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FOREWORD

Thie is the first Technical Progress Report for DOE Contract .
EC-77-C~03~1543, "Fundamental Characterization of Alternate Fuel Effects
in Continuous Combustion Systems". It includes background informztion
end results for the first four months of the program. Part A concerns
probler analysis and experimentzl description. This informztion has been
generated by Exxzon Resezrch and Engineering Company as pzrt of Task 1 of
the first phase of this program. Portions of this information were
extracted from 2 paper written for the DOE co-sponsored Workshop on
“"Alternate Hydrocarbon Fuels for Engines, Combustion snd Chemical Kineties,"
September 7-9, 1977, Part B concerns analyticzl modeling and represents
efforts conducted under Task 2 of this program by Science Applications, Inc.

William S, Blazowski
Principzl Investigator
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SUMMARY

Alternzte fuels derived from coal, o0il shale, and tar sands
are expected to play an increasingly Important role in meeting the future
national energy demand. The properties of these fuels can result in
significantly different combustion performance compared with conventional
specification fuels. For example, decreased hydrogen content can result
in incressed flame luminosity and exhaust smoke emissions, higher fuel bound
nitrogen can result in increased NOy emissions, and fuel impurities can
result in deposition within the combustion device. Although additional
refining and fuel treatment can mitigate these problems to some extent,
the approach of adapting the combustion system to utilize fuels having
"unconventionzl" properties while operating in an environmmentzlly ecceptable
manner sezms to be most cost effective and energy efficient. This progrzm
will provide vital fundamental information necessazry for the efficient
pursuit of this approach.

The subject program is a multi-year effort to provide an improved
fundzmentzl understanding of the relationships betwsen fuel properties and
combustion characteristics and to develop analytical modeling/correlation
capzbilities for the prediction of fuel effects. The work will be limited
to investigation of alternate liquid and gaseous fuels used in continuous
combustion systems, with gas turbine systems receiving special attention.
The program philosophy is to relate fundzmental combustion phenomenz to
fuel characteristics using analytical models developed with and eventu2lly:
verified by datz obtained in carefully designed experiments. Consequently,
_the program will proceed along two parallel paths, modeling and experimental.
ERLE will be responsible for overall program direction and experimentztion,
while Science Applications, Inc. (SAI) will be responsible for amalytical
modellng under subcontract to EREE, -

Effort during the first phase of this program will provide a well-
developed plan for subsequent years of the program. Key combustion properties
and ranges of fuel variation of interest to our subsequent efforis have been
surveved. Recently initiated experimental work includes the utilization of
unique ERSE experimental equipment for evaluation of fuel combustion charac-
teristics. The anzlytical modeling effort includes mew applications of
quzsi-global modeling techniques as well as predictions of and comparisons
with the experimental results generated. Efforts during the second two years
of this program will concentrate on solving the problems identified using the
approaches defined in Phase 1. These efforts will be characterized by the
broad zpplication of experimental combustion facilities available at EREE.
The SAI modeling work will not only attempt to better define chemical and
physical phenomena, but will also provide valuable guidance comcerning the
design of experiments. This cooperative, iterative procedure will optimize
the improvements to fundamental understanding and the generation of an
znalytical model during this program.
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This report is intended to provide background information

which describes the current understanding of alternate fuel effects in

gas turbines. From this discussion, the key technical areas requiring
additional study and analysis will be identified and prioritized. Current
plans for experimental study of the highest priority problem, soot formation,
will be briefly reviewed. A survey of appropriate analytical modeling
capability has been conducted and is also reported in Part B. Discussions
are divided into four sections: computational methods for recirculating
reacting flows, turbulent flow modeling and the phenomena of unmixedness,
droplet and spray combustion, and fuel decomposition and combustion.
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I. INTRODUCTION

With increazsed emphasis on the utilization of U.S. energy resources
for national self-reliance, alternate (synthetic) fuels are expected to play
an important role in future energy developments. The major North American
resources from which future synthetic fuels (synfuels) will be derived are
coal, shzle, and tar sands deposits. Fuels derived from these resocurces will
include coal liquids, methanol, and low, intermediate, and high BTU coal gas
products as well as hydrocarbon liquids derived from o0il shale and tar sands.*
While the liquid fuels are expected to replace the continually diminishing
supply of petroleum products, the characteristics of these. synfuels are not
yet defined. -

Even before the significant appearance and usage of synfuels, the
characteristics of petroleum-derived fuels can be expected to undergo some
changs. As petroleum availability declines and as previous large consumexs
utilize other resources, market competition may cause fuel:variation within
specifications and may even result in significantly increased requests for
specificztion welvers. In addition, production from new locations (i.e. the
Alaskan North Slope, North Sea, and U.S. offshore areas) may yield crude with
characteristics which further aggravate the situation. .

These future changes in fuel characteristics will affect energy'
consumers differently. In stationary applications, where significant non-
petroleum energy is already utilized, widespread conversion to the usage
of cozl from oil is anticipated. While new exhaust emissions control
technologles must be developed to accomplish this task in an environmentally
zcceptable mznner, the engineering know~how to utilize coal and experience
previously developed can be expected to facilitate conversion. Transportation
applications, however, present a much more difficult problem. Nearly all
fuels currently used in these applications are petroleum-derived and
significent veriations in fuel character have not been previously experienced.

It is most likely that a liquid hydrocarbon fuel will continue
to be necessary for the more fuel-sensitive transportation applications.
Difficulties which may soon be experienced in utilizing expanded specifica-
tion petroleum~derived fuels will eventually yield to the more severe
requirements associated with synfuel usage. The synthetic fuels are
significantly different from traditional petroleum-derived fuels. Synfuels,
especizlly those derived from cozl, will be mors aromatic and have signifi-
cantly decreased hydrogen content. These characteristics can be expected to
result in increzsed soot formation, increased flamz radiation (which can
affect the integrity of combustor hardware), and increased deposit forming
tendency, possibly resulting in plugging and fouling of equipment. Another
significant differance betwaen conventlonal petroleum and synthetic crudes
is nitrogan content. Depending on the extent of refining performed, increased
NO_ emlssion from fuel bound niltrogen may also be a problem. TFinally, as a
reSult of the generally lowsr volatility of synthetic crudes, synfuels might
bs expected to be less volatile than petroleum~derived fuels thereby causing
problems associated with fuel d:oplet burning.

* Limited synfuel production from tar sands is alrezdy e reality, but this
resource is small compared to the potentizl of cozl or oil shale resexves.
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Opticenal approaches for the utilizeticn of svnfuels and/or
petroleum-derived fuels in the future consist of energy-intensive refining
steps to match conventional fuel specificaticns or devising wavs of altering
combustion systems to allow combustion of fuels not meeting current
specificatiens. 1n his plenary session paper "Svnthetic Fuels and Combustion”
ar the 16th International Combustion Sympesium, J. P, lonawell of Exxon
Research snd Engineering Company discussed the rationale for the utilization
of synthetic liquid fuels without extensive refining. The incentives for
following this route were shown to be verv significant from the standpoints
of energy conservation and cost.

For the transportation system designer, the task at hand 1s one
of evaluating the impact of changes in fuel character and defining the
rarpe of fuel characteristics within which the system can operatez. The
U.S. Alr Yterce has initiated one such program for defining future military
aircraft fuels. The combustion effects of future fuels are to be charac-
terized along with other system factors (e.g., fuel tank design, pumps,
handling requirements, etc.) and fuel processing information is to be
acquired. A trade-off analysis will then determine the characteristics
(a future fuel specification) which will result in minimum total operating
cost and adequate availability without significant sacrifice in safety,
performance, or environmental impact. With respect to availability,
geographic wvariability in the staple resource and in refining capability
will cause combustion system flexibilitv to be an important asset. Future
development of '"fuel flexible engines'" may receive high priority, especially
for military applications.

