DOE/ID/12779--TI

Development of Novel Active Transport Membrane Devices

Phase I Final Report

by

Daniel V. Laciak Robert Quinn George S. Choe Philip J. Cook Fu-Jya Tsai RECEIVED FEB 2 8 1896 OSTI

August 1994

Work Performed Between 31 October 1988 and 31 January 1994 Under Cooperative Agreement No. DE-FC36-89ID12779

Prepared for

United States Department of Energy Golden Field Office, Golden Colorado Sponsored by the Office of the Assistant Secretary for Energy Efficiency and Renewable Energy

> Office of Industrial Technology Washington, D.C.

> > Submitted by

Air Products and Chemicals 7201 Hamilton Boulevard Allentown, PA 18195-1501

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Phase I Final Report

by

Daniel V. Laciak Robert Quinn George S. Choe Philip J. Cook Fu-Jya Tsai

August 1994

Work Performed Between 31 October 1988 and 31 January 1994 Under Cooperative Agreement No. DE-FC36-89ID12779

Prepared for

United States Department of Energy Golden Field Office, Golden Colorado Sponsored by the Office of the Assistant Secretary for Energy Efficiency and Renewable Energy

> Office of Industrial Technology Washington, D.C.

> > Submitted by

Air Products and Chemicals 7201 Hamilton Boulevard Allentown, PA 18195-1501

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employces, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completences, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Foreword

In 1988 Air Products and Chemicals entered into a Cooperative Agreement with the United States Department of Energy to develop "Active Transport" (AT) gas separation membranes recently discovered in our Corporate laboratories. Active Transport systems exploit chemical complexation reactions between the membrane and specific contaminant gases and thus are significantly more selective than commercial (i.e. solution-diffusion) polymer membranes. Air Products has identified Active Transport materials which selectively permeate carbon dioxide from mixtures with methane and hydrogen, hydrogen sulfide from mixtures with carbon dioxide and methane, and ammonia from mixtures with nitrogen and hydrogen.

Two significant advances in ATM technology were made during Phase IA of this Cooperative Agreement. APCI successfully translated the gas-reactive chemistry of molten salts and molten salt hydrate liquid membranes into the solid state by synthesizing new polyelectrolyte compositions. Second, APCI demonstrated that polyelectrolytes could be fabricated as thin film composite membranes in which the ATM component is stabilized on a microporous support fiber. Such composites were operated at pressures up to 1000 psi and were stable over 3 weeks of continuous testing. In Phase IA Air Products fabricated and evaluated spiral-wound thin film composite lab scale modules of NH₃ and CO₂ selective ATMs. These prototype modules displayed high permselectivity at low pressures, however, significant concentration polarization effects were observed under laboratory simulated process conditions. The major objective of this, the final segment of Phase I (Phase IB), was to demonstrate that ATMs could be fabricated in the commercially viable form of a hollow fiber device exhibiting permselectivity for separating carbon dioxide from mixtures with methane. Such membranes could be used for:

- permeating CO₂ from natural gas
- permeating CO₂ from landfill gas
- permeating CO₂ from wastewater treatment offgas

The task schedule for the Phase IB contract period is shown in Figure i. Major accomplishments for this contract period included:

- Established substrate polymer selection criteria and identified a candidate material.
- Established the effect of fiber spinning variables on substrate fiber properties and produced a hydrocarbon-resistant fiber with tunable surface porosity in the range 100 1000Å.
- Demonstrated concept feasibility by fabricating lab-scale, ATM composite hollow fiber membrane modules incorporating non-optimized substrates that were stable to 1000 psi and for at least 50 days of continuous operation.
- Estimated that an optimized ATM system (i.e., one which meets all performance and cost targets) could upgrade subquality natural gas (6% CO₂) for approximately 20% less than the cost of conventional (DEA) acid gas scrubbing technology.
- Identified technical hurdles that require resolution prior to further developing and commercializing Active Transport membranes.

These accomplishments are discussed in detail in Chapters III-VII. A general summary and recommendations for additional work are contained in Chapter VIII.

	1992						C401	2					Ê	1004
TASK	Aug Sap Oct Nov	å	ua L	Fib Mar	4	Apr May Jun Jul	Lun	3	Aug	đ	Oct Nov	980 Not	La La	H
SUBSTRATE DEVELOPMENT Spinning Eq. Setup Spinning Studies Fiber Charatcerization													┼──╟╟╴	
COATING Equipment Setup Dip-coating / Module Fab.														_
TESTING Equipment Setup Lab Tests														
COMMERCIAL DEVELOP. & PROCESS ENGINEERING													_[
REPORTWA3 Quaterly Reports Phase IB Report	\$		\diamond	•		\diamond		V	\diamond					$\diamond \diamond$
MILESTONE: HF LAB MODULE														\diamond

.

Figure i: Program Schedule

DE	DEVELOPMENT OF NOVEL ATM DEVICES: PROGRAM SCHEDULE AND MILESTONES (PHASE I) 1988 1988 1989 1989 1989	ES: PROGRAM SCHEDULE AND		1992
z	J F M A M J J A S O N D	J F M A M J J A S O N D J	T M A M J J A S O N D	L L M A M J L
<u> U</u>		Òa		
Fabricate Membranes Laboratory Test Apparatus Evaluate Membranes		¶ ♣	°	
за. MLC Scale-up/Mod. Fab. 3b. Lab Apparatus Mods. 3c. теst Módules			1p	
•				
		\$	\$	<u> </u>
	¢ 1	♦ 82	\$ ⁰ 3	
	фht		12 �h3 �h4	
				Fri, Jan 27, 1995

VDHASE IN

Figure iA

vi

-___

TABLE OF CONTENTS

I. Executive Summary	1
II. Program Overview	3
1.0 Introduction	3
2.0 Background	4
3.0 Historical Perspective - Air Products Work in AT Membranes	13
4.0 Phase IA Accomplishments	15
5.0 Technical Focus	18
III. Substrate Fiber Development	20
1.0 Introduction	20
2.0 Experimental	
3.0 Result and Discussions	24
4.0 Summary and Recommendations	35
IV. Composite Membrane Development	37
1.0 Physical Properties of Coating Solutions	37
2.0 Coatability of Planar Substrate Coupons	41
3.0 Hollow Fiber Module Fabrication and Evaluation	43
4.0 Summary and Recommendations	72
V. Recent Advances in the Development of Active Transport Materials	76
1.0 Influence of H ₂ O Vapor on ATM Permeation Properties	76
2.0 Assessment of H ₂ S Reactivity of ATM Membranes	91
3.0 Discovery of New "High Performance" ATMs	103
VI. Process Application Development and Technology Benefits	109
Upgrading Subquality Natural Gas	109
1.0 Computer Modeling of Active Transport Membranes	109
2.0 ATM Process for Upgrading Natural Gas	113
3.0 Recommendations	117
VII. Commercial Opportunities	122
1.0 Upgrading Subquality Natural Gas	122
2.0 CO ₂ - Selective ATM: Other Opportunities	135
3.0 Ammonia-Selective ATM Materials	138
VIII. Technology Development Status and Overall Recommendations	145

- --

_

List of Figures

Figure 2-1	Passive vs. Active Mechanisms	6
Figure 2-2	Cross Section of an Immobilized Liquid, Facilitated-Transport Membrane Containing a Mobile Carrier Species	7
Figure 2-3	Schematic of Possible Transport Pathways for a Solid-State Membrane Containing Immobilized Active Sites	10
Figure 2-4	Pressure Dependence of Permeance and Selectivity of an Active Transport Membrane	12
Figure 2-5	Cross Section of a Multilayer Composite Membrane	16
Figure 3-1	Fiber Spin Line Schematic	23
Figure 3-2	Effect of Coagulation Bath Temperature on Permeance	33
Figure 4-1	Viscosity of ATM Coating Solutions	39
Figure 4-3	Schematic Representation of a Dip Coating Process	44
Figure 4-4	Schematic Representation of a Continuous Meniscus Coating Process	45
Figure 4-5	Lab-Module Potting Arrangement	47
Figure 4-6	Apparent Manufacturing Defects of SUB1 and SUB2 Supports	48
Figure 4-7	Representative Cross Section of ATM-Coated SUB1	48
Figure 4-8	Effect of Feed Pressure on Performance	56
Figure 4-9	Performance on SUB2 Substrate	58
Figure 4-10	Performance Comparison: Bore-Side Sweep vs. No Sweep	59
Figure 4-11	Effect of P/Po on Performance	61
Figure 4-12	Stability of Lab-Scale Hollow Fiber ATM Modules	63
Figure 4-13	Lifetime/H ₂ S Stability of Hollow Fiber ATM	64

- - - ---

Figure 4-14	Schematic Representation of Defect Model	66
Figure 4-15	Comparison of Polysulfone-Supported PVBTAF Planar Coupons and Hollow Fiber Lab Modules	73
Figure 5-1	Chemical Complexation of CO_2 by TMAF • nH_2O	77
Figure 5-2	Thermal Decomposition of PVBTAF and EXTM6-4	80
Figure 5-3	Proton NMR Spectra of PVBTAF and EXTM6-4	81
Figure 5-4	H ₂ O Absorption by PVBTAF and EXTM6-4 at 25°C Repeat Unit Basis	84
Figure 5-5	H ₂ O Absorption by PVBTAF and EXTM6-4 at 25°C Fluoride Basis	85
Figure 5-6	Permselectivity of a PVBTAF/Polysulfone Membrane as a Function P/Po	87
Figure 5-7	Selectivity and H ₂ O Absorption of PVBTAF	88
Figure 5-8	Selectivity and H ₂ O Absorption of EXTM6-4	89
Figure 5-9	Ionic Strength of PVBTAF and EXTM6-4	90
Figure 5-10	H ₂ S Permeance of a PVBTAF Composite as a Function of H ₂ S Pressure	93
Figure 5-11	CO ₂ Permeance of a PVBTAF Composite as a Function of CO ₂ Pressure	94
Figure 5-12	Lifetime of a PVBTAF Composite Membrane	97
Figure 5-13	¹ H NMR Spectra of PVBTAF Before and After Exposure to CO_2	98
Figure 5-14	¹³ C MASNMR of PVBTAF Before and After Exposure to H_2S	101
Figure 5-15	Effect of ATM-AT Salt Blends on CO ₂ Permeance	105
Figure 5-16	CO ₂ Permeance of EXTM6-4 Composite Membranes as a Function of AT Salt Concentration	106
Figure 5-17	H ₂ S Permeance of EXTM6-4 Composite Membranes as a Function of AT Salt Concentration	108

.

Figure 6-1	Experimental and Model Predicted CO ₂ Permeance of PVBTAF MLC at 34°C	111
Figure 6-2	Experimental and Model Predicted CO ₂ and CH ₄ Permeance as a Function of P/Po	112
Figure 6-3	Process Flow Diagram: CO ₂ Separation from Natural Gas by ATMs	114
Figure 6-4	Number of Modules	115
Figure 6-5	Compressor Power	116
Figure 6-6	Hydrocarbon Loss	118
Figure 6-7	Economics of ATM and DEA Systems for CO ₂ Separation from Natural Gas	119
Figure 6-8	Comparison of Laboratory Properties to Targets	120
Figure 7-1	U.S. Utilization of Natural Gas Production Capability	124
Figure 7-2	Natural Gas Prices in the U.S 1991	129
Figure 7-3	Generic Ethylene Oxide Process	140

- - -

List of Tables

Table 3-1	Comparison in Spinning Processability	25
Table 3-2	Physical Properties of Candidate Polymers	25
Table 3-3	Hydrocarbon Resistance of PAI	26
Table 3-4	Chemical Resistances of Candidate Fibers	28
Table 3-5	Effect of Solvent Exposure on PAI Fiber Permeance	29
Table 3-6	Tensile Strength Tests of Fibers	30
Table 3-7	Effect of Air Gap on Fiber Permeance	31
Table 3-8	Environmental Effect in Air Gap on Fiber Property (Coagulation Bath Temperature 51°C)	34
Table 3-9	Environmental Effect in Air Gap on Fiber Property (Coagulation Bath Temperature 60°C)	35
Table 3-10	Current Status of Development	36
Table 4-1	GPC MALLS Molecular Weight Determination of Poly(vinylbenzyltrimethylammonium) and Poly(diallyldimethylammonium) AT Polymers	38
Table 4-2	Contact Angle of ATM Solvents with Substrate Polymers	40
Table 4-3	Dynamic Contact Angle Between ATM Coating Solutions and PAI Fiber	41
Table 4-4	Permselectivity of a PVBTAF/Polysulfone Flat Sheet Composite Membrane as a Function of CO ₂ Pressure (12484-76B)	42
Table 4-5	Permselectivity of a PVBTAF/PAI Planar Coupon as a Function of CO ₂ Pressure (12484-82)	42
Table 4-6	Summary: Permselectivity of PVBTAF-Coated SUB1 and SUB2 Modules	51
Table 4-7	Temperature Dependence of Permselectivity	60

Table 4-8	Comparison of Typical Planar and Hollow Fiber Membranes	65
Table 4-9	Permselectivity Basis for Defect Model	66
Table 4-10	Comparison of Experimental and Model Predicted Permselectivity for an ATM Hollow Fiber Module (x = 0.9983)	67
Table 4-11	Performance of EXTM6-4 Coated PAI Hollow Fiber Modules	68
Table 4-12	Summary: Permselectivity of EXTM8-Coated PAI Modules	69
Table 5-1	NMR Peak Assignments	79
Table 5-2	Water Content of "Dry" PVBTAF and EXTM6-4	82
Table 5-3	H ₂ O Absorption by PVBTAF and EXTM6-4 at 25°C	83
Table 5-4	H ₂ S Permselective Properties of PVBTAF Membranes at 22°C	92
Table 5-5	H ₂ S Permselectivity vs. Time for a PVBTAF Composite at 30°C	96
Table 5-6	H ₂ S Permselectivity vs. Time for a PVBTAF Composite Membrane at 30°C	96
Table 5-7	CO ₂ Permselective Properties of EXTM6-4 Composites at 23°C	104
Table 5-8	H ₂ S Permselective Properties of EXTM6-4 Membranes at 30°C	107
Table 7-1	U.S. Natural Gas Consumption and Production (Dry Gas Basis)	123
Table 7-2	U.S. Natural Gas Production and Reserve Data	126
Table 7-3	Non-Hydrocarbon Impurity Estimates for U.S. Natural Gas Reserves	127
Table 7.4	Natural Gas Treatment Costs at 10 MMSCFD	128
Table 7-5	Acid Gas Removal Market Players	131
Table 7-6	Acid Gas Removal - Dominant Technologies, U.S. 1984-1995	132
Table 7-7	Technology Comparison of Amine and Membrane Technologies	133
Table 7-8	Ethylene Oxide Plant - CO ₂ Removal Service	139

xii

- ----

×

List of Abbreviations and Acronyms

AGR	Acid gas removal
ATM	Active Transport Membrane
1	Membrane thickness
Р	Permeability
P/I	Permeance
P/Po	Actual H_2O vapor pressure/saturated H_2O vapor pressure
PAI	Polyamideimide
PAN	Polyacrylonitrile
PSA	Pressure swing adsorption
PVBTAF	Poly(vinylbenzyltrimethylammonium fluoride)
PDMS	Poly (dimethylsiloxane)
TMAF	Tetramethylammonium fluoride
α	Selectivity
UDEL	Polysulfur
Ultem	Polyetherimide

. .

.

I. Executive Summary

The main objective of this program was to identify and develop through proof of concept, a technique for fabricating Active Transport Materials^{*} (ATM) into lab-scale membrane devices. Air Products met this objective by applying thin film, multilayer fabrication techniques to support the AT material on a substrate membrane. In Phase IA, spiral-wound and later in Phase IB, hollow fiber membrane modules were fabricated and evaluated. These nonoptimized devices were used to demonstrate the AT-based separation of carbon dioxide from methane, hydrogen sulfide from methane, and ammonia from hydrogen. During this period, Air Products determined that a need exists for a more cost efficient and less energy intensive process for upgrading subquality natural gas. Air Products estimated the effectiveness of ATM for this application and concluded that an optimized ATM system could compete effectively with both conventional acid gas scrubbing technology and current membrane technology. In addition, the optimized ATM system would have lower methane loss and consume less energy than current alternative processes. Detailed results were communicated to DOE through a series of interim reports.

