


DE84013974

INTERNAL R AND D TASK SUMMARY REPORT: LARGE-SCALE DISSOLVER COLD-FLOW MODELING

INTERNATIONAL COAL REFINING CO. ALLENTOWN, PA

JUN 1984

DOE/OR/03054-20 (DE84013974) Distribution Category UC-89

INTERNAL R&D TASK SUMMARY REPORT: LARGE-SCALE DISSOLVER COLD-FLOW MODELING

By Samir F. Moujaes

June 1984

International Coal Refining Company Allentown, Pennsylvania

TABLE OF CONTENTS

	Page
ABSTRACT	vii
EXECUTIVE SUMMARY	1
INTRODUCTION	4
Gas/Slurry Flow in Coal Liquefaction Processes (Fluid	7
Dynamics in a Three-Phase Flow Column)	
Large-Scale Dissolver Cold-Flow Modeling	8
Demonstration Plant Dissolver Design	8
EXPERIMENTAL RESULTS AND DISCUSSION	9
Gas Holdup	9
Effect of Column Diameter	9
Effect of Liquid Velocity	9
Effect of Gas Velocity	. 9
Effect of Solids	11
Effect of Distributors (Entrance Effects) and Internals	11
Gas Holdup Correlations	12
Liquid Axial Dispersion Coefficient	15
Effect of Liquid Velocity	15
Effect of Gas Velocity	19
Effect of Solids	19
Effect of Internals	19
Liquid Axial Dispersion Coefficient Correlations	19
Gas/Liquid Mass-Transfer Coefficient	21
Solids Dispersion	24
Theoretical Background	24
Fine Particles	25
Large Particles	31
Continuous-Flow Solids Distribution	32
Solids Dispersion Modeling	40
Solids Withdrawal	42
SCALE-UP CONSIDERATIONS FOR THE DEMONSTRATION PLANT	43
LITERATURE CITED	48
FIGURES	50
NOMENCLATURE	114
APPENDIX A	116

LIST OF TABLES

Table No.	<u>Title</u>	Page
1	Physical Properties of Different Liquids	10
2	Correlations for Predicting Gas Holdup	13
3	Effect of Liquid Velocity on Axial Liquid Dispersion Coefficient in the Presence of Distributor No. 1	16
4	Effect of Liquid Velocity on Axial Dispersion Coefficients in the Presence of Distributor No. 2	17
5	Axial Liquid Dispersion Values (E _{ZL}) in a 50% Glycol Mixture with a 12-in. Column	18
6	Summary of V_p/E_{Zp} for Fine Particles as a Function of Gas Velocity	27
7	Summary of $V_{\rm p}/E_{\rm Zp}$ for Fine Particles as a Function of Column Diameter and Gas Velocity	28
8	Values of V_p/E_{Zp} for -140-Mesh Sand in Glycol/Water Mixtures	29
9	Values of V _p /E _{7p} for Fine Particles as a Function of Gas Velocity in a 12-inDiameter Column	30
10	Summary of $V_{\rm p}/E_{\rm Zp}$ for Large Particles as a Function of Gas Velocity	33
11	Summary of $V_{\rm p}/E_{\rm 7p}$ for Large Particles as a Function of Column Diameter and Gas Velocity	34
12	V _p /E _{7p} for 90 and 70% Glycol in 12-in. Column USing ^p 60/80-Mesh Sand	35
13	Summary of V_p/E_{Zp} for Large Particles as a Function of Gas Velocity	36
14	Summary of Effects of Liquid Properties on V ₂ /E ₂ for Large Particles in a 12-in. Diameter Column ² P	37

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1	Effect of Column Diameter on Gas Holdup (Tetralin/Nitrogen)	50
2	Effect of Column Diameter on Gas Holdup (Water/Air)	51
3	Effect of Column Diameter on Gas Holdup (Air/Glycol)	52
4	Effect of Liquid Velocity on Gas Holdup (Air/Water)	53
5	Effect of Liquid Velocity on Gas Holdup (Tetralin/Nitrogen)	54
6	Effect of Gas Velocity on Gas Holdup (Air/Water)	5 5
7	Effect of Solids on Gas Holdup (Air/Water and Air/Water/Sand)	55
8	Effect of Solids on Gas Holdup (Nitrogen/Tetralin/Sand)	57
9	Effect of Distributor Plate on Gas Holdup in the Absence of Liquid Flow and Solid Phase	58
10	Effect of Distributor Plate on Gas Holdup at Low Liquid Velocity with High Concentration of Large Solid Particles	59
11	Effect of Distributor Plate on Gas Holdup at High Liquid Velocity with Low Concentration of Large Solid Particles	60
12	Effect of Distributor Plate on Gas Holdup at Low Liquid Velocity with No Solids	51
13	Effect of Distributor Plate on Gas Holdup at High Liquid Velocity with Low Concentration of Fine Particles	62
14	Effect of Distributor Plate on Gas Holdup at Low Liquid Velocity with High Concentration of Fine Particles	53