Indeed, each application to utilize future synfuels or expanded-
specification petroleum fuels must develop such a program. It is anticipated
that the outcome of such studies will be the realization that future fuels
should be significantly different than those now in use. Naturally, these
findings should strongly influence future synfuel process design.

Regardless of the application, the impact of the fuel on the
combustion system would be expected to play the major role. Unfortunately,
the investigation of fuel impact on combustion systems is almost entirely
empirical and expensive, large-scale testing is necessary. Qur current
understanding of the fundamental combustion phenomena which influence a
fuel's practical combustion characteristics is extremely limited. The
extensive efforts to develop combustor models during the past decade have
avoided the complexity of input details which would define fuel characteristics
and the existing ability to predict, or even extrapolate, fuel effects is
nearly non-existent.

The current situation, although understandable in light of the
previous assumed availability of low-cost fuel of consistent high quality,
must now be corrected. Fundamental understanding of the combustion
phenomena influencing a fuel's performance (gas phase fuel pyrolysis
kinetics, soot formation and oxidation, droplet evaporation and combustion,
and aerodynamic/chemical interactions) must be developed. , Further, models
to be used by the combustion system designer for prediction of fuel effects
in real systems (i.e., means to utilize the detaills discussed above) are
required.
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Tnis program addresses the serious weakness in our ability to
fundamentally rslate fuel characteristics to combusticn effects.: The end
product of the vrogram will be an imporved fundamental understanding of
fuel effects and analytical models for the prediction of fuel effects based
on data acquired in carefully designed experiments. These tocols will be-
of invaluable assistance to combustor designers in both the rear term,
vhere the impact of variations in the characteristics of petroleum~derived
fuels are of concern, and mid to long term applications, where synfuels
will be utilized and fuel flexible engines will be desired.

While the information derived in this program may be broadly
applicable, it is not possible to address directly all types of combustion
systems within the current program scope. The work will concentrate on
continuous combustion systems, which are known to be the most fuel flexible,
thereby anticipating future demands for fuel flexibility. Particular
emphasis will be placed on gas turbine systems, as they constitute a well-
defined zpplication of continuous combustion and represent a significant
and increasing portion of transportation energy consumption. References 1-16
discuss future gas turbine fuels developments. '

Consistent with this orientation, the following sections address
ges turbine combustion systems, fuel effects on gas turbines combustion
systems, and changes for fuel flexibility. Based on this information a matriz
of fuel characteristics and combustion phenomena requiring study have been
developed. These are described in Section V. Present plans to study soot
formation through the use of the jet stirred reactor are discussed in
Section VI. The References and Bibliography Section includes the numbered
references cited in Part A as well as a more extensive listing of information
sources uncovered in literature searches conducted during this program.

Portions of this text have been extracted from a paper written for
the SQUID Workshop on "Alternate Hydrocarbon Fuels for Engines: Combustion
and Chemical Kinetics", September 7-9, 1977 at Columbia, Maryland. This DOE
co~sponsored event included discussions on a number of different engine types
but aircraft turbines received special attention. As a result of this v
emphasis the following sections relate closely to the aircraft gas turbine
zpplication. This orientation is beneficial in 2 number of respects. First,
the aircrzft industry provides much of the advanced technology for other gas
turbine applications; focusing on the aircraft application allows the most
advanced technology to be considered. Secondly, it is beneficial to consider
the problem of alternate fuel usage within the constraints posed by system
design requirements (e.g. size, weight, etc.). In the sections which follow
these requirements are outlined and their impact or our ability to achieve
more fuel flexible designs will be evident. '



I1. THE GAS TURBINE COMBUSTION SYSTEM

The gas turbine employs the Bravton thermodynamic cycle --
adiabatic compression, constant pressure heat additior, and adlabatic
expansion. The function of the combustion system is to accomplish the
heat release with complete combustion and minimum pressure loss and to
satisfy numerous engine operational requirements. This section describes
the t,pe of hardware used and the requirements which must be satisfied.

A. Description

Turbine engine combustors have undergore continuing development
over the past 40 years resulting in the evolution of a variety of basic
maln combustor configurations. Contemporary aircraft combustion systems
may be broadly classified into one of the three types schematically
illustrated in Figure 1.

The function of the main burner is to provide for the mixing of
fuel and air within the proper environment to ensure their nearly complete
reaction to desirable combustion products. Operation of can, cannular, and
modern annular combustors 1s adequately described through comsideration of
Figure 2. 1In the "primary zone", fuel and oxidizer are mixed, usually ip
slightly fuel-rich proportions. Approximately 90 percent of the fuel is
burned in this zone. Fuel oxidation is completed in the "secondary zome'.
In modern engines, turbine inlet temperatures are close to the temperature
at which significant chemical reactions cease (v1600°K) and no dilution is
required. However, older designs with reduced turbine inlet temperatures
utilize a "dilution zone" to further reduce temperature. No significant
reaction occurs within this zone.

The fuel-air ratio typically required for the combustor tempera-
ture increase is less than one-third the stoichiometric quantity =-- that
resulting in complete 02 consumption upon fuel conversion to CO2 and H90.
The equivalence ratio parameter, ¢, defined as the ratio of the actual
fuel-air mixture strength to that required for stoichiometric combustion,
rrovides a convenient way of describing mixture variations through the

combuster. Current primary zone equivalence ratios are about one whereas
combustor exit values are less than one-third.

The purpose of the primary zone is to stabilize combustion. High
temperatures resulting from stoichiometric operation promote rapid fuel
consumption reactions. Primary zone flow is dominated by a strong recircu-
lation region (established by swirling the air entering the head end or dome
of the burner) which furthers combustion stability. The requirement to
ensure an adequate residence time for completion of chemical reactions is
satisfied by limiting combustor reference velocity (the average cold-flow
velocity just behind the primary zone) to about 25 m/sec.

In practically all current gas-turbine combustors, the fuel is
injected an a liquid. The formation of a well distributed dispersion of
small droplets is desirable to promote raplid evaporation of the fuel and
intimate mixing of the fuel and air. Two general categories of fuel injectors



P ] ppoindie |

....—.-.l

(\) . eEREEOETN

S
. ~rromm Mg
& -

N
*‘ TS
- R
- qrpryer Ay ¢ - ‘( ) r N o ‘.Jl\
e N caaiam . K7 A N’ O S J o |

Figure 1:

SN
)
U N\
O PR
£ "

Types of Combustion Systems

Reproduced from
best available copy




po——— DIPFUSER

Figure 2:

rrimART L seconDary
ZONE TONE

Conventional Main Combustor



-7 =

are currently employed. Pressure atomizers utilize a large fuel pressure
drop (greater than 100 psi) across a nozzle to create a finely dispersed
sprav of small (<50u) fuel droplets which quickly vapcrize. Airblast
atomizers create strong swirling motions of a small portion of the combustor
air flow into which fuel is introduced. The severe shearing motion of the
air disperses the fuel and results in small fuel droplets.