During the last budget period, Air Products made significant progress toward the ultimate goal of commercializing an advanced membrane for upgrading subquality natural gas. The laboratory program focused on developing a high performance hollow fiber substrate and fabricating and evaluating ATM-coated lab-scale hollow fiber membrane modules. Selection criteria for hollow fiber composite membrane supports were developed and used to evaluate candidate polymer compositions. A poly(amide-imide), PAI, was identified for further study. A research spinning line was constructed and used to establish the effect of spinning process variables on fiber performance. Conditions were identified which produced microporous PAI support membrane with tunable surface porosity in the range 100-1000Å. The support fibers exhibited good hydrocarbon resistance and acceptable tensile strength though a higher elongation may ultimately be desirable. ATM materials were coated onto commercial and PAI substrate fiber. Modules containing 1-50 fibers were evaluated for permselectivity, pressure stability, and lifetime. Several nonoptimized modules exhibited permselectivity comparable to planar thin film composite membranes supported on polysulfone. In general, higher flux modules would be needed to achieve commercially attractive economics.

Concurrent with but separate from this Cooperative Agreement, Air Products has maintained an active program to further develop the chemistry of its ATM materials. Results from this program

^{*}Active Transport materials are Air Products' proprietary advanced facilitated transport gas separation polymers.

were incorporated into a semi-empirical computer model of the ATM permeation mechanism which was used to determine process economics for the natural gas application. Several technical issues related to the ultimate commercialization of ATM technology were identified. These issues include an apparent reactivity with hydrogen sulfide and, most importantly, a strong dependence of the carbon dioxide permselectivity on the concentration of water vapor in the feed gas stream. New ATM compositions which exhibited a 10-fold improvement in carbon dioxide flux while maintaining high carbon dioxide/methane selectivity were identified. Planar composite coupons of these compositions meet preliminary carbon dioxide flux and selectivity targets, however, initial indications are that they will be subject to the same commercialization challenges identified previously.

Phase IA also assessed the potential for ammonia separation membranes and modules. While excellent permselectivity was achieved for laboratory devices and it is believed that laboratory properties could eventually be scaled to a commercial system, the market potential for such membranes does not appear large enough to warrant the substantial development investment to commercialize these membranes.

Based on the results of this program, Air Products recommends a follow-on program with the task elements listed below.

- Continued efforts to assess the commerciality of ATM as related to the issues of (a) the water dependence of the carbon dioxide flux and selectivity and (b) hydrogen sulfide reactivity of the ATM component.
- Continued computer modeling of the ATM permeation mechanism, especially in regard to adequately incorporating into the model the water vapor dependence of the permselectivity.
- Continued process engineering and economic analysis to (a) further quantitate the benefits of an ATM-based natural gas purification process and (b) set performance targets for the ATM.
- Address issues related to scale-up and optimization of substrate fiber.
- Field testing of substrate and composite membranes.
- Continued commercial development activities to coordinate field testing and maintain industry contacts.

II. Program Overview

1.0 Introduction

In a recent research needs assessment performed for the U.S. Department of Energy,¹ the membrane based separation of acid gases from hydrocarbons and H₂ was ranked "high" in importance (8 out of a possible 10) and with "good" prospects for success. The study further pointed out that high selectivity materials, $\alpha(H_2S/CH_4) > 45$ and $\alpha(CO_2/H_2) > 20$, are needed to compete effectively with alternative technologies. Since 1983, Air Products has pioneered the development of active transport (AT) membranes (referred to in the literature as "facilitated" transport membranes) for the removal of acid gases from process streams. AT membranes, unlike polymeric membranes, selectively permeate acid gases by exploiting two properties:

- (1) the membranes exhibit a specific and reversible chemical reactivity with acid gases, and
- (2) the solubility of non-acid gases in the membranes is very low.

The reversible reactivity of the membranes result in enhanced permeation of acid gas while the membranes exhibit barrier properties to non-acid gases due to their low solubilities.

The AT materials under development through this Cooperative Agreement are polyelectrolytes. Polyelectrolytes are ionic polymers which have a high ionic content, up to one ionic unit per polymer repeat unit. Air Products has demonstrated that certain polyelectrolytes exhibit reversible reactivity with respect to gases and possess absorption capacities in excess of 1 mol gas / mol polyelectrolyte. In addition, we have shown that acid gas permeabilities increase with decreasing feed pressure, an observation which is consistent with active transport of the gas. In contrast, H₂ and CH₄ permeabilities are independent of feed pressure and are low. These gases cannot react with the polyelectrolyte membrane and, due to the ionic character of polyelectrolytes, H₂ and CH₄ are almost insoluble in the membrane. The performance of small planar sheet membranes was favorable. Acid gas

¹ "Membrane Separation Systems - A Research & Development Needs Assessment" by the Department of Energy Membrane Separation Systems Research Needs Assessment Group; Volume II, March 1990.

permeances (CO₂ and H₂S) were relatively high: $1.0 - 0.7 \times 10^{-6} \text{ cm}^3/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg}$ for CO₂ and $3.0 - 30 \times 10^{-6} \text{ cm}^3/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg}$ for H₂S. The selectivity of acid gas to H₂ and CH₄ selectivities were exceptional: α (CO₂/H₂) = 10 - 60; α (CO₂/CH₄) = 50 - 700; α (H₂S/CH₄) = 260 to >2000. These properties are not observed for conventional polymeric materials and may have considerable practical value in processing streams containing CO₂ and/or H₂S such as subquality natural gas.

2.0 Background

Gas transport in conventional polymeric membranes occurs by a "passive" solution-diffusion mechanism; that is, gases dissolve in the polymer membrane at the high pressure (feed) side and diffuse in a concentration gradient to the low pressure side where they are liberated to the permeate stream. The intrinsic measure of a material's resistance to gas transport is termed the standard permeability, P. It is the flow rate of gas (Q) permeating a membrane of unit cross-sectional area (A), unit thickness (ℓ), and unit partial pressure driving force (ΔP):

$$P = \underline{O \cdot \ell}_{A \cdot \Delta P} = \underline{cc(STP) \cdot cm}_{cm^2 \cdot s \cdot cmHg}$$

It has become customary to represent permeability in Barrer units where 1 Barrer = 10^{-10} cc•cm/cm²•s•cmHg.

When the membrane thickness is unknown or ill-defined (such as in an asymmetric membrane), it is useful to refer to the permeance, P_0/ℓ of the membrane

permeance =
$$P/\ell = cc/cm^2 \cdot s \cdot cmHg$$

From a practical point of view, permeance is the property which predominantly controls the amount of membrane area required to effect the separation of a given amount of gas and is related to the system capital investment.

Selectivity of a polymer for two species, A and B, is defined as the ratio of the standard permeabilities of the two species through the polymer.

selectivity (A/B) =
$$\alpha$$
(A/B) = P(A)/P(B) = [P/\ell](A) / [P/\ell](B)

The membrane selectivity controls the amount of product lost to the permeate. Higher selectivities result in lower product losses and usually improved economics. Low selectivity can sometimes be compensated for by staged processes (multiple membranes connected through interstage compression) but these are more complicated and usually more energy and capital intensive than single stage processes.

Active or facilitated transport gas separation membranes capitalize on chemical reactions or interactions between a species in the membrane and the gaseous component of interest. This provides an additional transport pathway for that gas as shown in Figure 2-1. Both gases A and B permeate the facilitated transport membrane via a solution-diffusion mechanism. However, gas A can react with a species in the membrane and thus has a second mechanism for permeation. As a result, active transport membranes can have permeability and selectivity considerably greater than polymeric membranes.

Several types of active transport membranes have been previously investigated. The most widely studied have been immobilized-liquid, mobile carrier facilitated membranes (ILMs). These membranes consist of a solution of a chemically reactive "carrier" and a solvent immobilized in a microporous polymer matrix. This mode of facilitated transport is shown in Figure 2-2. At the feed side of the membrane, gas A reacts reversibly with carrier molecule C (which is dissolved in a solvent) to form a carrier-gas complex AC:

 $A + C \leftrightarrow AC$

This complex diffuses in a concentration gradient to the permeate side of the membrane where it dissociates. Uncomplexed carrier C diffuses back to the feed side of the membrane to complete the cycle while gas A is liberated to the permeate stream. Nonreactive component B still permeates the membrane by a conventional solution-diffusion mechanism (as does A); however, under conditions favorable to the facilitation reaction, (which depend on the thermodynamics and kinetics of the A+C reaction), a very high flux of A relative to B can be obtained and hence, a very high selectivity, α (A/B). Examples of this type of active transport are the selective removal of CO₂ from streams containing O₂, N₂, and CH4,^{2,3} the

² W.J. Ward and W.L. Robb, *Science*, 1981 (1967).

³ J.D. Way, R.D. Noble, D.L. Reed, and G.M. Ginley, *AIChE Journal, 33(3),* 480 (1987).

Passive Pathway (Solution-Diffusion) Reactive Pathway (Active-Transport)

selective removal of H₂S, CO and NO from various streams,^{4,5} and the separation of oxygen from air.⁶ While ILMs have been investigated since the 1960's and are reported in the literature to have shown impressive selectivities, there are a number of technical hurdles which have prevented such membranes from gaining commercial acceptance. Some of these are:

- Fabrication of immobilized liquid membranes which are dimensionally stable to the high process pressures. Many commercial processes operate at pressures greater than 300 psi and often in the range of 1000 to 2000 psi. Immobilized liquid membranes (ILMs) depend on capillary forces to maintain integrity. All other factors being equal, the pore size of the support membrane determines the maximum operating pressure of the ILM. The unavailability of inexpensive, defect-free, high porosity matrices with a narrow distribution of very small pores has hindered the commercialization of ILMs.
- Identification of stable carrier species. Facilitated transport membranes contain chemically reactive species which can either degrade over time or undergo side reactions with other components; the latter is especially true if the membrane is contacted with commercial process streams.
- Identification of suitable nonvolatile solvents. Membrane life can be limited by the rate of solvent evaporation. Solvent recovery and replenishment systems have been designed into immobilized liquid facilitated transport membrane modules,^{7,8,9} but apparently have not been practical. Solvent loss from the membrane is not only a membrane performance and cost issue, but also leads to contamination of product and vent streams.
- Saturation of the chemical pathway. Facilitated transport membranes rely on chemical reactions for their permselectivity. For many active transport systems the

 ⁴ J.D. Way, R.D. Noble, T.M. Flynn, and E. Dendy Sloan, *J. Membrane Sci.*, *12*, 239 (1982).
 ⁵ C.A. Koval, R.D. Noble, J.D. Way, B. Louie, Z.E. Reyers, B.R. Bateman, G.M. Honn and D.L. Reed, *Inorg. Chem.*, *24*, 147 (1985).

⁶ J.A.T. Norman, G.P. Pez and D.A. Roberts, in "Oxygen Complexes and Oxygen Activation by Transition Metals", A. E. Martell and D. T. Sawyer, eds., Plenum Publ. Corp. 1988 and references therein.

⁷ S.L. Matson, U.S. Pat. No. 4,119,408 (1978).

⁸ G.E. Walmut and S.L. Matson, U.S. Pat. No. 4,187,086 (1980).

⁹ S.L. Matson, U.S. Pat. No. 4,174,374 (1979).

chemical pathway is saturated at relatively low pressure and consequently the permselectivity at commercial conditions may often be no better than conventional (passive transport) polymer membranes.

These areas are the focus of current research in several laboratories. Some efforts involve synthesis of more robust carriers for acid gases¹⁰ and oxygen¹¹. Other research centers on the development of new devices, such as Hollow Fiber Contained Liquid Membranes, designed to minimize the negative features of traditional facilitated membranes.¹² Interest has also focused on facilitated transport of gases through solid membranes which contain immobilized reactive sites. Figure 2-3 shows two transport mechanisms which have received attention. In pathway 1, gas molecules bind directly to specific fixed sites, O, within the membrane matrix. A bound gas molecule can then exchange or "hop" to a nearby empty site. As this process is repeated, the gas is effectively transported across the membrane with a concurrent "flux" of empty sites in the opposite direction. The second pathway (2) consists of solubilization of a gas within a nonspecific matrix site, (\Box) , diffusion to and binding at a reaction specific site, (O), and dissolution back into the matrix. Note that transport in conventional polymeric membranes is simply transport between non-specific sites. Barrer¹³ has published a mathematical analysis of transport in such "fixed-site" membranes. Nishide¹⁴ et al. have published evidence that active transport of O₂ may occur in polymeric membranes that contain fixed oxygen complexes, most likely by the second mechanism. It is only recently that evidence for a direct site-to-site transport mechanism has appeared.¹⁵

In addition to suffering some of the limitations of the immobilized liquid membranes, solid state active transport membranes face the following additional hurdle:

Fixed site membranes with a high concentration of sites. Current fixed site facilitated transport membranes have a relatively low concentration of reactive sites. Performance could be improved if the site density were significantly increased.

- ¹³ R.M. Barrer, *J. Membrane Sci.*, 18, 25 (1984).

¹⁰ C. Koval, M. Rakowski-Dubois, and R.D. Noble, "Sulfur Resistant Complexing Agents for Olefin Separations", presented at the 5th Annual Meeting of the North American Membrane Society, Lexington, KY, May 1992.

¹¹ D. Ramprasad et al., in "5th Symposium on Activation of Dioxygen and Homogeneous Catalytic Oxidation", in press. ¹² S. Majumdart, A. Guha, and K.K. Sircar, *AIChE Journal, 34*, 1135 (1988).

¹⁴ M. Nishide, O. Ohyanagi, O. Okadra, and E. Tsuchida, *Macromolecules, 20*, 417 (1987).

¹⁵ S. Skinkai, K. Tarigoe, O. Manabe, and T. Kajiyama, *J. Am. Chem. Soc., 109*, 4458 (1987).

An important point to note about active transport systems in general, both of the immobilized liquid and solid types, is that, because they rely on chemical reactions between the permeant gas and a carrier species in the membrane, the permeability and permeance of such membranes will be a function of the kinetics and equilibrium constant expression for the carrier-gas reaction. Because the equilibrium expression for the carrier-gas complex includes a term for the gas partial pressure, active transport membranes often exhibit a pressure dependent permeability (and permeance). This behavior is shown in Figure 2-4. The permeability is greatest at low pressures where the reactive pathway is used to full advantage. As the pressure is increased, the reactive pathway becomes saturated and the permeability, which is normalized for the partial pressure driving force, decreases proportionately. Because the permeability of non-interacting gases does not depend on the pressure, the selectivity of active transport membranes also exhibits this pressure dependence, and may be no better than conventional membranes under high pressure operating conditions.

Membrane processes normally favor the highest possible operating pressures in order to maximize the amount of gas that can be processed with the minimum amount of membrane area. In contrast, the properties of AT membranes discussed above, i.e., an inverse relationship of permeance and selectivity with pressure, may tend to favor lower operating pressures for AT membrane-based processes. These somewhat conflicting properties of active transport systems gives rise to the notion of an optimum operating pressure window for AT membrane-based systems.^{16,17} They also suggest that a detailed understanding of membrane operating characteristics as a function of process conditions will be required in order to design engineered systems which make optimum use of the AT membranes.

¹⁶ L.L. Kemena, R.D. Noble, and N.J. Kemp, *J. Membrane Sci.*, *15*, 259 (1983).

¹⁷ E.L. Cussler, A. Aris and A. Bhown, J. Membrane Sci., 43, 149 (1989).

Figure 2-4 Pressure Dependence Of Permeance And Selectivity Of An Active Transport Membrane

3.0 Historical Perspective - Air Products Work in AT Membranes

Recognizing the potential impact of membranes in general and active transport membranes in particular, Air Products in 1983 initiated a research and development program in this technology area within its Corporate Research group. This program focused on addressing many of the technical hurdles which have thus far kept gas facilitated transport systems a laboratory curiosity. Air Products initially sought to develop stable, low volatility materials which reacted reversibly with oxygen and ammonia. The program was later expanded to include the development of materials for reaction with carbon dioxide, carbon monoxide, hydrogen sulfide and water vapor.

Molten salts were the first active transport media investigated. The concept of using molten salts as active transport media brought several novel and unique features to facilitated transport. First, since molten salts are inherently liquid, no solvent was necessary. As a result, the concentration of carrier species was extremely high and there were no solvent evaporation issues. Furthermore, since molten salts are ionic, they have very low vapor pressures. The ionic nature of the molten salt media also acts to minimize the permeation of non-interacting gases by a solution-diffusion mechanism via the "salting-out effect."¹⁸ Immobilized molten salt membranes were fabricated which exhibited exceptional active transport of oxygen¹⁹ and ammonia²⁰ at 300°C. This was the first example of facilitated transport membranes which functioned at such high temperatures. Air Products was awarded patent coverage on the use of molten salt membranes for gas separation.^{21, 22}

Further work expanded the scope of molten salt facilitated membranes to include selective permeation of CO₂ and CO at near-ambient temperatures by using molten salts which contained large organic cations to lower their melting points.²² These large organic cations, however, also increased the solution-diffusion permeation of the non-interacting gases, resulting in a lower selectivity. To circumvent this problem, Air Products developed molten salt hydrate membranes. Lab tests showed immobilized liquid membranes fabricated from molten salt hydrates were extremely selective for CO₂ and H₂S over CH4 and exhibited the

¹⁸ D.A. Palmer and R. Van Eldik, *Chem. Rev., 83*, 651 (1983).