FIGURE NO.	TITLE	<u>PAGE</u>
15	Effect of Different Internals on Gas Holdup	64
16	Comparison of Hughmark's, Pilhofer's, and Akita and Yoshida's Correlations for the Data from 5- and 12-inch Columns (Tetralin/Nitrogen)	65
17	Comparison of Correlations with Experimental Data (100% Glycol)	66
18	Comparison of Correlations with Experimental Data (90% Glycol)	67
19	Comparison of Correlations with Experimental Data (70% Glycol)	68
20.	Comparison of Correlations with Experimental Data (50% Glycol)	69
21	Variation of Gas Holdup at Elevated Pressures	70
22	Gas Holdup in Exxon Donor Solvent Reactors from Tracer Data	71
23	Log/Log Plot of Liquid Axial Dispersion Coefficient vs. Gas Velocity (Air/Water)	72
24	Effect of Gas Velocity on Axial Liquid Dispersion Coefficient (Tetralin/Nitrogen)	73
25	Comparison of E _{7L} for Batch and Continuous Experiments (50% Glycol/Air)	74
26	Axial Liquid Dispersion Coefficients vs. Gas Velocity	75
27	Plots of E _{ZL} (Experimental and Correlation) vs. Superficial Gas Velocity for the 12-in. and 6-ft. Columns	76
28	Effect of Solids on Gas/Liquid Mass-Transfer Coefficients (Air/Water and Air/Water/Sand)	77
29	Effect of Distributors on Gas/Liquid Mass Transfer	78
30	Effect of Varying Gas Velocity through Spargers on Gas/Liquid Volumetric Mass-Transfer Coefficient in a 6-ft Column	79
31	Effect of Different Internals on Gas/Liquid Volu- metric Mass-Transfer Coefficient in a 6-ft Column	80

FIGURE NO.	TITLE	PAGE
32	Effect of Solids on Gas/Liquid Volumetric Mass Transfer Coefficient	81
33	Effect of Gas Velocity on Concentration vs. Length in a 5-in. Column	82
34	Effect of Gas Velocity on Concentration vs. Length in a 12-in. Column (Tetralin/-140 Mesh Sand)	83
35	Effect of Gas Velocity on Concentration vs. Length in a 12-in. Column (Glycol/-140-Mesh Sand)	84
36	Effect of Gas Velocity on Concentration vs. Length in a 5-in. Column (Tetralin/60-70 Mesh Glass Beads)	85
37	Effect of Gas Velocity on Concentration vs. Length in a 12-in. Column (Tetralin/60-80 Mesh Sand)	86
38	Effect of Gas Velocity on Solids Distribution Con- centration vs. Axial Length (Glycol/60-80 Mesh Sand)	87
39	Effect of Gas Velocity on Concentration vs. Length in a 12-in. Column (Tetralin/-140 Mesh Sand)	88
40	Effect of Gas Velocity on Solids Distribution Profile in the 12-in. Column (Glycol/-140 Mesh Sand)	89
41	Effect of Gas Velocity on the Distribution of Large Particles	90
42	Effect of Gas Velocity on Concentration vs. Length in the 12-in. Column	91
43	Effect of Gas Velocity on Average Solids Distribution	92
44	Effect of Gas Velocity on Solids Distribution (6-ft Column; 100-200-Mesh Sand; Continuous Mode)	93
45	Effect of Gas Velocity on Solids Distribution (6-ft Column; 100-200- and 30-50-Mesh Sand; Continuous Mode)	94
46	Effect of Liquid Velocity on Solids Distribution	95
47	Effect of Liquid Velocity on Axial Solids Distri- bution	96
48	Effect of Liquid Velocity on the Distribution of Fine Particles	97

FIGURE NO.	TITLE	PAGE
49	Effect of Liquid Velocity on Axial Solids Distribution (100-200-Mesh	98
50	Effect of Liquid Velocity on Axial Solids Distri- bution (100-200- and 30-50-Mesh)	99
51	Effect of Liquid Velocity on Solids Accumulation	100
52	Effect of Viscosity on Solids Distribution	101
53	Effect of Particle Size on Solids Distribution (5~in. Column/ Continuous Mode)	102
54	Effect of Particle Size on Solids Distribution (12-in. Column; Continuous Mode)	103
55	Effect of Particle Size on Solids Distribution (6-ft Column; Continuous Mode)	104
56	Effect of Distributors on Normalized Solids Distribution	105
57	Effect of Distributors on Nondimensionalized Solids Distribution (12-in Column; 60-80-Mesh Sand)	106
58	Effect of Column Diameter on Nondimensionalized Solids Distribution	107
59	Effect of Column Diameter on Solids Concentration (No Distributor)	108
60	Effect of Column Diameter on Solids Concentration (Distributor #1)	109
61	Slurry Concentration vs. Axial Length: Comparison with Model's Predictions (Water/Sand)	110
62	Slurry Concentration vs. Axial Length: Comparison with Model's Predictions (Tetralin/Sand)	111
63	Slurry Concentration vs. Axial Length: Comparison with Model's Predictions (50% Glycol/Sand)	112
64	Effect of Large Particles on Solids Removal	113