The secondary zone introduces additional air to provide for the
chemical reactions which consume the products of incomplete combustion passing
from the primary zone. Air participating in these chemical reactions is
introduced normal to the main flow direction. The remaining air enters
paerallel to the main flow at the combustor walls to provide a film of cool
air which protects the combustor liner and to tailor the temperature profile -
exiting the combustor. Design of the combustor liner hole pattern to
accomplish this requirement traditionally involves a costly development
effort to avoid z number of possible detrimental effects. Excessive addition
of air mey result in quenching chemical reactions (especially carbon monoxide
and soot oxidation) essential in reducing emissions. Air introduction must
be accomplished in = manner which results in the correct temperature profile
entering the turbine; a 25 K increazse in temperature at a critical region
of a turbine blade can result in a four-fold decrease in blade 1ife, These
design objectives must be met within a prescribed combustor length. Although
ircreasing combustor size might facilitate the design task, this would cause
undesirzble increases in engine length, main shaft size, bearing requirements
and engine weight, '

Combustor liners must be designed for high structural integrity
to support forces resulting from pressure drop and must have high thermal
resistance capable of continuous and cyelic high temperature operation.
This is accomplished through utilization of high strength, high temperature
oxidetion-resistant materials and effective use of cooling air. Depending
upon the tempereture rise requirements of the combustor, 20-50 pexcent of
the dinlet airflow may be utilized in liner cocoling. A number of conventional
cooling techniques are illustrated in Figure 3.

z. Louver Cooling~-Many of the early jet engine combustors used
a louver cooling technique in which the liner was fabricated into a number
of cylindricel panels. When assembled, the liner contained 2 series of
annuler zir pzssages at the panel intersection points, the gap heights of
which were maintained by simple wiggle-strip louvers. This permitted & film
of air to be injected along the hot side of each panel wzall providing a
protective thermal barrier. Subsequent injection downstream through remaining
panels permitted replenishment of this cooling air boundary layer. Unfortunately,
the louver cooling technique did not provide accurate metering of the cooling
air which resulted in considerable cooling flow nonuniformity with attendant
variztions in combustor exit profiles and severe metal temperature gradients
along the liner, .

b. Film Cooling—-This technique is an extension of the louver
cooling technique but with machined injection holes instead of louvers.
Consequently, airflow metering is more accurate and uniform throughout the
combustion chamber. Most current combustors use this cooling technique.
However, increased operating gas temperatures of future combustors will
result in less air for cooling and more advanced cooling techmiques/materials
will be required.
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¢. Convection/Film Cooling--This relatively new technique developed
by Detroit Diesel Allison Division of General Motors permits much reduced
cocling air flow (15-25 percent) while providing high cooling effectiveness and
uniform metal temperatures. It is particularly suited for high temperature rise
combustion systems where cooling air is at a premium. The convection/film
cocled liner takes advantage of simple but controlled convection cooling enhanced
by roughened walls while providing the protective boundary layer of cool air at
each cooling panel discharge plane. Although somewhat similar in appearance
to the louver and film cooled liners, the convection/film coolant passage length
is severzl times greater; more accurate coolant metering is provided and a more
stable coolant film 1s established at the panel exit., Principal disadvantages
of this design are somewhat heavier construction, increased manufacturing
complexitv and repairability difficulties.

B. Svystem Requirements

A broad list of combustion system performance and design objectives
1s required of all combustors. Although this 1list can be quite lengthy, the
more important requirements, some of which were alluded to above, are discussed
below; these focus on the aircraft application but are adaptable to the
industrial/utility turbine combustors with obvious modifications which
recognize ground utilization.

e Performance Objectives

z, High combustion efficiency (100%) at all operating conditions.
b. Low overzll system total pressure loss.

c. Stzble combustion at all operating conditioans.

d. Relizble ground-level ignition and altitude relight capability.

¢ Dezign QObjectives

e. Minimum size, weight, and cost.

f. Combustor exit temperature profile consistent with turbine
design requirements. :

g. Good durability, maintainability, aud reliability.

h. Minimum exhaust emissions consistent with curfent specified
limitations 2nd regulations.

These demends are discussed in more detail in the following subsections.

a. Combustion Efficiency: Since propulsion system fuel consumption
hag & direct affect on aircraft system range, payload and operating cost, it
is imperative that design polnt cowbustor efficiency be as close to 1007% as
possible., Cowmbustion efficiency at the high power/high fuel consumption
conditions of take-off and cruise is always near 1007 (usually greater than
$9.5%). However, off-design efficiency, particularly at idle, can be in the
low nineties. . ‘

b, Overall Pressure Loss: The combustion system total pressure
loss from the compressor discharge to the turbine inlet is normally expressed
zs 2 percent of compressor discharge pressure. Losses of 5-8% are typically
encountered in contemporary systems., Combustion system pressure loss is
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recognized as necessarv to achieve certain design objectives (pattern

factcer, effective cooling, etc.) and can also provide a stabilizing

effect on combustion aerodvnamics. However, pressure loss also impacts
engine thrust and specific fuel consumption. FEach additional percent

increase in pressure loss will result in approximately a 17 decrease in

thrust and a .5-.75% increase in specific fuel consumption., Consequentlv,
design goals for pressure loss represent a compromise among the above factors.

c. Combustion Stability: Combustion stability is defined as
the ability of the combustion process to sustain itself in a continuous
manner. Stable, efficient combustion can be upset by the fuel-air mixture
becoming too lean such that temperatures and reaction rates drop below the
level necessary to effectively heat and vaporize the incoming air and fuel.
Such a situation causes blowout of the combustion process. In addition to
these extinction considerations, oscillatory combustion -- sometimes called
acoustic instability -- must be avoided.

d. Ignition: 1Ignition of a fuel-air mixture in a turbine engine
combustor requires inlet air and fuel conditions within flammability limits,
sufficient residence time of the potentially burnable mixture, and the
location of an effective ignition source in the vicinity of the burnable
mixture. Reliable ignition in the combustion system is required during
ground-level startup and for relighting during altitude windmilling. The
broad range of combustor inlet temperature and pressure conditions
encompassed by a typical ignition/relight envelope is illustrated in
Figure 4. It is well known that ignition performance is improved by
increases in pressure, temperature, fuel-air ratio, and ignition-source
energy. In general, ignition is impaired by increases in reference
velocity, poor fuel atomization, and low fuel volatility.

e. Size, Weight, Cost: The main combustor of a turbine engine,
like all other main components must be designed within constraints of size,
weight, and cost. The combustor diameter is usually dictated by the engine
casing anvelope provided between the compressor and turbine and is never
allowed to exceed the limiting diameter defined for the engine. Minimization
of combustor length allows reduction of engine bearing requirements and
permits substantial reductions in weight and cost. Advancements in design
technology have permitted major reductions in combustor lemgth. With the
advent of the annular combustor design, length has been reduced by at least
50% when compared to contemporary cannular systems.

f. Exit Temperature Profile: A critical turbine-life-determining
parameter controlled by the combustor design related to the temperature
uniformity of the combustion gases as they enter the turbine. In order to
ensure that the proper temperature profile has been ectablished at the
combustor exit, combustion gas temperatures are often measured by means of
high temperature thermocouples or via gas sampling techniques-employed at
the combustor exit plane. A detailed description of the thermal field
entering the turbine both radially and circumferentially can be determined
from this data. '

g. Durability, Maintainability, Reliability: A principal
combustu: design objective is to provide a system with sufficient durability
to permit continuous operation for an acceptably long time period between
scheduled major engine overhauls, at which time it becomes cost effective
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to make neccssarv repairs and/or replacements, In the case of the main
burner, durability is predominantly related to the structural and thermal
integrity of the dome and liner. The combustor must exhibit good oxidation
resistance and low stress levels at all operating conditions if durability
{s to achleved.

A maintainable component is one that 1s easily accessible, repairable,’
and/cv replaceable with a minimum of time, cost, and labor. While most
combustor liners can be weld repaired if damaged or burned, turbine removal
is required for replacement of combustors in many cases. Combustor cases
ané diffuser sections require minimal maintenance and fuel nozzles and
ignitors can generally be replaced and/or cleaned with minimal effort.