¹⁹ G.P. Pez and R.T. Carlin, *J. Membrane Sci.*, 65, 21 (1992).

²⁰ D.V. Laciak, G.P. Pez and P.M. Burban, J. Membrane Sci., 65, 31 (1992).

²¹ G.P. Pez and R.T. Carlin, U.S. Pat. No. 4,617,029 (1986).

²² G.P. Pez, R.T. Carlin, D.V. Laciak and J.C. Sorensen, U.S. Pat. No. 4,761,164 (1988).

highest reported selectivity for CO₂ over H₂.²³ The unique nature of these membranes was recognized in two U.S. Patents.^{24, 25}

By the mid 1980s Air Products had developed a variety of inherently liquid active transport materials with potential in a number of commercial applications including ammonia synthesis, merchant hydrogen production, acid gas scrubbing, and gas dehydration. Continued development of this technology required active transport materials in a form suitable for fabrication into practical membranes and separation devices. In 1985, Air Products began to synthesize "polymeric analogs" of molten salts and molten salt hydrates; namely, polyelectrolytes. Active transport polyelectrolytes consist of a polymeric backbone containing pendant cationic functionality and their associated counter ions--a polymeric salt. New compositions which showed unprecedented selectivity for ammonia over nitrogen and hydrogen were developed.²³ In 1988, Air Products was awarded two patents on these materials.²⁶, 27

In October of 1988, Air Products entered into this Cooperative Agreement with the U.S. Department of Energy, Office of Industrial Programs (DE-FC07-89ID12779). The goal of this Phase I project was to demonstrate that Air Products' proprietary Active Transport membrane materials could be fabricated into commercially practical membranes and devices. Thus far, Air Products identified, developed and evaluated composite ATM membranes, fabricated and evaluated lab-scale spiral-wound modules and refined ATM-based separation schemes for commercial processes.^{28,29}

Meanwhile, Air Products continued its independently funded active transport materials development program. In 1990, polyelectrolytes were synthesized for separating carbon dioxide and hydrogen sulfide from hydrogen and methane. The effectiveness of these materials was demonstrated as part of the Phase I program.^{28, 29} Moreover, these active transport compositions possessed high selectivity for hydrogen sulfide over carbon dioxide.

²⁷ G.P. Pez and D.V. Laciak, U.S. Pat. No. 4,762,535 (1988).

28 (a) D.V. Laciak, "Development of Novel Active Transport Membranes Devices", DE-FC07-

 ²³ D.V. Laciak, R. Quinn, G.P. Pez, J.B. Appleby and P.S. Puri, *Sep. Sci. and Tech., 25* 1295 (1990).
 ²⁴ R. Quinn, G.P. Pez and J.B. Appleby, U.S. Pat. No. 4,780,114 (1988).

²⁵ R. Quinn and G.P. Pez, U.S. Pat. No. 4,973,456 (1990).

²⁶ D. V. Laciak and G.P. Pez, U.S. Pat. No. 4,758,250 (1988).

⁸⁹ID12779, interim report February 1990. (b) ibid. March 1991.

²⁹ J.S. Choe, L.J. Kellogg, D.V. Laciak, T.A. Shenoy, and S.C. Weiner, "Development of Novel Active Transport Membranes Devices", DE-FC07-89ID12779, interim report January 1993.

These materials are the subject of two patent applications. In 1994 Air Products received a patent on the use of polyelectrolyte membranes for the separation of acid gases.³⁰

4.0 Phase IA Accomplishments

Since November 1988 Air Products has pursued a cooperative research program with the U.S. Department of Energy-Office of Industrial Technology aimed at assessing the feasibility of commercializing ATM technology. This program included various laboratory tasks, and process and commercial development activities. Detailed results have been reported to DOE.^{28,29} Specific accomplishments from that program include:

- Identified a composite membrane fabrication concept. A technique whereby the active transport polyelectrolyte was supported on a microporous substrate and coated with a relatively permeable but nonselective polymer (e.g. silicone rubber) was identified and developed. Figure 2-5 shows a schematic cross-section of such a composite and an image taken by a scanning electron microscope. Fabrication of composite coupons (4 cm²) were scaled to planar sheets (1 ft²).
- Demonstrated high pressure operation of CO₂ and NH₃-selective composite ATM coupons. Composite AT coupons were evaluated in mixed gas streams at Air Products' laboratories as a function of gas pressure (to 1000 psi), composition, and flowrate, temperature, and, in some cases, water vapor content of the gas stream. Membrane stability was demonstrated for 30+ days of continuous operation.
- Fabricated and evaluated lab-scale spiral wound ATM modules. Planar composite membranes were wound into spiral elements (200 cm²) and their performance was evaluated at conditions approaching those of commercial processes. Lab tests suggested that concentration polarization effects reduced the effectiveness of the membrane module at the flow rates tested by introducing a significant gas phase resistance to permeation. This might be less of an issue in high flow rate commercial installations where the feed gas streams are better mixed.

³⁰ R. Quinn, D.V. Laciak, J.B. Appleby and G.P. Pez, Polyelectrolyte Membranes for the Separation of Acid Gases", U.S. Pat. No. 5,336,298 (1994).

Figure 2-5 Cross-section of a Multilayer Composite Membrane

- Developed detailed flow sheets for incorporating ATMs into selected commercial processes. Process schemes were developed for utilizing ATMs and ATM-hybrids in hydrogen production via steam-methane reforming. Estimated membrane performance was used to predict mass and energy balances. Bottom-line economics showed that ATMs can be cost competitive with conventional acid gas scrubbing systems by providing an energy savings to offset the cost of capital. Several potential process schemes were identified for incorporating ATMs into ammonia synthesis plants. The ATM-based systems had both lower capital and energy costs.
- Identified natural gas processing as a market with high potential for ATM technology. Several markets including ammonia and urea synthesis, merchant hydrogen and syngas production, and natural gas processing were analyzed. Sizable growth is projected for natural gas production. ATM-Pressure Swing Absorption hybrids are expected to offer opportunities in the strong hydrogen market. Slow growth is forecast for domestic ammonia capacity. Energy savings was found to be an important but not a key factor in choosing among competing technologies.
- Identified areas for further experimental work. The permselectivity of ATMs was found to be highly sensitive to the water vapor content of the feed gas stream. The implication of this observation to projected module performance and economics will need to be assessed in any follow-on program. ATM material modifications to moderate this effort should also be sought. In addition, follow-on work should focus on increasing the CO₂ flux of the ATM composite either by thinning the ATM layer, by identifying and incorporating catalysts or both.

5.0 Technical Focus

As indicated in Section 2.2, of Chapter II, the objective of this phase of the program was to demonstrate ATM technology in a commercially feasible form. For simplicity and due to its ready accessibility, the initial demonstration of membrane and module fabrication was accomplished in flat sheet and spiral wound module form. Hollow fiber configurations, however, offer the following inherent advantages relative to flat sheet and spiral configurations:

- A hollow fiber module is inherently simpler than a spiral since it does not require the spiral's spacer components.
- Hollow fiber modules are less labor intensive and, hence, cheaper to produce.
- Hollow fiber modules provide a higher membrane packing density than spirals (often by as much as a factor of 10 or more). The higher packing density permits the design of smaller, less costly systems.

Overall, the combination of fewer components, an inherently cheaper manufacturing technology, and a lower system cost are expected to provide significantly improved economics for the membranes in hollow fiber form. While the primary focus of DOE must be on energy savings and on bringing new energy sources to the market, acceptance of this technology by the ultimate users will depend heavily on the economics of this technology. The favorable economics of hollow fibers and the strong focus of Air Products as well as DOE on technology commercialization mandated that we translate the early work conducted on flat sheets to hollow fibers.

Many years of research at Air Products (both with DOE and in our independently funded programs) have been devoted to the fabrication of composite membranes. This experience has taught us about the critical inter-relationship of the properties of the support membrane, the coating polymer properties, and the process variables of the coating process on the overall properties of a composite membrane. With the decision to fabricate the ATM in hollow fiber form, a fresh look was taken at the nature of the membrane structure, and we set out to separately optimize each of the membrane's individual components in order to maximize the

overall membrane properties for its intended end use application. Therefore, the technical program for this, the last segment of Phase I included:

Hollow Fiber Substrate Fiber Spinning

The demanding process conditions of natural gas processing operations require that the composite membrane be support on a robust support membrane. It was not apparent that commercial microporous membranes possessed acceptable properties. Therefore, this task included defining the chemical and physical characteristics for a high performance substrate, screening candidate materials, and finally formulating a spin dope and spinning fiber samples for physical and coating evaluations.

Composite Membrane Development

The primary focus of this task was to translate the planar and spiral-wound composite membrane fabrication technology to the commercially viable form of a multilayer composite hollow fiber membrane. For this purpose, laboratory modules were to be fabricated and evaluated as a function of several process variables including total gas pressure, acid gas partial pressure, temperature, and feed and permeate gas water vapor content. A second aspect of this task was to provide (a) feedback to substrate development efforts to help define support fiber parameters such as base permeance, pore size, and porosity, etc. and (b) feedback to process application development efforts to gauge the effectiveness of ATMs in natural gas applications.

Process Application Development and Economic Analysis

Efforts were to focus on defining new gas processing schemes centered on ATMs and/or on hybrids of ATM and current acid gas removal (AGR) technology. Optimization of the process would define the bottom line economic and energy savings benefits of the ATM process as compared to other membrane systems and other stand-alone gas processing technologies. Results from these studies would guide laboratory work in both substrate development and composite membrane development.

The results of this program are described in the following chapters.

III. Substrate Fiber Development

The goal of this task is to develop a high performance hollow fiber substrate to accept the active transport membrane coating and involves two major objectives: 1) identifying a polymer that fulfills the requirements of a "high performance" substrate and 2) developing spinning technology; that is, both the fiber spinning process and the polymer formulation needed to fabricate the identified polymer into a microporous hollow fiber substrate for suitable coating.

1.0 Introduction

Membrane devices can be fabricated as flat disks, plate and frame assemblies, spiral-wound elements and as hollow fibers. It is generally accepted that the hollow fiber module configuration has several advantages over other fabrication geometries including 1) hollow fibers are self supporting within a permeator thus allowing for a much simpler module fabrication process, and 2) hollow fibers generate higher surface area to permeator volume ratios than other configurations. These two factors suggest that the hollow fiber configuration should result in a significant reduction in cost over competing membrane technology.

Hollow fibers have been manufactured in the textile industry for the past several decades, mainly for use in thermal insulation applications. These fibers are typically produced by a melt-spinning process which involves heating a polymer above its melting point. The molten polymer is extruded through a spinneret to produce a fine filament which cools and solidifies into a fiber. The fiber produced through this method is dense across the entire wall of the fiber; that is, it contains no porosity. However, to produce the kind of the porous structure suitable for gas separation, a dry jet-wet spinning process (solution spinning) is commonly practiced. The dry jet-wet spinning process involves a phase inversion mechanism in which polymer solution is extruded as a fine tubular casting. The process can best be understood by considering the four steps of membrane formation: 1) extrusion, 2) air exposure/partial phase separation, 3) coagulation, and 4) washing/annealing. The reader is also referred to Figure 3-1.

- Extrusion: A hollow fiber membrane is formed by extruding a concentrated polymer solution downward through a tube-in-orifice die (spinneret). The lumen (bore) of the fiber is created by delivering a coagulant fluid to the concentrically aligned capillary tube within the orifice. The extrusion results in a self supporting nascent hollow fiber.
- 2) Air exposure/partial phase separation: After extrusion, the nascent fiber travels through a short conditioning zone ("air gap") before entering a coagulation bath. In this stage, the polymer solution often undergoes a partial phase separation due to partial evaporation of the solvent, penetration of the ambient moisture into the extrudate, and/or temperature gradients established during the journey. Conditions in this critical zone can significantly influence membrane structure, especially the surface of the fiber, and were examined as part of this program.
- 3) Coagulation/phase separation^{*}: Solidification of the fiber occurs by phase inversion (non-solvent induced phase separation) in the coagulation bath. In this stage, the polymer solution undergoes a more complete phase separation which results in a polymer-rich phase and a solvent-rich phase. This step plays an important role in determining the overall membrane structure especially that just under the surface layer. The effect of coagulation bath temperature on fiber properties was examined as part of this project.
- 4) Washing/Annealing: A water-wash step is employed to remove traces of residual solvent so that the pore structure created during the previous steps can be preserved. By this stage, morphology of the fiber has been determined, however, minor tuning in the pore structure may be achieved by warm-water annealing. The warm water washing can also enhance the rate of solvent exchange.

In the Phase I of this project, hollow fiber substrates were developed via the dry jet-wet spinning technique in the Corporate Science & Technology Center of APCI. The major task elements included setting support fiber criteria, identifying and evaluating candidate polymers against these criteria, studying candidate polymer processability for spinning, and initiating optimization of the spinning process and dope formulation for the polymer. Phase I goals included:

^{*}A detailed description of the phase separation process can be found in J.M.Sci. (8), p. 41-57 (1993).

- to set-up a spinning line with controllable spinning parameters.
- to identify a spinnable polymer that fulfills the requirements for a composite membrane support for the targeted application.
- to gain an understanding of the operation variables-fiber property relationship.
- to develop reliable techniques to characterize the spun fibers.

2.0 Experimental

2.1 Hollow Fiber Spinning

A state-of-the-art hollow fiber spinning line was set up for this project. A schematic of the spinning line is shown in Figure 3-1. The major components of the line include: an in-line mixing system, a dope delivery system, a bore-fluid injection system, a coagulation bath, two duo-godet-wash bath assemblies, and a take-up winder.

- In-line mixing system: The polymer solution (referred to as the "dope") was
 prepared in a customized Ross mixing system. The mixed dope can be transferred
 directly into the dope reservoir by a gear pump. In addition, degassing could be
 conducted inside the mixer by means of house vacuum. A condenser (heat
 exchanger) was attached to prevent solvent loss and maintain initial dope
 concentration.
- 2) Dope Delivery System: The resulting degassed dope solution was transferred from the reservoir to the spinneret via the gear pump. Before arrival at the spinneret the polymer solution was forced through a filter (mesh size: 60 µm) to remove particulates. The temperature of the entire delivery system was controlled using silicone rubber encased resistance heaters.
- 3) Bore Fluid Injection System: The internal coagulant (bore fluid) was supplied to the injection capillary of the spinneret via a bore fluid injection system. This setup was designed to pump a small volume of fluid with a minimum of pulsing. The typical dope delivery pressure was about 3 psig.
- 4) Coagulation Bath & Duo-godet-Wash Bath Assembly: After extrusion, the partially solidified fiber was guided through a coagulation bath by a pair of

×

•

Figure 3-1 Fiber Spin Line Schematic

۰.
non-slip rollers (a duo-godet). On leaving the coagulation bath, the fiber was washed by entering a series of duo-godet-wash bath assemblies. The temperatures of the coagulation bath and wash baths, depending on experimental needs, were controlled by a circulating water bath.

5) Take-up Winder and Fiber Storage: After washing the fiber was wound onto a spool by an automatic, tension controlled take-up winder. Additional washing was provided at the winder by employing a water sprayer. The spooled fiber was stored in a water tank for at least 72 hours to remove the residual solvent which might be trapped in the fiber.

2.2 Hollow fiber Characterization

A typical spin run produced 1000-2000 linear feet of hollow fiber support membrane. Five foot lengths of fiber were cut from the spool and hung to dry at room temperature. Characterization of hollow fiber support membranes included determining the overall fiber appearance, fiber dimension (outer diameter OD and inner diameter ID), average surface pore and defect size by optical and electron microscopy; quantifying the defect rate by bubble point measurements; measuring tensile strength by dynamic mechanical analysis; and measurements of gas permeance.

3.0 Result and Discussions

3.1 Polymer Selection Criteria and Candidate Polymer Screening

In order to qualify as a high performance acid gas substrate the candidate polymer should meet the following criteria: 1) good hydrocarbon resistance, 2) stable at end use temperature, 3) easily processable, and 4) commercially available. Polyimide-based polymers including PYLE-ML (polyimide), AI-10 (polyamide-imide), and PAI (polyamide-imide) were identified from the literature as potential support polymers.

