SiO ₂ (water glass).	H ₂ , 30 percent reduction.
Brabag	1.37	6. 9	690	690	0.5	None	Water gas at 245° C. We or syn- thesis gas at 225° C.
I, G. Farben- industrie.	2. 27	18.0			1.00.1	do	112 at 500° C.
Ruhrchemie	.44	2. 5	125		0.5-2.0	K'ghr	1T ₂ .
Rheinpreussen	.68	2.7	135		0.5-1.0	Gröund delo- mits.	II₂ 300°-400° C. Water gas, 245° C.

¹ Contained 2 percent Al₂O₃-|-CaO.

in Schwartzheide-Ruhland. One catalyst was submitted by each of the following organizations: Kaiser Wilhelm Institute, Lurgi, Brabag, I. G. Farbenindustrie, Ruhrchemic, and Rheinpreussen. The tests were conducted using a single unit of the standard middle-pressure reactor. This unit consists of two concentric tubes with the catalyst packed into the annulus between them and with cooling liquid circulated outside the outer tube and inside the inner tube. The

^{##} Technical Oil Mission Reel 42, Experiments (1944) 657 to 868: Bag 3439, Item 22, Technical Oil Mission Reel 33, Official Test of Six Iron Catalysts: Bag 3440, Item 29, Technical Oil Mission Reel 37, Minutes and Other Products Covering Development of Fe Medium

Technical Oil Mission Reel 37, Minutes and Other Products Covering Development of Fe Medium Pressure Synthesis 1937-1944; Bag 3451, Hem 24, a Work cited in footnote 92, p. 100.

Sample 234, memorandum by W. F. Faragher on samples secured on Combined Intelligence Objectives Subcommittee Trips 551 and 551A, June 25 to July 15, 1945, and subsequent Field Information Agency, Technical trips, July 25 to Sept. 9, 1945. Samples from Ruhrchemic Oberhausen/Holton secured Sept. 3, Work cited in footnote 92, p. 100.

² Grams per cubic meter of feed gas. 3 Kilograms per cubic meter of catalyst per hour.

⁴ Work cited in footnote 92, p. 100. ⁵ Technical Oil Mission Reel 134, Minutes of meeting, Sept 5, 1944 (Reichsamtsversuche); Sec. 1b.

annulus was 24 millimeters in inside diameter and 44 millimeters outside diameter, and 5 meters over-all length. The tube was water-jacketed, with a vapor chamber connected to the top by means of which steam pressure could be controlled to obtain the desired synthesis temperature. The highest permissible temperature in these tests was 225°C.; the operating pressure was 10 atmospheres of 1.25H₂+1CO gas (containing 12 percent inert gas). The analysis of the synthesis gas showed 6.2 percent CO₂, 39.2 percent CO, 48.8 percent H₂, 2.6 percent CH₄, and 3.2 percent N₂. The duration of the tests was 3 months. The temperature and space velocity were independently varied by each operator to secure optimum yields and durability. At the end of 2 weeks, all units had reached about 200° C. The space velocities were in the range 105 to 110 volumes of synthesis gas per volume of catalyst per hour.

Table 32.—Cooperative tests on iron catalysts at Schwartzheide

[10 atmospheres; 200°-225°C.; synthesis gas contained 12 percent inerts and 88 percent 1CO + 1.25Hz; yields per cubic meter are based on feed gas. Space velocity is volumes (N. T. P.) of feet gas per volume of catalyst per hour. Other data are in weight percent unless otherwise specified]

	Kaiser Wilhelm Institute	Lurgi	Brabag	I. G. Farben- industrie	Ruhr- chemie	Rhein- preusser
Space velocity 20 conversion	109	107	111	115	104	104
O: H2 consumption ratio	85 00	88	77	81 _	70	62
Maximum yield grams per cubic meter	, 80 147	142	. 69	74	. 72	1.0
verage yielddo	125	124	141	144	147	168
Average yield tons per day	3, 26	3, 19	108 2, 88	117 3, 23	103	104
ay ay;	0.20	0. 19	4.00	3, 23	2.57	2, 6
Saturates.	17.6	24.7	34. 4	16. 9	21, 7	11. 6
Olefins.	. 2	4. 5	4.8	2.6	2. 0	31.0
Oxygenated	. 3	6.0	3, 8	1.5	1.9	1, 2
Diesel oil, C ₁₁ to C ₁₈ ;				1.10	1. 0	1,2
Saturates	11.5	3. 9	5. 1	4. 2	6.3	10.5
Olefins	2. 1	5. 2	7. 7	5.1	3. 0	2.6
Oxygenated Tasoline, C ₅ to C ₁₆ ;	.6	4.1	3, 5	1.9	3. 5	. 4
Saturates				i		
Olefins	11.7 12.1	6, 3	4.6	8, 1	8.9	14, 2
Oxygenated	12.1	10. 0 3. 1	11.8	15.1	9.8	14, 2
'3 + ('4:	1, 2	0.1	1, 2	2. 2	3, 5	1. 2
Saturates	9.5	4. 1	2, 5	5.4	5. 5	10.0
Olefins	10.4	8. î	8.1	13. 2	9.0	11.5
1114	8.0	5. 6	3.8	9. 0	7.0	8,1
2114	. 9	2.7	2, 2	2.8	2, 2	.7
Ville	7.8	2.6	2. 3	4.9	4.4	8.1
to Ca alcohols.	6.1	9, 1	4. 2	7, 1	11.3	5, 4
g. Cs + per hour per cubic meter of entalyst	10, 9	11.6	10.8	10. 9	8,8	8, 5