Reliability can be defined as the probability that a system or subsystem
will perform satisfactorily between scheduled maintenance and overhaul
periods. Component reliability is highly dependent on the aircraft mission,
geographical location, and pilot operation since these factors strongly
affect the actual combustor temperature-pressure environment and cyeclic
historv of the components. In that the combustor has virtually no moving
parts, its reliability is strongly related to fuel nozzle and ignitor
performance. While fouling and carboning of these subcomponents are common
causes for engine rejection, these problems are relatively easy to correct
through normal inspection and replace field maintenance procedures.

h. Exhaust EFmissions: With the advent of envirommental regulations
and goals for aircraft gas turbine systems (17,18), the levels of carbon
monoxide (CO), unburned hydrocarbons (HC), oxides of nitrogen (NOy) and
smoke in the engine exhaust become important. Naturally, the environmental
constraints directly impact the combustion system -- the principal source of
nearlv all pollutants emitted by the engine. Major changes to combustor
design philoscphy have evolved in recent years to provide cleaner operation
at all couditions without serious compromise to engine performance, Further
emissions reductions are being sought in efforts such as the NASA Experimental
Clean Combustion Program, ECCP (19-21).

CO and HC are the products of incomplete combusticn in a gas turbine
system. At design conditions -- near full load or at cruise conditions --
both of these emissions are negligible. However, during engine idle conditions
when combustor inlet temperatures and fuel-air ratios are low, combusition
efficiency decreases and CO and HC emissions increase. Techniques to minimize
these emissions focus on control of fuel-air distribution at idle to optimize
temperature and 12sidence time conditions to provide for maximum combustion
efficiency.

NO, emissions from continuous combustion process result from three
formation mechanisms. The best understood mechanism involves ''thermal NO'"
which arises primarily from combination of N, and O present during combustion
at near stoichiometric conditions. N; and O equilibrium concentrations can
be utilized to predict thermal NO. While "prompt NO" may result from similar
chemical reactions, this second mechanism is not predictable by equilibrium
concentration assumptions. Prompt NO is formed at the very beginning of
the combustion process and is thought to be associated with active radical
concentration levels far in excess of equilibrium formed during the fuel
pyrolysis and chain branching which initiates the combustion precess. The
third and final mechanism for NO formation is that where nitrogen chemically
bonded to the fuel is converted to NO,. Fuel nitrogen has been found to be
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very effectively converted to NOy (30-100% conversion) in laboratory studies
and in actual gas turbine combustion testing. This mechanism for NO,
formation is thought to be very rapid, occurring early in the combustion
process during fuel pyrolysis.

The importance of each of these three contributions in gas turbine
combustors is illustrated in Figure 5. An assumed fuel nitrogen concentration
of 0.3% and a 100% conversion efficiency have been used in developing this
figure. Thermal and prompt NO, values were determined with the analytical
correlation of Reference 22, At low power, combustion inlet temperature
corresponding to large engine idle or small (<1000HP) engine operation, fuel
nitrogen is the predominant contribution followed by prompt and then thermal
NO,. At high inlet temperature operation, corresponding to stationary or
aircraft high-power conditions, thermal N0 is the primary contribution
followed by fuel NOy and finally, prompt NO,. It should be noted that
current zircraft jet fuels have fuel nitrogen contents far below this level
(usually less than 20 ppmw) and NOx from fuel nitrogen is not a present
concerm.

Smoke is formed at higher power conditions when the primary zone
of the combustor operates with its highest- fuel-air-ratio. The carbon
particle formation processes which occur in the primary zone and the limits
of soot formation will be described in Section IV A.1. Techniques which
have been emnloved to reduce smoke emission depend on the introduction of
additionzl air into the primary zome (to achieve leaner operation) and the
improvement of mixing to avoid rich fuel-air pockets (23-28).

Beyond the difficulty of exhaust visibility is the ill-defined
issue of the hezlth effects of emitted particulates. While there has been
some general discussion of the effects of humans of particulates of various
size ranges, none of the existing regulations address this potential problem.
It should be noted that some limited work has indicated the possibility

that carcinogenic compounds may be present in gas turbine emitted particulates
(29) . . '
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I7TI. FUEL EFFECTS ON COMBUSTION SYSTEMS

Fuel cheracteristics which are most likely to affect the gas turbine
combustor designer in the future are fuel hydrogen and nitrogen content and
fuel thermal stability. In addition, the designer mzy be confronted with
changes in fuel characteristics influencing volatility, viscosity, sulfur,
and trace metal content. Each of these topics 1s discussed below.

&, Fuel Hvdrogen Content

The impacts of reduced fuel hydrogen content are associated with
increased rates of carbon particle formation. Effects include increased
fleme luminosity leading to higher combustion liner temperatures and increased
gmore emission. Thea following subsections focus on the carbon particle
formation process, smoke emission dependence on hydrogen content and the
effects of increzsed flame luminosity.

1. The Carbon Particle Formation Process

While both carbon formation and carbon consumption processes occur
in continuous combustion systems, the latter are very much slower.
The optimum zpproach for preventing hardware distress and avoiding serious eavir-
onmental consequences is to develop technology to aveid carbon formation while
sztisfying other system requirements (efficiency, gaseous emissions, hardware
reliability, etc.). .

The predominance of fundamental research activity has involved
leminar premixed flames. Street and Thomas' work published in 1955 is
extremely thorough in experimental detall and breadth of hydrocarbons examined (30);
it has become the classical paper in the field. Other publications are
References (31~42). These investigations have universally confirmed that soot
formztion is & kinetically controlled process. Equilibrium calculations
indicate thet socot should not be present at fuel-air mixture conditions where
the oxygen—-to-carbon atomic ratio (0/C) is greater than ome. That is, the
general chemical egquation

30

co + ¥
50, » XCO+3H

CoH + 7

1

should define a soot formation threshold. All experimentzl results have shown
soot formation at O/C substantially in excess of unity.

Another very important premixed flame experiment conducted at the
British Nationzl Gzs Turbine Establishment (NGTE) attempted to evaluate the
effect of pressure on soot formation (37). All previously mentioned work with
premixzed flames concerned atmospheric or sub~atmospheric conditions. The
combustion system employed took special precautions to prevent flashing back
to upstrezm locztions, an.additional difficulty associated with the high
pressure operation. In addition to sooting limits, the amount of soot formed
was determined and expressed as a "soot formation ratio" (the percent of fuel
carbon evident as soot). The index of the soot quantity was found to increass
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with the cube of pressure. Very useful plots of pressure versus equivalence
ratia for various values of soot formation ratio were presented. Examples are
shown in Figure 6 for cyclohexane, cyclohexene, and benzene. Gas phase species
were also determined during this testing and it was concluded that H0 and CO2
(oxygenated compounds not predicted by equilibrium for the system (CxHy + %-02 -
XCOo + %-Hz) are formed in substantial quantities and deplete the system of oxygen
prior to consumption of all fuel.

Soot formation in laminar diffusion flames has also been studied (43-46).
The direct utility of this information for the gas turbine combustion application
has heen questioned, as the mixing rates and characteristic times for chemical
reaction are very much different than those in the typical combustor. Shirmer (47)
has discussed the significant differences between such experiments and the actual
combustion process. He is particularly critical of the use of the smoke point
test as an index of fuel tendency to form carbon particulates. Turbulent dif-
fusion flame results would appear to be more applicable (48). Wright (46) has
examined soot formation in a diffusion flame burner and has published results
of soot measured when the fuel side of the flame is supplemented with oxygen at
concentrations well below O/C = 1. Surprisingly, it was found that the addition
of oxygen increases soot formation up to an optimal rate at which the influence
abruptly reverses and soot suppression is accomplished at higher 0y concentrations.

Wright's work involving soot formation in the jet stirred reactor (49,50)
is perhaps of most interest to this discussion -- it is a combustion process
similar to that at which soot forms in the primary zone of an actual continuous
combustion system. As in the previously mentioned studies, it was determined
that soot forms at 0/C > 1 but the strong backmixing of the jet stirred reactor
did afford some broadening of the soot-free 0/C ratio. In addition to the estab-
lishment of sooting limits, as determined by the color of the flame (luminous
yellow versus blue), Wright determined the concentrations of soot formed for
some limited conditions of 0/C below the soot limit. No analysis of this "yield"
data to determine soot formation kinetics was undertaken but it is recognized

that more such data might provide the basis for global carbon formation chemical
models.