The candidate polymers were first screened for processability, i.e. how easily could they be spun into hollow fibers. Table 3-1 summarizes the results of this investigation. High molecular weight (MW) PAI had the best processability among the polymers studied.

Table 3-1Comparison in Spinning Processability

<u>Material</u>	Source	Processability
PYLE-ML	DuPont	fair
AI-10	Amoco	poor
AI-10	Air Products	poor
PAI (low MW)	Amoco	poor
PAI (high MW)	Amoco	good

Other critical properties were also examined. Table 3-2 lists physical properties of four commercially available polymers. Of the candidate polymers, PAI has the advantage of high temperature endurance as manifested by its high glass transition temperature (Tg) and superior mechanical strength as manifested by its high tensile strength. In addition, PAI shows the best hydrocarbon resistance. Table 3-3 shows the % tensile strength retained after 24 hour solvent exposure at 93°F. Commercial polymers such as polysulfone are degraded in, e.g., xylene and toluene. These investigations indicate that high molecular weight PAI is the most promising candidate among the polymers studied .

Table 3-2Physical Properties of Candidate Polymers

Properties	Udel (3500) <u>Amoco</u>	PAN (PAN-X) <u>Bayer</u>	Ultem (1000) <u>GE</u>	PAI (4000) <u>Amoco</u>
MW	80,000	57,000	30,000	30,000
Tg (°C)	185	85	215	279
Tensile Strength (MPa)	70.3	118	105	135

<u>Chemical</u>	% Tensile Strength Retained*
Cyclohexane	100
Diesel Fuel	99
Gasoline (120 °F)	100
Heptane	100
Mineral Oil	100
Motor Oil	100
Xylene	100
Toluene	100

Table 3-3Hydrocarbon Resistance of PAI

*After 24 hour exposure at 93 °C

Of the polymers investigated, PAI is clearly the leading candidate for further development. In addition to the general polymer criteria discussed above, other targets imposed on substrate fiber include:

- *good hydrocarbon/solvent resistance:* Screening studies measured hydrocarbon resistance of the bulk polymer. It is critical that this resistance be maintained after the polymer is spun into a fiber, especially in regard to those compounds present in natural gas streams.
- *good tensile strength:* The mechanical strength of the spun fiber should be strong enough for routine handling. The targeted tensile strength is comparable to that of commercial polysulfone fiber.
- high gas permeance: The initial base permeance for the support fiber is targeted at ≈ 1,000 x10 ⁻⁶ cm³/cm²•sec•cmHg. However, the final flux target will be modified when it is integrated with the overall ATM performance targets set during composite optimization.
- *small and uniform surface pores:* Based on the molecular weight and radius of gyration of the ATM coating polymers, the target surface pore size is 100-200 μm.

However, the final target may vary with the chosen coating process and the coating material used.

• *compatibility with the ATM material.* The support fiber should be stable to ATM coating solvents (methanol and water). It should be wet by the ATM material and the resulting ATM-coated fiber should exhibit permselectivity close to intrinsic values.

The following sections of this chapter describe progress against these targets. It should be noted that these PAI fibers were developed throughout Phase I of this project and only limited work was performed to optimize substrate properties. Nonetheless, the results to date are encouraging. Support fiber optimization will continue as part of Phase II.

3.2 Solvent Resistance of PAI Support Fiber

In this study, the solvent resistance of polysulfone, Ultern, and polyacrylonitrile fiber was compared to PAI fiber. All fiber was produced by Air Products for this study.

The solvent resistance tests were performed by immersing small sections (5 cm) of fibers into five different solvents for a period of 2 weeks. The changes in fiber appearance were then observed and recorded. The solvents studied included 1,4 dioxane, 1,2 dichlorethane (DCE), tetrahydrofuran (THF), toluene, and hexane. These solvents are either common contaminants in streams or used for dissolving traditional coating polymers. Hexane is often a solvent used for dissolving polydimethylsiloxane (PDMS); the formulation is used to repair defective or leaky fibers.³¹ Table 3-4 summarizes the experimental results. All the fibers had good solvent resistance against the hexane. However, only the PAI fiber remained opaque in the other solvents studied. PAN fiber turned translucent and the others dissolved completely. The translucence of the fiber may indicate that solvent penetrates into the fiber wall, which may result in swelling. This study demonstrated that PAI fiber has the best solvent resistance among the examined hollow fibers . The order of solvent resistance of the fibers is: PAI > PAN > Ultem > polysulfone.

³¹ J.M. Henis and M.K. tripodi, Multicomonent Membranes for Gas Separations", U.S. Pat. No. 4,230,463 (1980).

Table 3-4Chemical Resistances of Candidate Fibers*

Solvent	PSN	Ultem	PAN	PAI
Toluene	-	-	+	+
Dioxane	-	-	+	+
1,2 DCE	-	-	+	+
THF	-	-	+	+
Hexane	+	+	+	+

+ =stable; - =unstable

*After 2 week immersion at room temperature.

A more intensive test of PAI solvent resistance was also performed. The N₂ permanence of the support fiber was measured before and after exposure to the various solvents. Permeance loss (or gain) would indicate fiber degradation or changes to the micropore structure brought about by solvent exposure. The fiber used in this study had an initial permeance of 10,000 $\times 10^{-6}$ cm³/cm²•s•cmHg. Small sections of fiber were immersed in the various solvents for 5 seconds. The permeance of the fibers was then remeasured and compared to the original values. Table 3-5 lists the percent permeance loss after solvent exposure. The permeance of PAI fiber is affected only by 1,2 DCE and methanol (40 % loss).

We have found that PAI solvent resistance can be improved by heat-treating the fiber at high temperature (over 200 °C) for several hours in an inert gas environment. This effect is also shown in Table 3-5. After thermal treatment PAI fiber had good solvent resistance even to DCE and methanol.

<u>Solvent</u>	Permeance loss*		
	non-heat-treated	heat treated	
1,2 DCE	~ 40%	0%	
MeOH	~ 40%	0%	
Toluene	0%	0%	
Hexane	0%	0%	
Freon	0%	0%	
Water	0%	0%	

Table 3-5Effect of Solvent Exposure on PAI Fiber Permeance

* after 5 sec solvent exposure

The necessity of the thermal-treatment process will be evaluated as part of Phase II. If this process is indeed needed, optimal curing time and temperature will be determined.

3.3 Tensile Strength of PAI Fiber

Tensile strength tests were performed to compare the PAI fibers with polysulfone, Ultem, and polyacrylonitrile (PAN) fibers. In addition, two types, microporous and asymmetric, of PAI fibers were compared. The results are shown in Table 3-6. PAI fiber has tensile strength comparable to other available fibers. In addition, the tensile strength of the PAI fiber depends on the fiber microstructure (asymmetric vs. microporous). The strongest PAI fiber produced so far has a tensile strength of 43% greater than polysulfone, and 150% greater than PAN. Overall, the PAI fiber has better mechanical strength (higher tensile strength) but less elasticity (lower elongation %) than the polysulfone and PAN fibers.

Table 3-6Tensile Strength Tests of Fibers

<u>Hollow Fiber</u>	<u>Structure</u>	Tensile Strength <u>at Break*</u>	Elongation <u>at Break*</u>
Polysulfone	asymmetric	1.0	1.0
PAN	microporous	0.56	0.83
Ultem	microporous	0.92	0.29
PAI	microporous	1.43	0.39
PAI	asymmetric	1.12	0.88

* polysulfone = 1.0

The tensile strength of the fiber may depend not only on the material itself but also on the fabrication process and the dope composition. These factors could result in significant variations in fiber porosity, pore size, pore size distribution, phase separation mechanism (e.g. spinodal decomposition vs. nucleation and growth), and the existence of macrovoids. It should be noted here that the polysulfone fibers were spun from a higher polymer content dope than PAI and this may influence the results. Nonetheless, microporous PAI fibers were found to have the highest tensile strength among all the fibers investigated. Further improvement in fiber tensile strength and elongation % may be achieved through substrate optimization.

3.4 Pore Size/Permeance Control of PAI Substrate

Two important issues in developing the hollow fiber substrate are matching the support fiber properties to the needs of the coating polymer and ensuring that fiber manufacturing techniques will consistently produce uniform, high performance substrate. The ability to control the surface characteristics (e.g. pore size, porosity, and permeance) of the fiber is critical in matching the support fiber to the properties of the coating polymer. In addition, the ability to understand the effect of process variables on fiber properties is vital to ensuring fiber reproducibility not just within a given spinning run but also between spinning runs.

Fiber spinning is a complex process involving many interdependent parameters. Our efforts focused on the effect of three process variables on fiber permeance and surface pore size. The air gap length, coagulation bath temperature, and the environment within the air gap, on fiber properties (permeance and surface pore size) were investigated. Details of the study are described in the following sections.

3.4.1 Effect of Air Gap Length on PAI Fiber

The air gap is the distance from the bottom of the spinneret to the surface of coagulation bath. Two processes can occur as the fiber traverses this distance: 1) thermal phase separation induced by the difference between spin dope temperature and ambient temperature and 2) solvent induced phase separation resulting from ambient humidity and/or vapors given off from the coagulation bath. The degree to which each process occurs (or whether it will occur at all) is in part determined by air gap length. Therefore, the effect of the air gap was measured while all other spin variables were held constant. In addition, since water was used in the coagulation bath, two coagulation bath temperatures, 70 and 10 °C were chosen in the study to provide some indication of the effect of "uncontrolled" humidity on fiber performance. The results, summarized in Table 3-7, indicate that both the gas permeance and surface pore size increase with decreasing air gap for a 70°C bath but that these parameters are not sensitive to air gap length at the lower bath temperature. Additionally, a dense skin was observed on the fibers for all three air gap lengths investigated at using a 10°C bath. This last result was confirmed by the very low (2-50 $10^{-6} \text{cm}^3/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$ gas permeance of the fibers.

Table 3-7Effect of Air Gap on Fiber Permeance

	70 °C Bath Te	70 °C Bath Temperature		nperature
<u>Air Gap</u>	Permeance*	Pore Size	Permeance*	Pore Size
30 cm	1500	200 Å	2	<40 Å
20 cm	6500	400 Å	52	<40 Å
10 cm	15000	1000 Å	33	40 Å

* 10^{-6} cm³/cm²•s•cmHg; average of at least 5 modules.

3.4.2 Effect of Coagulation Bath Temperature on PAI Fiber

Coagulation bath temperature was varied from 10 °C to 70 °C while the other spinning parameters, including air gap length were held constant. Figure 3-2 shows the effect of coagulation bath temperature on fiber permeance. Higher coagulation bath temperatures resulted in a higher permeance substrate. As expected, the surface pore size of the fibers (~100 Å to ~1000 Å) increased with increasing coagulation bath temperature. The most permeable fiber was produced in a 70°C coagulation bath temperature of 70 °C and exhibited a permeance of 15,000 X 10^{-6} cm³/cm²•s•cmHg with a surface pore size of ~ 1000 Å.

3.4.3 Effect of Environment Within the Air Gap on PAI Fiber

As suggested in Table 3-7, the environment within the air gap can have a profound effect on the fiber properties. The aim of this study was to examine the extent to which the surface pore size and morphology could be controlled by maintaining a specific set of conditions within the air gap. The influence of the coagulation bath temperature (coagulation bath media vapor pressure) on the environmental effect within the air gap was also studied. Two coagulation bath temperatures, 51°C and 60 °C, were used in this investigation.

A "chimney" enclosing the spun nascent fiber within the air gap area was designed and installed to better control the environment within the air gap. An opening at the bottom of the chimney served as the inlet for the flowing gas which was vented at the top of the chimney. The experiments were conducted to compare the difference in fiber properties

Figure 3-2 Effect of Coagulation Bath Temperature on Permeance

<u>,</u>

between environmental and non-environmental control of the air gap. The air gap environment was changed by flowing, countercurrent to the fiber, dry nitrogen at 400bsccm. In the "no control" case, the chimney was in place but no gas was flowing.

Table 3-8 lists the resulting fiber permeances and surface pore sizes for the fibers. Interestingly, significant differences in both the permeance and the surface pore size between the fibers produced with and without the environmental control were observed. It should be noted that a more porous structure was produced in the non-environmental control condition.

Table 3-8Environmental Effect in Air Gap on Fiber Property(Coagulation Bath Temperature 51 °C)

<u>condition</u>	<u>P/ℓ N</u> 2*	<u>surface pore size</u>
dry N ₂	5	dense (< 40 Å)
no control (56%)	4910	~100Å

* 10⁻⁶ cm³/cm²•s•cmHg

In the second set of experiments, the coagulation bath temperature was set at 60 °C. In the first data set, the air gap contained flowing dry N₂. In the second, the air gap contained nitrogen humidified to a dew point of 70C. In the last set, no gas was flowing. Table 3-9 compares the results for fibers spun under these conditions. A low permeance fiber was obtained with dry nitrogen circulating through the chimney. The general trend of this result is consistent with that obtained in the lower coagulation bath temperature. It is believed that dry N₂ both lowers the effective water (bath) vapor pressure and accelerates the rate of evaporation, leading to a less porous surface. A fiber with an extremely high permeance, moderate surface pore size, and high porosity (20%) was produced when warm, moist N₂ filled the air gap. It is believed that this condition should enhance a uniform phase separation through the cross-section of the nascent spun fiber (the fiber just extruded from the spinneret). Fiber produced without environmental control has a high permeance and large surface pores but a low porosity (7%). In addition, no macrovoids * were observed for the fibers produced with the environmental control while some macrovoids were observed in the non-environmental control condition.

^{*}Large areas of free volume within the fiber wall

Table 3-9Environmental Effect in Air Gap on Fiber Property(Coagulation Bath Temperature 60 °C)

<u>control condition</u>	<u>P/ℓ*</u>	macrovoid	<u>pore size</u>
dry N2	129	no	~ 100 Å
warm wet N ₂	97300	no	~ 800 Å
no control**	67080	yes	~ 500 Å

 $* 10^{-6} \text{ cm}^{3}/\text{cm}^{2} \text{-s} \text{-cmHg}$

** ≈60% relative humidity

4.0 Summary and Recommendations

In Phase I of this project, a state-of-the-art spinning line was designed, installed and used to examine the relationship between various parameters in the spinning process. This line was set up to simulate a continuous manufacturing process from polymer formulation to fiber formation and winding. A set of routine characterization methods were developed to examine the quality of the spun fibers including permselectivity measurements, surface pore size, defect pore size and rate, solvent resistance, and tensile strength.

A polymer fulfilling the substrate requirements was identified. A dope formulation and spinning process for this material were demonstrated. A parametric study identified key parameters for controlling surface pore size and fiber permeance. Fiber permeance and surface pore size were found to be strong functions of the air gap length, coagulation bath temperature, and the environment within the air gap. Circulating dry nitrogen through the air gap produces fiber with smaller surface pores and high porosities. The nonoptimized fiber has met the preliminary targets set for a high performance substrate and shows promise as a coatable substrate for the ATM material. The current status of fiber development is summarized in Table 3-10.

Table 3-10Current Status of Development

Parameter

<u>Status</u>

High Gas Permeance Small Surface Pores Tensile Strength Hydrocarbon Resistance up to 100,000 10⁻⁶cm³/cm²•s•cmHg tunable from <40 to 1000 Å comparable to commercial fiber Good

A follow-on program should focus on optimizing the PAI hollow fiber by incorporating results from ATM coating studies. The spinning process is complex and its variables are often interdependent. Therefore, a forward program should include the completion of a process variables / fiber property relationship matrix. An optimal dope composition and process conditions for scale-up should be determined. Finally, fibers with the desired properties should be produced in large quantity to support laboratory module fabrication and field testing efforts. The necessity of the post-spinning thermal treatment should also be examined during that segment.

IV. Composite Membrane Development

The objective of this task was to demonstrate the separation of CO₂ from CH₄ using hollow fiber active transport membranes. This objective was met by forming thin film composite membranes of the AT polyelectrolyte PVBTAF and polysulfone or PAI hollow fiber substrates. Lab-scale modules were evaluated at pressures up to 900 psi and for periods as long as 1 month. This chapter is divided into three sections. The first describes the characterization of the candidate coating solutions in terms of their solubility, viscosity, molecular weights, etc. The second reports on the coatability of potential substrate materials with PVBTAF by fabricating and evaluating planar thin film composite membranes. The last describes the fabrication and evaluation of lab-scale hollow fiber modules.