Only three of the six catalysts operated 90 days with one filling of catalyst. The others encountered "coking" difficulties and had to renew the charges repeatedly (four times in the case of Rheinpreussen). A description of the method of preparation of only one of the catalysts was found. The catalyst submitted by the Kaiser Wilhelm Institute was prepared in the following way: The iron was precipitated from a dilute nitrate solution (1 kilogram of iron in 30 liters) at 70°C, by additions of boiling soda solution (1 kilogram of soda in 10 liters). One percent of copper (based on the iron) has been added to the iron solution before precipitation. The iron nitrate solution contained approximately equimolar proportions of ferric and ferrous nitrates.

The precipitate was filtered and washed with hot distilled water until free from alkali. A paste was then made with distilled water, and a solution of potassium carbonate (containing 0.75 percent of potassium carbonate, based on the iron) was mixed with the paste. Thickening of the paste was effected on a water bath and drying completed at 105°C. in an oven. The dried pieces were then broken into granules of 2-4 millimeters.

The catalyst was pretreated as follows: A mixed gas, rich in hydrogen $(2\Pi_2 + 1\text{CO})$, was passed over the catalyst for 24 hours at a pressure of 1/10 atmosphere and a temperature of 325°C. (8 liters of gas per hour per 10 grams of iron). The strongly pyrophoric catalyst was then soaked in paraffin wax to protect it from exidation and put into the converter with as little contact with air as possible.

At the beginning of the synthesis, the catalyst was very active at 185° to 190°C. To maintain a high conversion throughout the 3-month test, the temperature was raised gradually from 195° to 224°C., most of the operation being conducted between 215° and 220°C.

The Ruhrchemie catalyst was probably prepared in the manner described in the Appendix for the Fe:Cu:CaO:kieselguhr. The Lurgi catalyst was probably similar or identical with those described in reference 414. The composition of the best Lurgi iron catalysts is reported as 100 Fe, 5 to 10 Cu, 9 $\rm Al_2O_3$, 9 K₂O, 24 SiO₂. The boiling solution of iron, copper, and aluminum nitrates is precipitated by adding soda solution until a pH value of 9 is attained. The precipitate is washed by decantation and then centrifuged. Potassium silicate solution is then added and the catalyst dried and crushed to size. Reduction is conducted at 250° to 300° C, with hydrogen at a space velocity (per hour) of about 35 for about 40 minutes. The reduced catalyst contains 25 to 30 percent of metallic iron.

The I. G. Farbenindustrie catalyst was fused Fe₃O₄ containing 2 percent Al₂O₃+CaO and 1 percent K₂CO₃. Complete reduction of the I. G. catalyst is essential. This is effected by hydrogen at 450° to 500° C. and a high space velocity for 48 to 72 hours. The Brabag, Ruhrchemic, and Rheinpreussen catalysts were probably precipitated from nitrate solutions. The presence of about 35 percent of calcium carbonate in the Rheinpreussen catalyst may have been responsible for the relatively rapid formation of carbon. The silica and kieselguhr in Lurgi and Ruhrchemie catalysts also are known to decrease the durability of iron catalysts.

The CO:H₂ consumption ratios given in table 32 show that 50 percent or more of the oxygen appeared as water. This is much greater than the yield of water reported in test X39 (table 30) and by the Kaiser Wilhelm Institute.^{3 4} The yields of liquid products obtained from the Kaiser Wilhelm Institute and the Lurgi catalysts were only about 20 percent below those recorded for cobalt catalysts at 10 atmospheres. The highest yields of wax were obtained from the Lurgi

Work cited in footnote 88, p. 91,
 Work cited in footnote 95, p. 103,