The key fundamental data discussed above have been summarized in
Table 1. These results indicate that all hydrocarbons soot at 0/C > 1.
The table also illustrates broadened soot limits afforded by backmixing in
the jet stirred reactor. Figure 7 illustrates the difference in soot
production between the jet stirred reactor and a premixed laminar flame (50).
Since the troublesome aromatic compounds are present in relatively small
amounts in practical fuel blends, the fuel-air ratio to achieve the design
temperature rise is dominated by the balance of the fuel composition which
may be relatively high in hydrogen content. Therefore, the fuel-air mass
ratio for incipient soot formation is most important to the combustor
designer. This information based on the jet stirred reactor sooting limits
(49), has also been included in Table 1. The fuel-air ratio representation
emphasizes the soot forming tendencies of the aromatic type compounds.
Consequently, attempts to utilize reduced hydrogen content fuels with increased

aromatic compounds would be expected to experience the difficulties associated
with soot formation.
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Carbon Formation Limits for Various Fuels

Fuel
Ethane
Propane
Hexane
Ethylene
Propylene
Butene
Benzene
Toluene
Xylene
Tetralin

1-Methyl napthalene

Critical O/C Ratio ior

Incipient Carbon Formation f/a Mass Ratio for
Pre-Mixed Bunsen Well-Stirred Carbon Formation at
Flame Condition well-Stirred Conditions
(from Reference 30) (from Reference 49)
2.10 <1.5¢ >0.140
2.14 <1l.41 >0.151
2.18 <l.75 >0.119
1.67 1.43 0.31476
1.79 1.40 0.146
2.08 1.48 0.138
1.75 1.75 0.116
1.92 1.71 0.112
2.08 1.80 0.307
2.27 1.81 0.300

2.38 1.62 0.116
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2. BSmoke and Particulate Emission Effects

Reductions in fuel hydrogen content can severely handicap the
designer in his goal of attaining exhaust invisibility. Figure 8 illustrates
the relationship between smoke emission and fuel hydrogen content. These
data were acquired at a combustor inlet temperature of 756°K using a T56
single combustor rig (51). Substantial increases in the SAE Smoke Number
(SN) -- determined from the reflectance of a smoke spot formed on filter
paper after passing a known volume of exhaust sample (52) -- with decreasing
hydrogen content are noted at each combustor inlet temperature., These
changes can cause serious visibility problems in engines with current SN
values near the visibility threshold (depending on engine size the threshold
varies from SN = 20 to 40). Further, since the relationship between SN and
particulate mass loading (gravimetric exhaust concentration) is exponential

(53), these increases represent very substantial increases in absolute
particulate emission levels.

Even smaller changes in fuel hydrogen content can significantly
affect smoke emission. Testing of combustion systems on both JP-4 and either
JP-5 or Jet A has indicated that smoke levels are substantially lower with
JP-4 (54). The slightly higher hydrogen of JP-4 (about 14.5 vs. 13.9 weight %
for Jet A) is thought to be primarily responsible for the increase. Figure 9

illustrates one example of this type of result for the case of the CJ005 (J79)
engine (55).
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3, Flame Luminosity Effects

The flame in a2 gas turbine combustion system radiates energy to
the combustor liners which must be cooled with substantial quantities of
compressor discharge air (47,51,56-62). Radiation may be considered both
luminous and non-luminous. The non-luminous infrared emlssion is due to
CO, and Ho0 band radiztion while the luminous component is due to radization
from carbon particles within the flame. The non-luminous portion of the
flame emissivity can be calculated from the equation (56,59):

eq=1- exp (-2.86 %1028 (0307 1z )

whare: P = combustor pressure 5%
m

fugl-zir mass ratio

L}

T

%

radiztion path length (m)

flame temperature (°K)

If

The conditioms which would result in the highest value of €9 correspond to
high power operztion of a modern high bypass ratlo engine:

= = kN
P = 30 atm = 3039 ;7
r = .05
L=7.5cem= .075 m
Te= 2500°K

Even under these conditions €,9 is only 0.346. Consequently, non-luminous
radiztion does not approach optically~thick conditions. Intreases in
luminous emissivity resulting from use of a low hydrogen content fuel can
have substantizl heat transfer impact.

Many investigators have studied the effect of fuel characteristics on
flame luminosity and the resulting effects (51,63-69). Figure 10 illustrates a
correlation of much of this data. This figure iliustrates the relationship
betwezen hydrogen content and combustor liner temperatures for 2 number of
aircraft gas turbine engines. The ordinate in Figure 12 is a non-dimensional
temperature parameter (51); T;-Tpn is thé difference between liner temperature
with 2 given hydrogen content fuel znd that obtained with a standard fuel (in
this case JP=£ with 14.5% hydrogen content) and Ty4~T, is the difference
betwezen the JP-& liner temperature and the combustor Inlet temperature. The
parameter is representative of the fractional increase im linsr temperature
(over the baseline JP-4 case). Thinking of the liper as a radiative heat
flux gage, the parameter is also representative of additionzl radiative
loading.
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A non-dimesnsional temperature parameter of 0.25 represents a
substantizl liner temperature increase. Since Ty0~T3 could be about 300°C,
the increzse in liner temperature over that of the standard fuel would be
75°C. Such changes, especially as they occur at highly stressed combustor
locations, can seriously reduce hardware reliability and durability.

A simplified radiation heat transfer analysis of the combustor
liner temperature data has produced a relationship between particulate
concentration in the primary zome (which increased luminosity) and the fuel
content (68). The relationship is of the form:

——EE— =1+ C, (AR)"

where: Pc = particulate concentration

(PC)o = particulate concentration with JP-4
Cl = constant
AH = 14.5 - H: where 14.5 = JP-4 hydrogen
content and H is the hydrogen
content of the test fuel
ﬂ = 0’ l, 2’ etC.

The best fit of the data of Figure 12 indicated that n = 1.

More detailled evaluations of hydrocarbon type on the enhancement
of luminous radiation have been pursued (68). Figure 11 illustrates the
influence of single and double ring aromatic compounds on the previously
describad non~dimensional temperature parameter using results from testing
with = 756 single combustoxr. Different hydrocarbon compounds were added to
the fuel to achieve reduction in hydrogen content--napthalene is'.zn unsat- - -
urzted double ring compound, tetralin is double ring with one saturated and
one unsaturated ring, decaline is a saturated double ring compound, and %¥ylene
is a single ring unsaturated compound with two methel groups. The figure
illustrates that in this instance hydrogen content is a sufficient correlating
parameter and hydrocarbon-type influences are secondary. o
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B. Fuel Nitrogen Content

1. Fuel Nitrogen + NO; Chemistry

A number of researchers have studied the fuel nitrogen problem
from 2 fundamental standpoint (70-79). All indications point towards
extremely rapid conversion of the fuel nitrogen to a nitrogen~containing
intermediate with subsequent rapid oxidation to NO. Some correlations
and models have been suggested but it seems certain that only at rich
mixture ratio conditions can minimization of NO” formation be possible.

Equilibrium conditions at rich mixture conditions call for the fuel
nitrogen to be converted largely to N3. Sufficient time for the approach to
equilibrium must be allowed; otherwise large quantities of the nitrogen contain-
ing intermediztes can enter the burnout stage and be converted to NOx
during that process. Consequently, the kinetics of the initial fuel pyrolysis
and partial oxidation process must be evaluated.