1.0 Physical Properties of Coating Solutions

1.1 Molecular Weight and Distribution of ATM Polymers

Most coating work employed the AT polymer poly(vinylbenzyltrimethylammonium fluoride), PVBTAF. This polymer is derived from either of two batches (batch 1 and batch 2) of poly(vinylbenzyltrimethylammonium chloride), PVBTACl³² which differed in molecular weight. Molecular weight, molecular weight distribution and estimated molecular size were determined using Gel Permeation Chromatography/Magic Angle Laser Light Scattering (GPC-MALLS). Results are shown in Table 4-1. The molecular weight of all samples were sufficiently high (Mw > 500,000) to be film forming. The radius of gyration, an estimate of the volume occupied by a polymer chain in solution, is 400-500 Å suggesting that a substrate fiber with surface pores smaller than 1000 Å diameter will be required. Other work focused on coating substrates with poly(diallyldimethylammonium fluoride), DADMAF, and proprietary blends based on high molecular weight poly(vinylalcohol), PVOH (Mw > 100,000). These polymers were also film forming and of similar radius of gyration.

³²Details of the synthesis of AT polyelectrolytes can be found in U.S. Pat. No. 5,336,298

Table 4-1: GPC MALLS Molecular Weight Determination of Poly(vinylbenzyltrimethylammonium) and Poly(diallyldimethylammonium) AT Polymers

<u>Ref</u>	<u>erence</u>	<u>Sample</u>	<u>Batch No.</u>	<u>Mw</u>	<u>Mw/Mn</u>	<u>Rg (Å)</u>
133	00-17-1 71-4A	PVBTACI PVBTAF	1	739,000 822,000	2.5 3.0	463 445
	71-4B 49-14A	PVBTAF PVBTACl	1 2	841,000 1,270,000	3.0 2.5	444 486
		PVBTAF	2	1,129,000	2.1 4.6	461 312
		DADMACI DADMAF	1	239,000 343,000	4.0 6.8	312 343

1.2 Solubility of AT Polymers

All the Active Transport polymers are soluble in water to at least 15 wt% polymer. PVBTAF and DADMAF are also soluble in methanol (MeOH) to at least 5 wt% polymer.

1.3 Viscosity of ATM Solutions

The room temperature viscosity of the primary ATM coating solutions (PVBATF/H₂O and PVBTAF/MeOH) was determined using a Brookfield Digital Viscometer. Viscosity was measured for polymer concentrations between 1-35 wt%. Solution viscosity is plotted in Figure 4-1. The measured viscosity is the same for the two solvents indicating that water and methanol are equally good solvents for PVBTAF.

1.4 Wetting Behavior of AT Systems

Wettability can be estimated by measuring the contact angle between the coating solution / solvent and the substrate. Wettability can be inferred if the contact angle is less than 90°.

Figure 4-1 Viscosity of ATM Coating Solutions

Conversely, the materials are nonwetting if the contact angle is substantially greater than 90°. Several methods for measuring contact angles are given in reference³³. This work employed two methods to measure the contact angles. In one, the contact angle between coating solvents and dense planar coupon of substrate was measured by the sessile drop technique. The results (Table 4-2) indicate that both solvents wet the substrate.

Table 4-2Contact Angle of ATM Solvents with Substrate Polymers

	Contact Angle		
Substrate Polymer	<u>Water</u>	<u>Methanol</u>	
polysulfone	≈ 60°	≈55°	
PAI	≈50°	≈40°	

The *dynamic* contact angle between PAI fibers and ATM solutions was examined by hanging a small section of the dense substrate fiber from a Cahn micro-balance and monitoring the weight change as a function of time while either dipping the fiber into the test solution (advancing angle) or pulling the fiber out of the solution(receding angle). A dense rather than microporous substrate was used to prevent wicking of the solution into the pore wall. The fiber end contacting the polymer solution was sealed in an epoxy resin to prevent capillary rise of the solution into the fiber bore. In this study, the solutions was 70 and 23 dynes/cm, respectively - slightly lower from the pure solvent values of 72.6 and 24.0 dynes/cm. The dynamic contact angles were calculated from the surface tension of the solution.

Results are summarized in Table 4-3. Contact angles are less than 90 degree suggesting that PVBATF should coat PAI fiber. In reality a porous PAI substrate will be used. In that case the surface porosity of the substrate fiber should reduce the contact angle and therefore enhance the coatability.

³³A.W. Adamson, "Physical Chemistry of Surfaces"3rd ed., J. Wiley & Sons, New York (1976).

Table 4-3Dynamic Contact Angle Between ATM Coating Solutions and PAI Fiber

Contact angle	PVBTAF/H2O	PVBTAF/MeOH
Advancing	65.0°	50.0°
Receding	50.7°	44.5°

2.0 Coatability of Planar Substrate Coupons

The coatability of polysulfone and PAI with PVBTAF was investigated by fabricating small laboratory test coupons (flat sheet membranes about 2 inches in diameter) for screening studies. The microporous polysulfone support membrane was made by a proprietary process. Microporous PAI support membranes were produced via phase inversion technology using the spin dope formulations described in Chapter 3. Membranes were examined using optical or electron microscopy and were also evaluated for permselectivity. The surface pores of the uncoated PAI support ranged from 300Å to 1000Å in diameter; its N₂ permeance was \geq 70 x 10⁻⁶ cm³/cm²•s•cmHg. The N₂ permeance of the planar polysulfone membrane was \geq 100 x 10⁻⁶ cm³/cm²•s•cmHg. PVBTAF composite membranes were fabricated and evaluated as described previously²⁹. In general, adhesion between PVBTAF and the substrates was good, however, some delamination occurred at extremely low humidity (P/Po<0.05). Representative screening results are shown in Tables 4-4 and 4-5.

Table 4-4 : Permselectivity of a PVBTAF/Polysulfone Flat Sheet Composite Membrane as a Function of CO₂ Pressure (12484-76B)

Feed Pressure (psig)#	P _{CO2} (cmHg)	P/l CO ₂ (x 10 ⁶)*	αCO ₂ /H ₂	αCO ₂ /CH ₄
5.3	31.7	6.02	87	1024**
20.0	55.0	4.51	82	765**
40.0	86.7	3.78	71	640**
61.1	120.1	3.19	48	540**
75.6	143.1	2.88	43	490

feed mix: 30% CO2/34% CH4/36%H2

Temp=23°C; P/Po=0.31 * units of cm³/cm²•s•cmHg

** no CH4 detected in permeate; selectivity estimated from observed CH4 permeance at 75.6 psig

Table 4-5: Permselectivity of a PVBTAF/PAI Planar Coupon as a Function of CO₂ Pressure (12484-82)

Reference	Feed Pressure (psig)#	P _{CO2} (cmHg)	Р/I CO2 (x 10 ⁶) *	αCO2/H2	αCO2/CH4
uncoated PAI #1	15	51	1030	1.2	1.0
PVBTAF-coated	39.7	93.2	1.38	48	>150**
	102.5	201	0.915	33	>100**
uncoated PAI #2	39.0	92.3	70	0.63	0.91
PVBTAF-coated	39.0	92.3	3.05	50	>300**
	99.0	196	0.804	10	>85**

feed mix: 33% CO2/33% H2/34%CH4

Temp=23°c;P/Po=0.31

* units of cm³/cm²•s•cmHg

**no CH4 detected in permeate; selectivity estimated from detection limits of gas chromatograph

These results demonstrate that it is possible to coat both polysulfone and PAI flat sheets with PVBTAF and that good permselectivity can be achieved. The facilitated transport aspect of the membranes is maintained as evidenced by the pressure dependent nature of the permselectivity.

3.0 Hollow Fiber Module Fabrication and Evaluation

3.1 Dip Coating Procedures

Microporous and dense hollow fiber substrates were coated with ATM polyelectrolytes by dip coating techniques. Dip coating is a batch process which simulates the elementary steps of a continuous meniscus coating operation. The elements of the dip coating process are shown schematically in Figure 4-3. First, the bottom of the fiber was either heat sealed or pinched closed to prevent penetration of the coating solution into the bore and the fiber was immersed into the coating bath containing 0.5-10 wt% ATM polymer for \approx 15 sec. Coating solution was deposited on the fiber as it was withdrawn from the bath at a constant rate. An equilibrium liquid film thickness was established which depended on the viscosity of the coating solution, the contact angle between the coating solution and the fiber, the surface tension of the liquid, the rate at which the fiber is drawn from the solution, and the fiber diameter. The coated fiber was hung to complete solvent evaporation and a dry coating was formed. Next an overcoat of a silicone rubber-like material (e.g. 1 wt% Sylgard 184 in isopentane or 1 wt% Petrarch PS254 in methylene chloride) was deposited by the same procedure. For comparison, a continuous coating process is shown in Figure 4-4. The coated fibers were stored at room temperature in a relative humidity of 20-40%.

The Deryaguin coating model, i.e. mathematical relationship between the various coating parameters described above, is shown in equation 1. This relationship is valid for nonporous substrates when the capillary number (Un/S) is in the range $10^{-5} - 10^{-2}$. ^{34,35}

Equation 1:
$$h/R = 1.33 (Un/S)^{2/3}$$

where h = liquid film coating thickness

- R = fiber radius
- U = fiber velocity
- n = coating solution viscosity
- S = surface tension of the coating liquid

Recently, Tsai et. al. have accounted for deviations from the Deryaguin model when microporous substrates are used. They postulated that capillary suction of solvent into the

³⁴B.V. Deryaguin, *Acta Physicochim*, <u>20</u>, 349 (1945).

³⁵D. Quere, J-M. Di Meglio and F. Brochard-Wyart, *Science*, <u>249</u>, 1256 (1990).

Figure 4-3 Schematic Representation of a Dip Coating Process

1)immersion

2)start up

3)drainage

4) evaporation

Figure 4-4 Schematic representation of a Continuous Meniscus Coating Process

pores of substrates results in a localized viscosity increase near the fiber surface. Thus, the wet film thickness on microporous substrates is greater than if a nonporous substrate is used. This refined Deryaguin model requires knowledge of the equilibrium capacity and the kinetics of solvent absorption by the fiber.

The various support fibers used in this work were coated from aqueous or methanolic solutions containing 0.5 - 10 wt% Active Transport polymer. The ratio of wet film thickness to fiber radius (h/R), estimated from the Deryaguin model, ranged from 0.004 to 0.02. (There is currently insufficient information to apply the refined Deryaguin model.) Lab-scale modules, containing between 1 and 50 nine inch long fibers, were fabricated by potting a fiber bundle into a stainless steel housing as shown in Figure 4-5. Feed gas was circulated on the shell side. The active fiber length was nominally taken as 9" in all modules although small variations between modules were likely. In most experiments the bore, or fiber lumen, was swept with an inert gas (helium or nitrogen) in order to facilitate detection of the permeating species by a gas chromatograph. Details of the experimental procedures can be found in previous reports.^{28,29}

3.2 Results and Discussion - PVBTAF Coated Commercial Substrates

3.2.1 Membrane Characterization

Substrate Characterization

This phase of the work used two types of commercial polysulfone hollow fiber substrates which are here designated SUB1 and SUB2 (substrate 1 and substrate 2). Both fibers were asymmetric with a very thin dense skin on the shell-side of the fiber. The fibers differed in their wall and skin thickness. For example, the wall of SUB1 was approximately twice that of SUB2. It is important to note that neither fiber was optimized for use as a thin film composite substrate. In addition, the fibers were found to contain manufacturing flaws or defects which include small amounts of surface debris and gouges in the skin (Figures 4-6).

Characterization of the Composite Hollow Fiber Membrane

Scanning Electron Microscopy (SEM) was the primary characterization tool. The only procedure which produced a sharp cross-section was one in which the sample was frozen in liquid nitrogen and then gently fractured. However, the coatings of samples prepared even by this method often delaminated making it difficult to consistently obtain meaningful cross-

Figure 4-6 Apparent Manufacturing Defects of SUB1 and SUB2 Substrates

Figure 4-7 Representative Cross-section of ATM-coated SUB1

section analysis. The ATM layer was usually found to be between 2 and 10 μ m thick (Figure 4-7).

3.2.2 Permselectivity Evaluation

Modules were evaluated for CO₂, CH₄ and, in some cases, H₂ permselectivity in a mixed gas, flowing test system similar to those described earlier.²⁹ The water content of the feed and sweep gases as a critical experimental parameter³⁶. Therefore, the test system incorporated a means to vary the hydration level of the feed and sweep streams from P/Po \approx 0.2 to P/Po \approx 0.8 where, P is the H₂O vapor pressure at the hydrating bubbler temperature and Po is the vapor pressure of H₂O in equilibrium with liquid water at the temperature of the membrane. Chilled mirror hygrometers (General Eastern Corp.) were used to measure the dew point of the gas feed and permeate but it was not possible to obtain an accurate mass balance of H₂O by this method.

The permeance (P/ℓ) of the various components was calculated using the known or experimentally determined parameters from the equation:

$$(P/\ell)_i = F_i / A \cdot \Delta P_i$$

and the set of simultaneous linear equations:

$$[i] = F_i / \sum F_i$$

where

Fi = flow rate of permeating species i A = membrane area, based on the OD of the uncoated substrate fiber ΔP_i = partial pressure driving force of species i = P_i (feed source) - P_i (bulk permeate) [i] = concentration of species i as determined by gas chromatography

 ΣF_i = total species flow rate in the N₂-swept permeate stream

³⁶For a full discussion of this effect see Section V.1.0 of this report.

The calculated permeance is that of the <u>module</u> under the given set of experimental conditions. A model which would (1) derive the <u>composite membrane</u> properties from the experimentally determined module properties and also (2) derive the <u>intrinsic AT</u> layer properties from the composite properties does not exist at this time. This treatment of the data penalizes the module to some degree since experimental data was often taken under non-zero recovery of CO₂; that is, only 1-15% of the CO₂ in the feed gas was allowed to permeate the membrane. In most cases however, the membranes were operated under zero recovery of H₂O.

More than 40 PVBTAF-coated SUB1 and SUB2-based modules were fabricated and evaluated. A summary of results is provided in Table 4-6. Early attempts at fiber coating and module fabrication used SUB2 fiber and were not very successful. Eventually, modules utilizing both Sub1 and Sub2 were successfully fabricated and evaluated. Specific examples illustrating important concepts or results are detailed below.

• P/l CO₂ and α CO₂/CH₄ as a function of CO₂ Partial Pressure [13074-67C]

A commercial ATM will have to operate near natural gas well-head pressures (about 1000 psi). These conditions were simulated in the test equipment. The SUB1-based hollow fiber ATM was evaluated as a function of total feed gas pressure up to about 800 psig while the permeate pressure was maintained at approximately 15 psia. The results are shown in Figure 4-8. Because CO₂ is transported via a chemically-assisted pathway, its permeance is pressure dependent and is highest at low CO₂ feed partial pressures. Its value depends not solely on the partial pressure difference but on the specific value of the partial pressures^{3,28}. Methane is transported via a Henry's Law solution-diffusion pathway and hence, its permeance is independent of pressure. Thus, the $\alpha(CO_2/CH_4)$ also varies with CO₂ feed pressure was almost 800 psi. At high CO₂ partial pressure, where the chemically-assisted pathway is saturated, $\alpha(CO_2/CH_4)$ was \approx 75 which is 3-4 times higher than the pure component selectivity of most polymer membranes at < 100 psig.