The key research needs in this area focus on: a) how to accomplish
rich combustion without detrimental side effects (smoke, hardware carboning,
flame radiation) and b) what are the products of rich combustion which
rust be accommodated in the second stage combustion process. The time
requirements, volumetric loading limitation, inlet temperature influence,
and fuel type variations must all be considered in establishment of the
rich operating limits. The form of the nitrogen compounds as they exit
this first stage (i.e. NH3, CHY, NO, etec.) as a function of operating
conditions will be important to the design of the secomnd stage burnout
process. The possibility that some of the fuel nitrogen is present in
the soot particulate must also be examined.

Previous work in strongly backmixed systems again focuses on
the jet stirred reactor. Bartok et al. (75) established NO; conversion
efficiencies dependence on mixture ratio for methane combustion with
addition of NH3, (CN)Z’ and CH3NHy. Conversion was clearly decreased by
operation at greater-than-stoichiometric mixture ratios, Figure 12
illustrates jet-stirred reactor conversion rates for propane fuel doped
with 500ppm CH3NHjp.

2. Effects on Engine Emission

The importance of nitrogen in future fuels arises from its
high conversion (30-100%) to NO,. The extent of this problem in future
continuous combustion systems is a complex issue. Most importantly,
the levels of nitrogen which might be expected in future fuels have not
been defined. :

Discussion at the recent NASA hydrocarbon fuels workshop (80)
indicated that the impact of fuel nitrogen on the storage and thermal
stability of jet fuels may dictate levels which, even if completely con-
verted to NO,, would be nearly undetectable. This conclusion, however,
wag drawn in comsideration of petroleum-derived fuels and current ’
technology aircraft systems and refining methodology. A more long range
look at the jet fuel nitrogen issue, where non-petroleum fuels and improved
techniques for coping with stability difficulties are considered, may alter
this assessment.
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The effect of increased fuel bound nitrogen in actual engine
systems, is evaluated by determining the additional NO, emission occurring
when nitrogen 1is present in the fuel and calculating the percent of fuel
nitrogen conversion to NOy necessary to cause this increase. Current
petroleum jets fuels which have near zero (< 10 ppmw) fuel nitrogen are
usually used as the zero fuel nitrogen baseline. Results presented in
Figure 13 were acquired using a standard JP-4 fuel doped with pyridine to
fuel nitrogen levels of 0.1, 0.3, and 1.0 weight percent (51). A T56 single
combustor was utilized in this testing. These results indicate the importance
of two variables. First, as combustor inlet temperature is increased, conversion
is reduced. Secondly, as fuel nitrogen concentrations are increased, conversion
decreases. Other results of gas turbine combustor testing have reached these
same conclusions (66,67,81-84). '

Another observation to be made with the information presented in
Figure 13 1s the conversion achieved with nitrogen naturally present in s
refined jet fuel from a non-petroleum source. In this case the fuels were
derived from Colorado oil shale resources and nitrogen contents of 250-800 ppm
resulted. The oil shale jet fuel results are shown on a band in Figure 13
because of difficulties in accurately measuring small NOy increases.

C. Fuel Stability

In many aircraft applications the fuel 1is used as a coolant prior to
being combusted. Subsonic applications use the fuel to cool engine cil
while supersonic-cruise aircraft may also require the fuel to serve as a
heat sink for aerodynamic heating effects. As the fuel enters the combustor
it flows through hardware (fuel nozzles, fuel pipes, manifolds, etc.) exposed
to high temperature due to heating by the compressor discharge air and often
radiant heating from the combustion zone. For these reasons the thermal
stability is a closely monitored fuel quality.

The combustor designer must recognize this fuel limitation and
take appropriate precautions to prevent the fuel from reaching temperatures
where thermal breakdown leading to deposition can occur. Designs for low
emissions involving fuel staging are especially troublesome in this respect.
As the fuel flow to a stage of the combustor is started or stopped the fuel
is exposed to a transient heating. After starting the hardware may be at an
initlal temperature corresponding to the compressor discharge and thus, the
fuel is exposed to very high wall temperatures for a brief period. After
stopping, the fuel may reach high temperatures as it slowly drains from
the system with no supplemental cooling.
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Anothar potential difficulty is the formation of carbon deposits
within the combustion system. These would be distinctly different then those
within. the fuel system which are formed in the absence of oxyvgen. Unplanned
impingement of fuel on combustor walls with the use of airblast fuel
injectlion techniques, can result in substantial carbon deposit buildup., 1In
addition to the difficulties associated with a distorted aerodynamic

situation, fragments of deposit can separate from the hardware, puss through
the combustor and impinge on the turbine (85).

The introduction of lower hydrogen, higher nitrogen content
fuals would furthsr aggravete the design difficulties of coping with the
fuel's limitations. The techniques which would be expected to offer
improvad fuzl flexdbililty (eg. airblast atomization and staged combustion)
nav experience espacially difficult problems because of liquid fuel contact with
metzl surfzces and intermittant fuel nozzle usage.

D. Other Fuzl Fectors

Volatility affects the rate at which liquid fuel introduced
into the combustor can vaporize. Since important heat release processes
do not cccur until gas phase reactions take place, reduction of volatility
shortens the timz for chemical reaction within the combustion system.
In thz ailrcraft engine thils can result in difficulty in ground or
altitude ignition capability, reduced combustor stability, increased
erissions of carbon monoxide (CO) and hydrocarbons (HC), and the
associated loss in combustilon efficiency. Moreover, carbon particle
formation is aided by the formation and maintenance of fuel-rich
pockets in thez hot combustion zone (86), Low volatility allows rich pockets
to persist because of the reduced vaporization rate. Again, increased
particulates can cause additlonal radiative loading to combustor liners
and increased smoke emission between JP-4 and JP-5. Some of the differences
between JP-4 and JP-5 smoke levels (Figure 11) can be attributed to the vol-~
atility effect.

The desired formatilon of a finely dispersed spray of small fuel
droplets is adversely affected by viscosity, Comnsequently, the shoriened
timz for gas phase combustion veactions and prolonging of fuel-rich
pockets experilenced with low volatillty can also occur with increased
viscogity. The ignition, stability, emissions, and smoke problems pre-
viously mentioned zlso increase for higher viscosity fuels.

Both suifur and trace metals are at very low concentrztions
in current jet fuels. Sulfur is typically less than 0.1% because the
petroleun fraction ussd for jet fuel production is neaxly void of sulfur-
contzining compounds. Although syncrudes from coal or o0il shale may
contain higher sulfur levels, it is not likely that the curzent
specification limit of 0.47 would be exceeded with the processed jet fuel,
Tne nature of modern turbime blade design and the operating temperatures in
this component require that the trace metals be removed. Because of the way
in which future jet fuels are expected to be produced, trace metals are also
expected to continue to be present at low concentrations (less than 1 ppmr).
Should higher levels appear possible, the necessity to preserve the high fuel
efficiency benefits of the advanced technology turbine blade would justify
additional exzpesn== for rsmoval.



IV. CHANGES FOR FUEI FLEXIBILI1Y

In consideration of future R&D requirements, this Section presents

the types of designs which might be expected to afford some fuel flexibility
are described.

1. Premixing/Prevaporization/Lean Operation

Since carbon particulate formation occurs at fuel-air ratios
above a limit determined by the fuel composition, it is c¢vident that the
primary approach towards eliminating luminous radiation and smoke problems
is to maintain fuel-air ratios below the incipient carbon formation limit
at all points within the combustor. To assure this situation the maximum
degree of premixing, prevaporization, and lean operation should be pursued.
The ability to incorporate these design characteristics, however, 1s seriously
limited by the difficulties to be described below.

The most recent current designs incorporate some degree of premixing
and lean operation to minimize smoke emission while using fuels within existing
specifications. The General Electric CF-6 combustor illustrated in Figure 14
utilizes airblast atomization and a lean primary zone. Testing of the CF-6
combustor has produced results which indicate combustor liner temperature
dependencies on fuel hydrogen content significantly below that of older
designs (87). Figure 15 compares the non-dimensional temperature parameter
for the CF-6 with that of the older designs established as Figure 12, Inter-
preting the non-dimensional temperature parameter in terms of a heat flux
parameter, it is clear that the fractional increase in combustor thermal
loading resulting from luminous radiation is far less for the CF-6 combustor.