Comments	no sweep no sweep no sweep no sweep no sweep no sweep no sweep	20 sccm feed 20 sccm feed
<u>T on Stream</u>	13 days	8 days 4.5 days 5 days
CO2/CH4	366 200 200 200 201 201 201 201 201 201 201	221 135 151 32.9 32.9 57.6 134 252 252 252 252
2 PICO2	2.98 1.12 0.629 0.629 0.6090000000000	2.00 1.55 3.493 3.829 2.702 2.702 2.735 2.702 2.735 2.300
<u>emHa CC</u>	69 156 1105 1105 1105 1105 1105 1105 1105	747 541 96 93 93 93 93 93 93 93 93 93 93 93 93 93
<u>P/Po</u>	0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
<u> Beference #</u>	13074-67C	13074-88A 13399-40 13399-41
	P/Po cmHg CO2 P/I CO2 CO2/CH4 I on Stream	P/Po cmHq.CO2 PICO2 CO2/CH4 LonStream 0.27 69 2.98 366 137 291 17.12 0.27 156 1.87 200 366 137 201 0.27 156 1.87 206 1.12 1.12 147 0.27 291 1.12 1.12 1.47 200 13 days 0.27 291 1.12 1.12 147 200 13 days 0.27 544 0.757 111 200 111 200 111 200 111 200 111 200 111 201

Table 4-6 Summary: Permselectivity of PVBTAF-coated SUB1 and SUB2 Modules

<u>Comments</u>	H2S -free (25% CO2 in CH4) 0.3& H2S, unstable 3% H2S H2S-free	H2S -free (25% CO2 in CH4) 0.3& H2S, unstable 3% H2S H2S-free		feed : 10% CO2 in CH4
T on Stream	48 days	48 days		12 days
<u>CO2/CH4</u>	300 280 150 260	250 245 150 210	144 111 72	316 75 75 351 356 273 356 212
02 P/I CO2	0.98 0.87 0.50	2.20 1.75 0.92 1.05	0.47 0.27 0.19	1.80 2.68 3.83 2.08 2.04 2.04 2.04
<u>cmHa CO2</u>	100 1100 1100	100 1100 100 100	52 53 52	ស្ត្ ត ស្ត្ត ស្ត្ត ស្ត្ត ស្ត្ត ស្ត្ត ស្ត្ ស្ត្ត ស្ត្ត ស្ត្ត ស្ត្ត ស្ត្ត ស្ត្
<u>P/Po</u>	0.27 0.27 0.27 0.27	0.27 0.27 0.27 0.27	0.27 0.20 0.15	0.27 0.39 0.53 0.53 0.19 0.19 0.19 0.27 0.09
Reference #	13921-24 lifetime test	13921-25	13921-45	13921-54

Table 4-6 (cont'd)

. .

	Comments	no coating no PDMS	no coating 2 PVBTAF dips/no PDMS	potted in septa	potted in septa; PVBTAF only PVBTAF+PDMS	PVBTAF repair	195 sccm feed	195 sccm feed	20 sccm feed	20 sccm feed	
	T on Stream	1 day	1.5 days	0.5 days	1 day	2 days	1.5 days	1.5 days	1 day	3.5 days	0.5 days
	CO2/CH4	0.9 1.0	0.9 28.3		22.5 18.2	1.7 22.3	60.5 55.3 57.0	42.3 57.9 37.6 11.6	32.9 19.7	44.8 39.5 41.5	44.0
	2 P/I CO2	1237 85.0	809 8.03		6.89 6.29	18.3 5.91	5.56 4.27 4.21	4.58 7.34 4.92 4.24	4.46 2.17	3.77 3.26 3.31	4.50
wise stated) 50% H2	<u>emHg CO2</u>	55 58	61 59		57 58	59 59	21 23 23	7828	65 67	ស ស ស ស ស	63
nless other 25%CH4,	व्याय	0.16 0.16	0.18 0.38		0.34 0.34	0.36 0.36	0.38 0.38 0.38	0.38 0.38 0.38 0.38	0.38 0.38	0.38 0.38 0.38	0.38
PVBTAF-Coated SUB2 Fibers (coatings are PDMS/PVBTAF onless otherwise stated) feed gas is generally 25%CO2/, 25%CH4, 50% H2	Reference #	12577-97B	I DOM	III DOM	NI DOM	13074-1	13074-3B	13074-3C	13074-13G	13074-17B	13074-23B

Table 4-6 (cont'd)

.

53

•

Comments				13074-23D recoat		20 sccm feed	20 sccm teed	13074-29C recoat	13074-35A recoat	20 sccm feed 20 sccm feed 20 sccm feed 20 sccm feed 20 sccm feed 20 sccm feed	retest after H2S exposure	5" fiber 5" fiber; 20 sccm feed	
T on Stream	0.5 days	0.5 days	0.5 days	0.5 days	0.5 days	2 days		0.5 days	0.5 days	6 days	1 day	1 day	0.5 days
CO2/CH4	1.6	1.0	7.0 2.0	14.3	10.2	200 315 78.4	276	3.4 1.5	10.0 8.9	235 235 20:4 289 289 289 210 210	1	37.3 36.7	98.0 86.7
cmHa CO2 P/I CO2	13.76	206	4.79 3.85	3.37	5.36	4.78 4.29 3.45	3.27	4.23 14.0	4.08 6.23	3.74 3.41 3.55 3.55 3.13 2.72 2.72	0.0239 0.0103	2.37 2.15	1.78 4.40
cmHa CO	62	62	62 62	62	62	ស្ត ស្ត្រ ស្ត្ទ ស្តា ស ស ស្ទ ស ស្ទ ស ស្ទ ស ស ស	65	62 62	62 65	8 4 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	67 150	63 65	65
<u>P/Po</u>	0.38	0.38	0.38 0.38	0.38	0.38	0.38 0.38 0.38 0.27	0.27	0.38 0.38	0.38 0.38	0.38 0.28 0.27 0.38 0.38 0.38 0.38	0.27 0.27	0.38 0.38	0.38
Reference #	13074-23C	13074-23D	13074-23E	13074-26B	13074-29B	13074-29C		13074-31B	13074-35A	13074-35C	13074-35C-2	13074-40C	13074-42C

Table 4-6 (cont'd)

Comments		polyurethane fill to ends		180 sscm feed 20 sccm feed
<u>T on Stream</u>	0.5 days	2 days	15 days	13 days
CO2/CH4	30.9	37.3 60.9 78.0	194 275 275 275 275 275 275 275 275 275 275	195 171 80.7 80.7 33.2 9.5 9.5
202 P/I CO2	1.22	4.35 3.33 2.08	5.96 3.69 2.20 3.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93	2.05 3.25 1.77 1.44 0.895 0.584 0.584 0.584 0.584
cmHg CO2	65	65 65 65	63 63 715 715 715 715 715 715 715 715 715 715	71 71 71 71 71 71 71 71 71 71 71 71 71 7
<u>P/Po</u>	0.38	0.38 0.38 0.27	0.27 0.27 0.27 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24	0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27
<u>Reference #</u>	13074-42D	13074-43C	13074-49D	13074-51C

• Effect of Fiber Strength on Membrane Integrity [13074-51C]

The effect of support fiber strength is shown in Figure 4-9. In this experiment, a PDMS/PVBTAF ATM was supported on SUB2 fiber. The feed pressure was incrementally raised to about 800 psig. Permselectivity parallels that of a SUB1-based ATM at low feed pressures. However, at ≈ 600 psig, the support fiber begins to collapse and membrane integrity is compromised. The composite failed completely at feed pressures greater than 650 psig. As the wall thickness of SUB2 is only about 50% that of SUB1, it is not surprising that this failure occurred. This result indicates the need to maintain the proper support fiber wall thickness to fiber OD ratio for high pressure operation.

• Effect of Bore-side Sweep Gas on Performance [13074-67C]

In order to maintain the largest driving force, the preferred mode of operating an Active Transport membrane is to sweep the fiber lumen with a diluent. However, it may not always be either technically or economically feasible to provide this option. Therefore, the performance of the hollow fiber composite module was evaluated without a permeate sweep gas. In this test, the permeate gases were collected at 15 psia and, downstream of the membrane, diluted with helium and analyzed. As expected (Figure 4-10), the lack of sweep gas only affects permselectivity at low CO₂ partial pressures. The CO₂ permeance of the hon-facilitated (Henry's Law) pathway depends only on the absolute value of the CO₂ pressure difference and is not affected in the high pressure regime, where the Henry's Law pathway dominates. On the other hand, the chemical (facilitated) transport pathway dominates at low CO₂ partial pressure in the feed and permeate streams. Therefore, this regime shows a deviation in performance.

• P/l CO₂ and α CO₂/CH₄ as a function of P/Po [13921-54]

The ATM materials development program identified a strong dependence of performance on the water content of the gas streams. This dependence was evaluated for PDMS/PVBTAF/SUB1 hollow fiber lab modules by varying the water content, as defined by P/Po, of both the feed and sweep gas streams. The partial pressure of CO₂ in the feed stream was maintained at 53 cmHg. All other experimental parameters were held constant. Data was recorded at increasing P/Po from 0.27 to 0.72, then performance at the lower values of P/Po was investigated. Finally, the membrane was returned to the original conditions and

Performance on SUB2 Substrate

Figure 4-10 Performance Comparison: Bore-Side Sweep vs. No Sweep

the data (represented by the filled symbols) was recorded. Results are shown in Figure 4-11. The CO₂ permeance increases linearly with increasing P/Po in the range 0.1 < P/Po < 0.75. The selectivity however, passes through a maximum. Figure 4-11 defines three regimes of membrane performance. At P/Po ≤ 0.1 both the CO₂ permeance and the selectivity are low because strong ionic intermolecular forces maintain a "tight" polymer network which inhibits diffusion of all gases. Additionally, a low water content in essence "shuts down" the chemical transport pathway in which H₂O is a reactant. An optimal regime exists in the P/Po range of 0.15 - 0.35. The CO₂/CH₄ selectivity is maximized with a moderate CO₂ permeance. At higher P/Po, excess water retards the chemical pathway and plasticizes the membrane. Thus, the flux of all gases is high and the membrane is nonselective. This aspect of ATMs is discussed in greater detail in Chapter V.

• Effect of Higher Membrane Temperature on Performance at Constant P/Po

It was found that membrane temperature can have significant effect on performance. A PDMS/PVBTAF/SUB1 module was evaluated at two temperatures, $31^{\circ}C$ and $50^{\circ}C$ while all other experimental parameters, including P/Po were constant. A modest 20°C temperature rise increased the observed CO₂ permeance $\approx 185\%$. Moreover, the selectivity also increased. For comparison, conventional polymeric membranes (non ATMs) usually exhibit increased permeance but decreased selectivity at higher temperatures. The results (Table 4-7) suggest better economics might be achieved if the membrane could be operated at $\approx 50^{\circ}C$. Additional experimental work is needed to define the upper temperature limit.

<u>Membrane</u>	<u>P/Po</u>	$\underline{P/\ell CO_2(cm^3/cm^2 \bullet s \bullet cmHg x 10^6)}$	<u>αCO2/CH</u> 4
31°C	0.23	3.41	185
50°C	0.23	6.27	254

Table 4-7: Temperature Dependence of Permselectivity

conditions: 18 cmHg CO₂

Figure 4-11 Effect of P/Po on Performance

• Lifetime / Stability Testing and Sensitivity to H₂S-containing Gas Streams

Two types of lifetime/stability testing were investigated. In the first, a module was evaluated over a set of conditions, usually increasing feed pressure, and then re-evaluated under conditions similar to those used early in the experiment. The results of such a study are shown in Figure 4-12. After evaluation at 800 psi, the module was retested at low pressure. The results from the retest are shown in solid symbols. The original results are reproduced and, hence, the module is stable to at least limited pressure cycling. In addition, this evaluation spanned 14 days of continuous operation.

The second type of evaluation comprised a lifetime study at constant conditions for a specified period of time in order to evaluate flux creep or degradation. Additionally, various levels of H₂S, a common co-contaminant in natural gas, was also added to the feed gas to evaluate its effect on performance. Results are shown in Figure 4-13. For the first 14 days, the feed gas contained only CO₂ and CH₄. After an induction period, a steady state is reached. For days 14 - 27, a feed gas containing 2900 ppm H₂S was used. The CO₂ permeance began to decline but appeared to stabilize at about 75% of the original value. For days 28 - 36, a feed gas containing 3% H₂S was used. Again, the CO₂ permanence decreased significantly and appeared to stabilize at about 45% of the original value. There are at least two reasons for this effect. First, like CO₂, H₂S is an acid gas and competes with CO₂ for the same acid-gas reactive sites in the ATM. This competition reduces the CO₂ flux and, as a result, the CO₂/CH₄ selectivity is also reduced. The H₂S/CO₂ selectivity at this point was 10. Second, H₂S, or trace contaminants in the H₂S may react with the membrane. This reaction may involve irreversible binding to the active sites or crosslinking of the polymer network. The data from days 38 - 45 suggest both mechanisms may be operative since a return to an H₂S-free stream did not restore the CO₂ flux but did restore some of the CO₂/CH₄ selectivity. The conclusion from this study is that H₂S (or H₂S contaminant) has some detrimental and irreversible or long-lived effect on permselectivity but that a metastable state is achieved, the permeance of which is dependent upon the H₂S concentration.

Figure 4-13 Lifetime/H2S Stability of Hollow Fiber ATM

Defect Modeling of Composite ATMs

A series resistance model can be applied to explain the differences between the permselectivity of planar ATM composite membranes and hollow fiber ATM composite membranes. Table 4-8 summarizes typical laboratory properties under comparable test conditions for PVBTAF composite ATMs.

Table 4-8Comparison of Typical Planar and Hollow Fiber Membranes

	P/I CO ₂ (x 10 ⁶)*	<u>αCO2/H2</u>	αCO2/CH4
Planar Membrane	1-6	20-50	200-500
Hollow Fiber Membrane	1-5	2-10	100-300
* in units of cm ³ /cm ² •s•cmHg			

Hollow fiber composite ATMs achieve CO₂ permeance and generally α CO₂/CH4 similar to the planar counterpart however, α CO₂/H₂ is always significantly less than expected. To explain these results the following model is proposed. The model consists of the following components:

(1) A series resistance calculation to determine the intrinsic permselectivity of the PVBTAF layer from the experimentally determined properties of a planar multilayer composite membrane, the uncoated substrate (assumed to be nonporous) and the PDMS overcoat. The result is scaled to the same experimental conditions under which the hollow fiber ATM was evaluated.

(2) The defects are assumed to occur over a nonporous region of the support fiber as shown in Figure 4-14. The model then uses a two parameter fit to simultaneously solve for the ratio of the PVBTAF layer thicknesses between the planar coupon and the hollow fiber composite and the defective area. The total gas flux of any species (i) is then the sum of the flux through the coated composite of area, x, and the flux through the defect area, (1-x). These parameters are then used to predict the CH4 permeance and α CO₂/CH4.

Figure 4-14: Schematic Representation of Defect Model

 $(P/l)_i$ [composite] = L • x $(P/l)_i$ [series resistance] + $(1-x) • (P/l)_i$ defect

where L = PVBTAF thickness of fiber /PVBTAF thickness of coupon x = defect-free area

The component permselectivities used in the calculations are given in Table 4-9.

Table 4-9Permselectivity Basis for Defect Model

Component	Thickness	<u>P/I CO₂ (x 10⁶)*</u>	<u>P/1 H2</u>	<u>P/1 CH4</u>
substrate	1000Å	57	108	2.2
PDMS	5 µm	194	42	14

* in units of cm³/cm²•s•cmHg

An important result of the model is that neither the polysulfone (sheet or fiber) nor the PDMS overcoat provide significant mass transfer resistance to these membranes. Table 4-10 compares the experimental properties of the flat sheet ATM composite, the experimental permselectivity of a hollow fiber ATM composite and predicted (model) permselectivity for PVBTAF-coated onto SUB2 hollow fibers. The defective area was calculated at 0.17%.

Table 4-10: Comparison of Experimental and Model Predicted Permselectivityfor an ATM Hollow Fiber Module (x = 0.9983)

<u>Property</u>	PVBTAF Intrinsic <u>Properties</u>	experimental flat sheet <u>(12484-76B)**</u>	experimental hollow fiber (13074-49D)***	predicted (defect model)****
P/l CO ₂ (x 10 ⁶)*	2.95	2.88	3.05	3.05
$\alpha CO_2/H_2$	44	43	12.1	12.1
$\alpha CO_2/CH_4$	500	490	275	316

* in units of cm³/cm²•s•cmHg

** conditions: 143 cmHg CO₂, P/Po=0.31

***conditions: 135 cmHg CO₂, P/Po=0.27

****scaled to experimental conditions of 13074-49D

Although the model is limited and does not take into account the variation in effective permeation area as the PVBTAF layer is thinned, the agreement between model and experiment is good. It provides a semi-quantitative rationalization of the experimental results and can be used to guide future work.

3.3 Results and Discussion - ATM coated PAI Substrate

This work incorporated PAI substrate developed under task 1 (Section III of this report) and new high performance ATM compositions (e.g. EXTM6-4; see Section V of this report). Planar coupons of these ATM compositions exhibited a ten-fold increase in CO_2 permeance without loss of selectivity. The performance of hollow fiber composite lab modules is reported below.

• EXTM6-4-coated PAI Substrate

Screening results for EXTM6-4 coated PAI are summarized in Table 4-11. Early results were discouraging. Eventually a procedure was developed to make largely defect free EXTM6-4 and EXTM8 coatings on small pore PAI substrate. While $\alpha(CO_2/CH_4)$ is good, ranging from 100-400, CO₂ permeance values are approximately that observed for PVBTAF-coated SUB1 which suggests that optimization of the PAI substrate is needed to realize the potential of the high performance ATMs. For instance, a higher CO₂ permeance was achieved on

100A pore/1500 GPU PAI (13745-5Å) compared to the <40Å pore/150 GPU PAI (13745-15B). These results demonstrate that it is possible to coat PAI with the ATM. Additional work is necessary to evaluate permselectivity under more rigorous conditions.

Table 4-11 Performance of EXTM6-4 Coated PAI Hollow Fiber Modules

Reference	<u>Fiber Ref</u>	<u>P/Po</u>	<u>P CO2</u> *	<u>P/I CO2</u> **	<u>α CO₂/CH₄</u>
13921-83	90B	0.38 0.52 0.27	98 106 103	1.1 1.4 0.79	240 153 159
13921-85	13475-15B	0.28 0.30 0.40 0.36	50 50 124 124	1.4 0.94 0.65 0.66	227 399 133 178
13921-94	13475-5A	0.29 0.4	125 125	2.1 2.6	274 237

* cmHg

** units of 10⁻⁶ cm³/cm²•s•cmHg

• EXTM8-Coated PAI Substrate

Table 4-12 summarizes results for EXTM8-coated PAI. Here too, EXTM8 based composites exhibit high selectivity but not the expected improved CO₂ permeance. These results re-emphasize the need to optimize the support fiber. It is worth noting that in some cases Rayleigh instability³⁷ was observed during the coating process and may be an issue in EXTM8 coating scale-up.

³⁷D. Quere et. al., "Spreading of Liquids on Highly Curved Surfaces", *Science*, 249, 1256 91990).

	Comment						recoated in housing	recoated in housing				deews ou	
	t on stream	96 hrs	64 hrs	3 hrs	5 hrs	24 hrs	4 hrs 4 hrs	4 hrs 20 hrs	4 hrs	4 hrs	4 hrs	4 hrs	4 hrs
	<u>CO2/CH4</u>	321 1325 637	485 50 292	1.1	22.3 0.8	0.9 0.9	1.1 7.5	8.6 3.8 13.8	1.0	1.1	1.1	1.1	1.1
	P/I CO2	4.7 3.3 0 0	140000 140000	6.5	2.4 21.9	23.2 29.9	4.0 0.41	3.2 1.9 1.4	60.3	14.4	10.7	11.1	1.2
75sccm	<u>P CO2</u>	83 153 272	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	162	162 162	162 162	92 124	124 149 149	124	124	147	149	68
,50%H2@	<u>P/Po</u>	0.27 0.27	0.27 0.27 0.38	0.27	0.27 0.27	0.27 0.27	0.38 0.38	0.27 0.38 0.52	0.27	0.27	0.27	0.27	0.27
EXTIM8-Coated PAI Fibers Feed gas: 25% CO2,25%CH4,50%H2@75sccm	<u>Bef</u> #	13074-93B	13074-94E	13074-100	13074-101	13074-102	13074-103	13399-1	13399-2	13399-3	13399-4	13399-5	13399-10
EXTMB-C Feed gas:	Fiber #	69A	69A	69A	69A	69A	6 9A	69A	38A	38A	6 9A	69A	69A

Table 4-12 Summary: Permselectivity of EXTM8-coated PAI Modules

Comment									failure at 185 psig
<u>T on stream</u>	96 hrs	148 hrs	4 hrs	72 hrs	4 hrs	4 hrs	4 hrs	14 hrs	270 hrs
CO2/CH4	38.8 83.0 5.0	11.2 117.2 38.4 82.1 129	24	199 270 53 48.9	2.3	9.1	10.7	140	133 454 249 308 273 1.1
P/I CO2	1.8 2.3 1.8	2.0 1.8 2.0 1.8	2.5	3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3.6	3.0	3.1	2.9	1.5 0.85 0.21 0.31 202 202
<u>P CO2</u>	84 84 79 160	91 91 92 96	92	87 88 157 157	88	88	92	91	91 88 170 245 245 245
<u>P/Po</u>	0.27 0.38 0.52 0.52	0.27 0.52 0.38 0.52	0.52	0.52 0.52 0.38 0.38 0.52	0.52	0.52	0.52	0.52	0.52 0.52 0.38 0.38 0.38 0.38 0.38 0.38
<u>Ref #</u>	13399-13	13399-14	13399-18	13399-19	13399-22	13399-23	13399-25	13399-26	13399-27
Elber #	69A	6 9	6 9A	V 69	69A	69A	69A	69A	V 69

Table 4-12 (cont'd)

_

70

- -- --

.....

Comment		wiped fiber		
<u>T on stream</u>	148 hrs	4 hrs	4 hrs	4 hrs
CO2/CH4	16.7 26.9 84.1 32.8	2.4	1.5	1.8
P/I CO2	2.2.8 2.4.8 3.4.0	4.1	20.0	5.6
<u>P CO2</u>	88 91 84	95	92	95
<u>P/Po</u>	0.38 0.52 0.71 0.52	0.34	0.34	0.38
Ref #	13399-28	13399-45	13399-48	13399-50
Eiber #	69B	68C	12932-68C	12932-68C

ï

Table 4-12 (cont'd)

4.0 Summary and Recommendations

Figure 4-15 summarizes typical results for polysulfone-supported PVBTAF planar coupons and hollow fiber lab modules. The CO_2 permeance of the coupons and modules agree to within 25-40%. The selectivity of the modules is less than that observed on coupons, probably for the reasons stated above, but is acceptable and significantly higher than that of any conventional polymer membrane.

Thus far, dip coating procedures have been used to fabricate laboratory scale modules. The ATM layer thickness of the lab modules is 2-10 μ m. It will be necessary to translate these results into a continuous coating process as part of a scale-up program. In addition, methods to increase the CO₂ permeance of the module, through fundamental improvements to ATM chemistry, advanced coating technology and innovative module design should be explored, particularity the effect of substrate porosity on performance. A follow-on program should include:

- determine module performance and stability at P/Po < 0.2 and P/Po > 0.7.
- examine methods to produce thinner coatings and determine the effect of coating thickness on flux
- scale-up a continuous coating process
- field test ATM substrates and composite membrane modules

Figure 4-15A Comparison of Polysulfone-Supported PVBTAF Planar Coupons and Hollow Fiber Lab Modules

DOE4/F4-15A

Figure 4-15B

DOE4/F4-15B

Figure 4-15C

DOE4/F4-15C

V. Recent Advances in the Development of Active Transport Materials

1.0 Influence of H₂O Vapor on ATM Permeation Properties

NMR results³⁸ support the following acid-base chemistry for the reaction of CO₂ with TMAF and PVBTAF:

$$2F^{-} + H_2O = HF_2^{-} + OH^{-}$$
 (1)

$$OH^- + CO_2 = HCO_3^-$$
(2)

 $2F^{-} + H_2O + CO_2 = HF_2^{-} + HCO_3^{-}$ (3) net rxn:

Water enters directly into CO₂ complexation as one of the reactants. It is believed that the complexation reaction uses water solubilized within the membrane [H2O]; that is, dissolved water in equilibrium with water vapor in the feed stream. From the above equations, an increase in [H2O] is expected to drive the reaction forward, however, increasing [H2O] also increases the solvation sphere of F⁻ and hence decreases its basicity. Thus, the net effect of increasing [H2O] at constant temperature is to decrease the equilibrium constant, KeqCO₂, for reaction 3; i.e. less CO₂ is dissolved in the membrane as HCO_3^- . This model has been verified experimentally for TMAF and by analogy for PVBTAF (Figure 5-1).

The equilibrium constant for CO_2 complexation is highest for TMAF•2H₂O (n=2)^{*} and decreases as the hydration state is increased. Thus, CO₂ ATMs are expected to have the maximum loading of chemically bound CO₂ at feed stream dew points which produce low hydration state AT material. It is therefore essential to know how the hydration state of the AT material varies with feed stream dew point.

1.1 Measurement of H₂O Absorption Isotherms

Aqueous PVBTAF and EXTM6-4** solutions were prepared as described previously.²⁹ "Dry" films were prepared by evaporating the solutions to dryness under nitrogen followed by vacuum at 25°C. Before an H₂O absorption isotherm could be measured, the composition of the starting material had to be identified; that is, the hydration state of the "dry"

³⁸ R. Quinn, Air Products internal memorandum, 1991.
* TMAF•1H₂O absorbs CO₂ irreversibly.
** EXTM6-4 is a proprietary blend of AT polymer and AT salt.

Figure 5-1 Chemical Complexation of CO2 by TMAF • nH2O

Table 5-1NMR Peak Assignments

		# of]	protons
<u>Proton</u>	<u>chemical shift</u>	<u>PVBTAF</u>	<u>EXTM6-4</u>
а	1.3 ppm	2.6	2.5
b	6.4,6.9 ppm	3.6	3.6
с	4.0 ppm	1.6	1.6
d	2.7 ppm	9.0	6.4
e	4.6 ppm	2.6	3.8

Results of the TGA and NMR experiments are summarized and compared in Table 5-2. Agreement between the methods is excellent. The composition of the "dry" polyelectrolytes can best be expressed as PVBTAF•1H₂O and EXTM6-4• 5H₂O. It is interesting to note that both samples contain $1H_2O/1F^-$.

Table 5-2: Water Content of "Dry" PVBTAF and EXTM6-4

		wt% H ₂ O					
<u>Material</u>	<u>Sample Ref.</u>	Source Ref.	<u>TGA</u>	<u>NMR</u>	<u>Hydrate #</u>		
PVBTAF	13771-16	13921-8D	9.7	10.7	0.98		
EXTM6-4	13771-17	13921-8E	7.5	6.7	4.88		

The H_2O absorption isotherms for PVBTAF and EXTM6-4 were determined using a McBain microbalance. Table 5-3 and Figures 5-4 and 5-5 relate the partial pressure of H_2O in the feed stream to the hydration state of PVBTAF and EXTM6-4. Some interesting points to note about the isotherms include:

1) Consistent with the addition of the AT salt, on a "molar" basis EXTM6-4 absorbs much more H_2O than does PVBTAF (Figure 5-4), however

2) On a fluoride ion basis (Figure 5-5), there is no significant difference in the amount of water absorbed by the two polymers. This suggests that solvating the F⁻ ion is the driving force behind the water affinity of both these materials.

3) Both isotherms contain an inflection point at P/Po ≈ 0.3 . At lower values of P/Po, the slope of the isotherm is almost flat. As P/Po passes through ≈ 0.3 , the slope changes and there is a marked increase in the amount of H₂O absorbed.

Table 5-3	H ₂ O Absorption by PVBTAF and EXTM6-4 at 25° C
-----------	--

#2 mol H ₂ O/ It mol E	1.17 2.45 3.54 3.54 7.14 9.14	#2 D/ mol H ₂ O/ Init mol E 1.14 1.14 1.14 1.156 1.156 1.156 1.156 1.506 5.06 6.52 8.77
sample #2 mol H ₂ O / <u>repeat unit</u>	1.17 1.80 2.45 3.54 4.31 7.14 9.14 9.14	sample #2 mol H ₂ O / repeat unit 5.68 7.79 13.76 14.76 14.7
mmol H ₂ O / <u>a sample</u>	0 5.80 2.91 14.53 21.05 27.64 36.89	mmol H2O/g sample 0 0.90 2.41 3.29 10.05 14.37 23.10 31.40 31.40
mol H ₂ O / mol E	1.17 2.47 2.46 3.61 3.61 7.17 9.18	mol H2O/ <u>mol F</u> 0.98 1.19 1.64 1.64 2.92 3.72 6.75 9.04
sample #1 mol H ₂ O / <u>repeat unit</u>	1.17 1.78 2.47 2.46 3.61 3.61 7.17 9.18	sampe #1 mol H2O/ Icepeat unit 5.92 5.92 7.38 8.19 14.59 18.59 18.59 18.59 18.59 33.74 33.74
mmol H ₂ O / g.sample	0 2.83 6.04 5.98 11.27 14.75 21.35 27.75 37.06	mmolH2O/g sample 0 1.18 2.83 3.75 10.99 15.52 24.39 22.68 32.68
PVBTAF P/Po	0.000 0.123 0.152 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.373 0.373 0.373 0.876	EXTM6-4 P/Po 0.000 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.573 0.573 0.876

13771-20

83

Figure 5-5 H2O Absorption by PVBTAF and EXTM6-4 at 25°C Fluoride Basis

1.2 Correlation of H₂O Absorption with Permselectivity

This information can be used to rationalize the observed properties of PVBTAF and EXTM6-4 composite membranes. Typical results for a CO_2/CH_4 separation as function of P/Po are plotted in Figure 5-4. The increasing permeance of <u>both gases</u> at higher P/Po suggests that the increasing quantity of water absorbed under these conditions acts to "loosen" the polymer network, making diffusion more facile. Since this is a nonselective process, it stands to reason that the flux of all components increases. This hypothesis is being verified experimentally using PGSE-NMR.

We observe experimentally that while P/I of all gases increases with increasing P/Po, the selectivity passes through a maximum. The curve of $\alpha CO_2/CH_4$ vs P/Po for a PVBTAF/Sub1 polysulfone hollow fiber membrane is, in Figure 5-6, superimposed on a graph of H₂O absorption. Clearly the maximum in the selectivity coincides with the flat portion of the isotherm. At very low P/Po it is likely that diffusion is limited because the polymer network, being ionic and having little absorbed water, is very "tight" and diffusion is slow. At P/Po greater than ~0.35, there is a substantial decrease in selectivity. The reason for this is two-fold:

1) As described earlier, higher P/Po decreases the concentration of complexed CO₂

2) The ionic strength of the medium is lower at higher values of P/Po thus making the ionic barrier to CH₄ less effective, i.e. a diminishing of the "salting-out" effect.

The CO₂/H₂ selectivity of a EXTM6-4 polysulfone planar membrane is superimposed on the graph of H₂O absorption in Figure 5-8. Here however, the maximum selectivity is shifted to slightly higher P/Po. To rationalize this feature one need only consider the differences in ionic strength of the two polyelectrolyte solutions as shown in Figure 5-9. The curve of the ionic strength is nearly flat until P/Po≈0.3 at which point it decreases rapidly. It is interesting to note that the ionic strength of PVBTAF at it optimum P/Po (≈ 0.25) is equal to that of EXTM6-4 at P/Po≈0.45.

Figure 5-7 Selectivity and H20 Absorption of PVBTAF

Figure 5-8 Selectivity and H2O Absorption of EXTM6-4

89

Figure 5-9 Ionic Strength of PVBTAF and EXTM6-4

1.3 Conclusions

The dew point-dependent permselectivity of CO₂-selective Active Transport membranes fabricated from poly(vinylbenzyltrimethylammoniumfluoride) [PVBTAF] or blends of polymers with AT salts can be related to the equilibrium water absorption of the materials. An inflection point in the isotherm correlates with the observed decrease in the selectivity of PVBTAF composite membranes. Differences in performance between PVBTAF and EXTM6-4 can be attributed to differences in ionic strength. Because extremes of dew point result in either delamination of the AT layer or loss of permselectivity it will be necessary to control the level of water in the feed stream to Active Transport membranes.

2.0 Assessment of H₂S Reactivity of ATM Membranes

2.1 H₂S Permselectivity

PVBTAF composite membranes also selectively permeate H₂S. Typical gas permeation properties of PVBTAF composite membranes are listed in Table 5-4. The H₂S permeance varies from 28 - 10 x 10^{-6} cm³/cm²•s•cmHg [12582-40B1] over the pressure range studied indicating facilitated transport of that gas. The selectivity of >1000 to CH₄ is impressive.

The H₂S and CO₂ permselective properties of PVBTAF membranes depend on the composition of the feed gas. Both H₂S and CO₂ are acid gases and should compete for the same permeation sites. The H₂S permeance decreased by 15-40% when CO₂ was admitted to the feed gas at an equal partial pressure ([12582-40B2] and Figure 5-10). Similarly, the presence of H₂S in the feed suppress permeation of CO₂. Under comparable experimental conditions, addition of H₂S to the feed decreased the CO₂ permeance by approximately an order of magnitude (Figure 5-11).

H₂S/CO₂ selectivities ranged from 11 to 8. In this regard, PVBTAF membranes are unique and potentially useful for the separation of H₂S from CO₂-containing mixtures. Typical polymer membranes show little selectivity for H₂S over CO₂ with selectivities of 2 or less.