Low NOx emissions designs tested in the NASA Experimental Clean
Combustor Program have a leaner, more premixed design. These advanced
combustors make use of a staged design as illustrated in Figure 16. The
first stage, being the only one fueled at idle, is designed forpeak idle
combustion efficiency. The second stage is only utilized at higher power
conditions. This main combustion zone is designed with the primary motivation
of NOx control and operates fuel lean. It has been found that some of these
designs indicate nearly no sensitivity to fuel type; the behavior of such
systems as expressed in the manner of Figure 15 would be a horizontal line (87).

That is, all fuel air ratios in the combustion zone must have bzcon below the
incipient sooting limit.

It should be noted that not all evidence points to greater fuel
flexibility for modern engines. During the recent NASA Hydrocarbon Fuels
Technology Workshop, combustor liner temperature results from the cesting
of some of the ECCP advanced combustors was thought to imply an equal sensitivity
to the older designs (80). It was generally agreed, however, that the direction
in which the ECCP combustor designs proceded to satisfy performance requirements
and reduce emissions is favorable to promoting fuel flexibility.
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PRODUCTION CFg-50 ENGINE COMBUSTOR

Figure 14: CF6-50 Standard Combustor (From Reference 87)
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Figure 16: GE Double Annular Combustor Developed During
NASA ECCP Program (Reference 87)




- 36 -

The designer's ability to incorporate premixing/prevaporization
techniques into his combustcr is seriously limited by preignition and
flashback limitations and by combustor geometry constraints. At the high
combustor inlet temperatures and pressures associated with takeoff climbout
or cruise operations, the ignition delay time of the fuel air mixture may
be less than 10 ms. Should this residence time be achieved prior to the
mixing entering the burning zone, ignition will occur with resultant
destruction of the combustor hardware. If droplet size 1is too large the
prevaporization passage may be too short to accomplish sufficient vaporization.
Recognizing the need for future premixing/prevaporization systems a number
of efforts have begun to collect fundamental information of methods of best
achieving this condition in practical systems (88,89).

2. Combustor Liner Cooling

A second, or perhaps additional, approach to avoiding hardware
distress resulting from increased flame luminosity is the use of advanced
combustor liner cooling techniques. Three concepts are to be reviewed here:
impingement/film cooling, transpiration cooling, and thermal barrier coatings.
Figure 17 i1llustrates characteristics of each of these techniques.

The impingement/film cooling technique is well suited for applications
involving high radiative flux and minimum availability of cooling air. Small
jets of air impinge on the hot side of the combustor liner providing very
effective heat transfer. When combined with the additional film cooling
feature (see Figure 3), impingement cooling provides for excellent thermal
protection of a high temperature liner. Its disadvantages, however, are
similar to those of the film/convection liner--heavier construction, manu-
facturing complexity and repairability difficulties.

Transpiration cooling is the most advanced cooling scheme available
and is particularly well-suited for future high temperature applications.
Cooling air flows through a porous liner material, uniformly removing heat
from the liners while providing an excellent thermal barrier to high combustion
gas temperature. Both porous (regimesh and porolloy) and fabricated porous
transpiring materials (Lamilloy*) have been examined experimentally. Fabri-
cated porous materials tend to alleviate plugging and contamination problems,
inherent disadvantages of the more conventional porous materials. As can be
seen in Figure 17, transpiration cooling offers better temperature control
and uniformity than any other cooling technique.

Beyond these techniques are other approaches involving coatings
and thermal barriers. Recent efforts at NASA Lewis Research Center have
illustrated that thermal barriers can provide significant relief from high
radiative loads allowing acceptable metal temperatures in conventionzl
combustion designs when burning fuels with low hydrogen content (90). The
thermal barrier consisted of a 0.0l cm bond coat of nickel-chromium-zluminum-
yttrium alloy covered with a 0.025 cm ceramic layer of 12% yttria stabilized
zirconia. Combustor liner metal temperature decreases of over 200°C were
indicated when using a high aromatic fuel.

* Developed by Detroit Diesel Allison, Div. of GMC, Patent Number 3,584,972,
titled "Laminated Porous Material," 15 June 1971.
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3. Minimizing Smoke Emission

The most attractive means of controlling smoke emission is to
maintain fuel-air ratio conditions throughout the combustor at values below
the incipient carbon formation limit. However, because of the practical
problems presented by premixing, prevaporization, and lean combustion, this
may not be possible. In such a case the previously discussed liner cooling

techniques will be of value in handling the increased amounts of luminous
radiation.

Carbon particulates which are formed will have to be oxidized
within the secondary zone. Close control of mixture ratio, temperature
and residence time within this zone will be necessary to achieve maximum
consumption. Radcliffe and Appleton (91) have determined that optimum
congsumption of particulates occurs at ¢ = 0.75. Their particle surface
consumption rates of 1-20 um/gec. indicate that particles whose initial
diameter 1s less than 0.04 pm will be consumed in a typical residence time of
five ms. Even with optimum conditions, however, it may not be possible to
consume sufficient amounts of soot to provide acceptable exhaust levels,
especially if significant agglomeration has occurred to form particles
lavger than 400 2.

4. Fuel Nitrogen Conversion

The primary approaches to minimizing fuel nitrogen conversion to
NOx iavolve rich combustion to react fuel nitrogen to Nz followed by lean
burnout of the rich zone products. The necessity for the rich combustion
zone creates substantial difficulty in the task of preventing carbon
particulate formation. In brief, this limits the "window" of premixed
prevaporized conditions which the designer must satisfy and creates the
necessity for a sequentially staged design (rather than spacially or parsllel
staged design as in the NASA ECCP combustors). Difficulties associatsd with
the conflicting approaches to soot minimization and fuel nitrogen > NO
control crupled with therma’ stability requirements will certainly contribute
towards a preference to remove nitrogen from future aviation fuels.

5. Other Fuel Characteristics

Fuel thermal stability, volatility, viscosity, and sulfur and
trace metal content would have significant impacts. As previously discussed,
thermal stability might become a more significant problem in staged designs
where fuel introduction systems are started and shut down frequently, thus
undergoing substantial thermal transients. Cautious design of fuel system
components and control of fuel quality will be required to overcome this
difficulty.

Reduced volatility and increased viscosity would impact ground
and altitude ignition capabilities. It must be emphasized that the system
must be designed for and qualified at the most stringent operating parameters
(in this case lowest temperature) and future fuels might have very difficult
properties at such conditions.
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V. R&D NEEDS

The purpose of this section is the identification of basic
combustion phenomena requiring further study along with indications of
priority for accomplishing this work. These thoughts must be related to
the foregoing discussion of alternate fuels problems in gas turbine
combustion systems. This will be accomplished by a matrix which depicts
the relationship between combustion system performance and fuel
cheracteristics. The matrix provides 2 means of identifying major areas
requiring attention. A second matrix relates the key combustion processes
requiring study to the problem areas identified.

Combustion system influences which must be considered in this
analysis are:

ignition

combustion stability

combustor liner temperature and deposits

combustion efficiency

gaseous emissions

smoke emission

trace emission

flashback and preignition
Wich the exception of the last two items, these topics have already been
adequately discussed. Trace emission relates to the potential emission
of material which is not governed by current regulations. TFor example, the
more aromeztic nature of future fuels might cause increased emission of
polynuclezr organic material either in the gaseous state or adsorbed on
emitted particulates. Another possibility would be trace metal emissions
associzted with increased amounts of these materials in fuels. Flashback
and preignition becomes an important influence with future combustion systems
because of the need to premix and prevaporize to provide stable, lean
combustion to minimize soot and NO,, foxrmation. As these combustors are
developed, the influences of the fuel characteristics on flashback and
preignition must be considered. ‘

Figure 18 relates these combustion system influences to the fuel
characteristics discussed in previous sections: fuel hydrogen content
and changes in hydrocarbon composition, nitrogen content, fuel thermal
stability, volatility, viscosity, trace metal content, and sulfur content.
Problems known to exist because of future changes in each fuel characteristic
are designated with a P, Potentizl problems are indicated with a p. The
seriousness of the problem is indicated numerically with 1 being a minor
problen and 3 being a major problem. The matrix illustrates that attention
should be focused on:

a, Fuel hydrogen content effects on combustor durability
and smoke emission.

b. Fuel nitrogen conversion to NO,. Note that this comclusion
applies directly to non-aircraft turbine only as future
jet fuel nitrogen levels are very uncertain (see Section IV).
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¢. Fuel hydrogen content (hydrocarbon composition) influences
on preignition/flashback in combustion systems.

d. Thermal stability influences on deposits, especially for
future prevaporization/premixing designs.

e. Volatility effects on ignition, gaseous emission, and smoke.
f. Viscosity effects on ignition, gaseous emissions, and smoke.

g. Hydrogen content, trace metal, and sulfur effects on trace
emissions.

Wnile this prioritization of gas turbine combustion problems
is interesting in itself, it only provides guidance for formulation of
the appropriate fundamental combustion program. Figure 19 provides =z
schemztic representation of the combustion model being developed in this
progrem. The frzmework of the model provides z structure for thinking of
the basic combustion phenomena requiring improved understanding, as well
es for determining requirements which can lead to the ability to analytically
predict fuel effects on combustion systems. TFuel related elements of the
model zre those appearing in the upper left portion of the schematic., A
finzl key element requiring attention is flame radiation and the ability
to predict variatioms in it with fuel type.

These elements have been presented along with the key system
problems expected (as previously discussed) in the final matrix of Figure 20.
Here the priority problems are related to items which we can study and
from which our program can be formulated. Note that the potential for
studying the deposit problems associated with low thermal stability using
a combustion model is very low; new experimental procedures for evaluation
of thermal stebility difficulties must be pursued. Further, while the
H, and CO oxidation chemistry will play a vital role in the combustion
c%emistry, additional information on this process is not necessary to allow
prediction of fuel effects.

It is zpparent that the following ordering of priority should be
respected in selection of tasks for future program years.

2. Soot Formation

b. TFuel Pyrolysis

¢, Soot Oxidation

d. Flame Radiation

e¢. Bound Nitrogen —>-NOx Conversion

f. Aerodynamic Chemical Interactions

g. Fuel Vaporization and Spray Dynamics
Tt should be noted that these topic areas are not very sharply defined.
For example, scot formation occurs during fuel pyrolysis and onme topic
could not be totally excluded from study of the other. Further, the
difference in the priority of the first five items is very small. Bound

nitrogen conversion should be given urgent priority even though it is
fifth on the list.
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Figure 20

Relation of Key System Problems to Combustion Phenomena
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VI. CURRENT EXPERIMENTAL PLAN

The current experimental program focuses on study on the soot
formation process using the jet-stirred combustor. This device is a
modification of the Longwell-Weiss reactor (92) with hemispherical
geometry. This choice has been used extensively in fluid mechanic and
combustion modeling because combustion rates are limited by chemical
kinetics as opposed to transport effects. The reactor (Figure 21) consists
of an outer shell of fire brick shaped as two halves of a sphere five
Inches in diameter. The upper hemisphere is solid with the exception of
the hole through which the reactants are brought to the injector. The
lower hemisphere is hollowed out to a reaction zone of 1.5 inch diameter
and has twenty-five holes of 0.125 inch diameter through which the burned
mixture exhausts. New reactors are being fabricated which will allow for
different dlameter reaction zones (1 and 2 inches as well as 1.5 inch) and
to evaluate reactor heat loss effects.

Fuel and alr are metered separately through calibrated rotameters,
preheated to the desired inlet temperature and then mixed before entering
the combustor. Air and fuel heating to temperatures of 350°C (and fuel
prevaporization in the case of liquids) is accomplished in an "aluminum
block heater". Separate coils for fuel and air are embedded in the block
which is wrapped with electrical resistance heaters. In the case ¢f liquid
fuels, a small flow of N7 is maintained through the fuel coil to provide
smooth vaporization and uniform flow. The temperature of the fuel/air stream
1s determined immediately before injection. This measurement is irput to a
digital controller which provides power to the block heater to maintain
injector inlet temperature within + 3°C of the set point. The fuel-air
mixture enters the reaction zone through an Inconel injector which is a
hemisphere into which are drilled forty-radial holes of 0.020 inch diameter.
The above mentioned new JSC design will allow for rapid changing of injectors
in case of burnout or to determine the effects of injector head design. The
reactants enter the reaction zone as small sonic jets which stir the reactor
contents and produce a mixture of essentially uniform temperature and
composition in a characteristic time which is short compared with the
average residence time. Combustion experiments can be conducted at atmospheric
pressure with a range of residence times from 1-1/2 to 4 milliseconds. The
capabilities of this apparatus may be extended to include operation above
atmospheric pressure as part of the current DOE effort.

A new system for gas and particulate sampling has been developed.
Special care has been taken to prevent condensation of water or unburned
hydrocarbons within the sample lines, as high concentrations of these
constituents are expected at mixture ratios of interest in this study.
The sampling probe is hot-water cooled and sample transfer 1s accomplished
using electrically heated sample lines. All pumping and valving is
accomplished within an oven maintained at 150°C. Valves have been selected
which are rated for operation at temperatures up to at least 175°C and
design characteristics are such that lubricated valve components arz sealed
from the gas path. The pump selected is a high temperature metal ballows
type (Model MD-158 HT) driven by a 1/4 horsepower motor external to the oven.
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Figure 21 '

Schematic of the Jet Stirred Combustor
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Gas sampling is accomplished with conventional process instru-
mentation. Gases leaving the oven are transferred hot (150°C) to a Beckman
Model 402 Analvzer for hydrocarbon measurement. Another sample gas stream
is chilled to eliminate condensable water and hydrocarbons prior to
introduction into NDIR analyzers for CO and COp, and an amperometric
instrument for 0. Particulate sampling will be accomplished using a 40 mm
glass fiber type filter (Gelman type AE). Pre- and post-weighing (after
appropriate drying) will be utilized and sufficient collection in times of
less than 10 minutes is expected.

Ethylene has been used as the base fuel for this program. Liquid
fuels to be studied are:

n-octene
cyclo-octane
hexane
cyclo-hexane
n-octane
iso-octane
toluene
ortho-xylene
meta-xylene
para-xylene
cumene

tetralin

decalin

l-methyl napthalene
dicyclopentadiene

Early experiments will involve CoH4 as the fuel and will focus
on determining the effects of reactor loading and inlet temperature on
the incipient soot limit and soot formation rate. Gaseous specie
concentration will also be determined to evaluate the changes in hydrocarbon,
CO, and COy concentration as the soot limit is reached and exceeded.

Similar experiments will follow using the 1liquid fuels. The
objective of these studies will be to evaluate the effect of hydrocarbon
structure on sooting characteristics under intensely backmixed conditions.
All of this testing will have been conducted using pure fuels. Subsequently,
fuel blends will be studied, The relationship between fuel hydrogen content
and soot emission will be established. Finally, practical fuel blends
(2 jet fuel, diesel fuel, and unleaded gasoline) and actual synfuels (coal
or oil shale derived) will be tested. The objective of these last tests
will be to examine the similarity between results obtained with blends of
pure fuels and those of practical fuel mixtures.
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