Table 5-4 H₂S Permselective Properties of PVBTAF Membranes at 22°C

membrane	feed <u>P(psig)</u>	H ₂ S <u>P(cmHg)</u>	CO ₂ <u>P(cmHg)</u>	(P _o /l)•1 <u>H₂S</u>	0 ⁶ cc/cm ² <u>CO</u> 2	•s•cmHg <u>CH</u> 4	seleo <u>H2S/CO2</u>	ctivity <u>H₂S/CH</u> 4
12582-40-B1*	2.4 24.1 44.1 58.4 96.6	9.2 20.9 31.6 39.3 59.8	0 0 0 0 0	27.9 17.2 13.2 12.7 9.95	- - - -	nd nd nd nd 0.00388	- - - -	7000 [#] 1290 [#] 990 [#] 950 [#] 2500
12582-40-B2** return to:	2.1 21.5 34.0 52.7 70.4 90.3 110.1 41.7	8.95 19.3 25.9 35.9 45.3 55.9 66.7 30.0	8.67 18.7 25.1 34.8 43.9 54.2 64.4 29.1	16.1 12.4 12.0 10.4 9.60 8.70 8.30 12.4	1.49 1.33 1.41 1.24 1.18 0.953 0.949 1.11	nd nd nd 0.00530 0.00476 0.00436 nd	10.8 9.3 8.5 8.4 8.1 9.1 8.7 11.1	3300# 2600# 2500# 2200# 1920 1730 2100 n.o.

.

* Feed Gas: 10.5% H₂S in CH₄; P/Po=0.3 ** Feed Gas: 10.3% H₂S, 10% CO₂ in CH₄; P/Po=0.3 # no CH₄ was detected. Selectivity based on observed CH₄ permeance at higher pressures

Figure 5-10 H₂S Permeance of a PVBTAF Composite as a Function of H₂S Pressure

12582-40-B

DOE4/F5-10

Figure 5-11 CO₂ Permeance of a PVBTAF Composite as a Function of CO₂ Pressure

2.2 Membrane stability

Membrane stability was investigated by measuring the permselectivity of planar PVBTAF composite membranes as a function of time. The data was collected under one of two set of conditions: (1) helium was used to sweep permeating gases from permeate and (2) no sweep gas was used. The latter represents the harsher condition since the permeate pressure of H₂S was significantly greater than zero. Permeance as a function of time is graphed Figure 5-12. A membrane (13095-1-9) operating with a helium sweep exhibited a 34% decline in H₂S permeance over a 19.5 day period (Table 5-5). Near the end of the run, the H₂S permeance appeared to have leveled off. H₂S/CO₂ selectivities remained constant or increased slightly throughout the run. CH4 was not detected in the permeate but the estimated minimum H₂S/CH₄ selectivities are high - 6500 to 2200. Under harsher conditions, the decline of H₂S permeance with time was more pronounced. For example, a similar membrane (13095-1-3) evaluated without a helium sweep gas and at higher feed partial pressures than above exhibited a 70% H₂S permeance decline over 7 days, at which time a steady state permeance had apparently been reached (Table 5-6).

To evaluate the chemical stability of PVBTAF in the presence of CO₂ and particularly H₂S, samples of solid polymer were exposed to each gas for an extended period and subsequently characterized by NMR. Exposure of solid PVBTAF to CO₂ at 480kPa and 23°C for three weeks resulted in absorption of 0.70 mole CO₂/mole repeat unit. A portion of the sample containing absorbed CO₂ was dissolved in D₂O, resulting in evolution of gas. The ¹H, ¹³C, and ¹⁹F spectra of this sample and of PVBTAF in D₂O were identical (Figure 5-13) implying that PVBTAF is not degraded by CO₂.

An H₂S containing sample was prepared in a similar manner and, after a three week exposure, solid PVBTAF absorbed 2.0 mole H₂S/mole repeat unit at 476 kPa and 23°C. The H₂S-containing sample was brittle and almost insoluble in water and other common solvents (e.g. methanol, acetone, and acetonitrile). The solid was also insoluble in 1M HCl which would appear to eliminate the possibility of an S²⁻ crosslinked structure. Clearly, however, exposure to H₂S caused some chemical change to the polymer.

Solid state NMR spectra of pure PVBTAF and PVBTAF containing absorbed H₂S and CO₂ were obtained (Figure 5-14). The solid state ¹³C NMR spectra of PVBTAF and PVBTAF exposed to CO₂ or H₂S are identical with the exception of the intensity of the methyl

Table 5-5H2S Permselectivity vs. Time for a PVBTAF Composite at 30°C(13095-1-9)

Feed P H ₂ S			A	verage P	o/l	Average α		
<u>(psig)</u>	P(cmHg)	<u>time, min.</u>	<u>H2S</u>	<u>CO2</u>	<u>CH</u> 4	<u>H2S/CO2</u>	<u>H2S/CH4</u>	
30.4 ^a	23.2	5760-6540	38.4	3.71	nd	10.3	6500 ^c	
		10080-11160	35.6	3.46	nd	10.3	6000 ^c	
		14400-15480	34.1	3.22	nd	10.6	5800 ^c	
4.0 ^b	29.0	17280-18360	29.4	2.56	nd	11.5	5000 ^c	
		20640-21720	27.4	2.36	nd	11.6	4600 ^c	
		24480-25560	25.5	2.15	nd	11.8	4300 ^c	
30.6 ^b	70.4	27000-28080	12.9	1.20	nd	10.7	2200 ^c	

c. No CH₄ detected; estimated minimum selectivity based on a calculated maximum CH₄ permeance of 0.0059.

Sweep: helium;

feed: (a)9.9% H_2S, 10.0% CO_2 in CH_4 or (b)30.0% H_2S, 30.0% CO_2 in CH_4;

P/Po=0.3

Table 5-6

H2S Permselectivity vs. Time for a PVBTAF Composite Membrane at 30°C

	Feed P*	run	(Po/l)•10 ⁶ cc/cm ² •s•cmHg			Selectivity	
<u>membrane</u>	<u>(psig)</u>	<u>time (min)</u>	<u>H2S</u>	<u>CO2</u>	<u>CH</u> 4	H2S/CO2	<u>H2S/CH4</u>
13095-1-3 ^b	54.4	960-1440	11.5	2.25	0.0352	5.1 5.0	326 348
		2340-2820 5700-7140	9.51 4.95	1.90 0.817	0.0274 0.0157	6.1	315
		8040-8520 9600-10080	3.55 3.45	0.639 0.564	0.0145 0.0140	5.6 6.1	245 247

*Feed: 27.4% H₂S, 30.0 % CO₂ in CH₄; P/Po=0.4 permeate pressure, 1.0-1.4 psig;
Figure 5-12 Lifetime of a PVBTAF Composite Membrane

13095-1-9 13230-84

 $\frac{Figure 5-13}{^{1}H NMR spectra of D_2O solutions of PVBTAF before (top) and after (bottom) exposure to CO_2.}$

٠.

 $\begin{array}{c} \hline Figure \ 5-13 \ (continued) \\ 13C \ NMR \ spectra \ of \ D_2O \ solutions \ of \ PVBTAF \ before \ (top) \ and \ after \ (bottom) \\ exposure \ to \ CO_2. \end{array}$

 $\frac{Figure 5-13 \text{ (continued)}}{19F \text{ NMR spectra of } D_2 O \text{ solutions of PVBTAF before (top) and after (bottom)}}{exposure to CO_2}.$

resonances. The intensity of the methyl resonances can vary with the number of methyl groups in the sample or with its proximity to neighboring H atoms (i.e. the rigidity of the structure about the methyl group). That no resonances different from those of PVBTAF are observed in the spectrum of PVBTAF containing absorbed H₂S or CO₂ implies that no appreciable cleavage and loss of methyl groups occurs upon exposure to either gas. Hence, based on solid state NMR evidence, the organic portion of PVBTAF is inert with respect to degradation by H₂S or CO₂.

Analysis of the H₂S source gas indicated the presence of numerous components in addition to H₂S including COS, several hydrocarbons, methanol, methylformate, CH₃SH, 2-chloropropane, propane-2-thiol, t-butane thiol, propane thiol, CH₃CCl₃, CH₃SSH, H₂S₂, diisopropylthioether, and S₈. The headspace of the absorption reactor contained H₂S, air and only these same contaminants. This implies that exposure of PVBTAF to H₂S does not result in the formation of volatile components. Additional mass spec data provided no positive evidence for the liberation of HF upon exposure of PVBTAF to H₂S. Although this does not rule out the possibility of HF formation, it is thought to be unlikely.

The above GCMS and NMR data implies that PVBTAF is not reacting with H₂S nonetheless something clearly happens when the polymer is exposed to H₂S. Based on the change in solubility of PVBTAF, the above spectroscopic evidence, and the fact that many of the contaminants found in the source gas are more reactive than H₂S, we believe that an impurity in H₂S reacts to crosslink a relatively small portion of the polymer. Efforts are continuing to understand this phenomenon.

3.0 Discovery of New "High Performance" ATMs

Air Products has discovered a new class of proprietary AT materials. They consist of blends of AT polymers and AT salts. Planar composite membranes of these materials met preliminary CO_2 flux and CO_2/CH_4 selectivity targets. Much to our surprise, these blends were clear, apparently homogeneous (by eye) films and could be cast from aqueous or methanlic solutions. Unexpectedly large amounts of the AT salt could be incorporated into the blend, 0.25 to 4 mol per mol of polymer repeat unit. It is rare that equal molar quantities of a salt can be added to a polymer and that apparently homogeneous films can be obtained. Membranes examined visually after permeation testing generally showed no sign of salt crystallization. Two membranes examined by SEM after permeation testing revealed a largely homogeneous surface with some areas of widely scattered crystals and a few regions of crystal clusters.

Permselective properties of one such ATM blend, EXTM6-4, are listed in Table 5-7 in order of increasing AT salt concentration. It can clearly be seen (Figure 5-15) that incorporation of the AT salt significantly increases the CO₂ permeance while maintaining the exceptional selectivity. CO₂ permeances ranged from 25.7×10^{-6} at low pressure to 13.0×10^{-6} at high pressure. Compared with a PVBTAF at similar feed pressures, these represent a 400 to 600% increase in CO₂ permeance. For three different EXTM6-4 compositions, permeance data was collected as a function of feed pressure and this data is plotted in Figure 5-16. As expected, CO₂ permeances increase with decreasing feed pressure.

In much the same way that ATM blends increased CO₂ permeances with no sacrifice of selectivity, increased acid gas permeances were observed when H₂S-containing feeds were used. Membranes containing 0.5, 1, 2, and 4 mole AT salt per mole of AT polymer repeat unit were evaluated with feeds consisting of H₂S, CO₂, and CH₄ and the results are listed in Table 5-8. For each composition, H₂S permeances decrease with increasing pressure. The blend exhibits a 200-700% higher H₂S flux than does PVBTAF (Figure 5-17).

Table 5-7CO2 Permselective Properties of EXTM6-4 Composites at 23°C

AT salt	feed	CO ₂	(P ₀ /l)•1	0 ⁶ cc/cm ²	-s•cmHg	Selec	tivity
<u>(mol/mol)</u>	<u>P(psig)</u>	P(cmHg)	<u>CO2</u>	<u>H</u> 2	<u>CH</u> 4	<u>CO2/H2</u>	<u>CO₂/CH₄</u>
0.25	2.6*	29.4	8.78	0.0644	nd	136	-
(12836-14-4)	17.8	55.3	6.58	0.0625	nd	105	-
	29.9*	76.0	5.87	0.0646	nd	91	-
	39.8*	92.8	5.30	0.0647	0.00325	82	1630
	77.7*	157.4	3.75	0.0620	0.00325	60	1150
0.5	2.8	27.7	9.94	0.0296	nd	335	-
(12575-93-2)	14.3	45.9	8.46	0.0290	nd	291	-
	25.0	62.9	7.10	0.0273	0.00413	260	1720
	39.7	86.2	5.92	0.0249	0.00337	238	1760
	85.9	159.4	4.30	0.0329	0.00361	131	1191
	107.0	192.9	3.45	0.0350	0.00399	99	866
1.1	5.5	32.0	13.0	0.107	nd	122	-
(12836-3-3)	21.1	56.7	10.8	0.102	nd	106	-
	39.8	86.4	9.18	0.102	0.00864	90	1060
	53.5	108.7	7.57	0.0888	0.00421	85	1800
	81.0	151.7	6.05	0.0831	0.00524	73	1150
return to	37.4	82.6	8.96	0.0934	0.00626	96	1430
2.0							
(12836-22-3)	39.7*	92.7	10.2	0.0973	0.00764	105	1340
4.0	3.2**	30.6	25.7	0.203	0.0438	127	588
(13100-41-2)	15.9**	52.4	24.1	0.228	0.0535	106	450
(10100 11 2)	26.0**	69.7	21.9	0.218	0.0469	100	466
	40.0**	93.8	21.5	0.238	0.0511	90	420
	54.9 ^{**}	119.3	19.1	0.248	0.0425	77	449
	94.6 ^{**}	187.4	13.0	0.299	0.0350	43	370
return to	40.2**	94.1	15.9	0.306	0.0560	52	284
iotani to		v ,					

feed: 30.6% CO₂, 34.4 % CH₄ in H₂ or (x) * 32.9% CO₂, 32.6% CH₄, in H₂ or ** 33.1% CO₂, 33.1% CH₄ in H₂; P/Po=0.3

Figure 5-15 Effect of ATM-AT Salt Blends on CO₂ Permeance

- --

Figure 5-16 CO2 Permeance of EXTM6-4 Composite Membranes as a FunctionAT Salt Concentration (n= mol salt/mol polymer)

Table 5-8 H2S Permselective Properties of EXTM6-4 Membranes at 30°C

	feed	(P ₀ /l)•10 ⁶ d H ₂ S CO ₂ cc/cm ² •s•cmHg Selectivity						
<u>membrane</u>	<u>P(psig)</u>	<u>P(cmHg)</u>	<u>P(cmHg)</u>	<u>H2S</u>	<u>CO2</u>	<u>CH</u> 4	H2S/CO2	-
0.5 (12836-11-3)	19.6 72.3 91.2	17.6 44.5 54.2	17.7 45.0 54.8	7.06 3.50 3.55	1.41 0.767 0.496	nd nd nd	5.0 4.6 7.2	700# 700# 700 [#]
1.0 (12836-3-4)	20.6 46.8 70.9 105.5	18.1 31.5 43.8 61.5	18.3 31.8 44.3 62.1	33.2 25.3 23.2 18.6	6.77 5.14 4.06 3.86	0.0637 0.0550 0.0551 0.0509	4.9 4.9 5.7 4.8	521 460 420 364
2.0 (12836-22-3)	40.7 48.1 39.7 [*]	28.5 32.3 0	28.6 32.5 92.7	4.44 4.17 -	0.513 0.260 10.2	nd nd	8.7 16.1 -	500 ^a 500 ^a -
4.0 (13100-41-2)	1.1 25.7 35.4 50.2	8.1 20.8 25.7 33.3	8.2 20.9 25.9 33.6	91.6 73.6 57.3 42.0	8.91 8.83 8.30 9.03	nd nd nd nd	10.3 8.3 6.9 4.7	- - 4200 ^a
(13100-41-4)	1.6 19.6	8.4 17.6	8.4 17.8	155.0 101.0	17.8 16.0	nd 0.0457	8.7 6.3	nd 222

feed: 9.9% H₂S, 10.0% CO₂ in CH₄ or * 32.9% CO₂, 32.6% CH₄ in H₂ P/Po=0.2 # No CH₄ detected; selectivity based on calculated maximum CH₄ P₀/l of 0.0098

VI. Process Application Development and Technology Benefits -Upgrading Subquality Natural Gas

The objective of this task was to determine the technology benefit that could be derived by applying ATM technology to natural gas processing. This effort comprises the development of a semi-empirical computer model of the gas permeation mechanism and development and evaluation of a process flowsheet.

1.0 Computer Modeling of Active Transport Membranes

The permeation mechanism of ATMs is significantly different from that of conventional (solution-diffusion) polymeric membranes. The mathematical models describing gas permeation through polymeric membranes cannot be applied to AT systems. Like traditional facilitated transport systems, ATM involves coupled chemical reaction and diffusion. However, the current mathematical models of gas transport through facilitated transport systems require detailed knowledge of the chemical complexation products, the kinetics of reaction, and the diffusion coefficients of all chemical species. The fundamental chemistry of ATM has not been developed to the extent necessary to use these models. Therefore, the first element of this task was to develop a semi-empirical computer model of gas permeation in Active Transport membranes. Using laboratory data measured on planar membrane coupons, correlations were derived between the key experimental variables (CO₂ and H₂S partial pressure and gas stream humidity). This model formed the basis for estimating ATM performance, setting preliminary performance targets, calculating the membrane area required for a separation, determining product recovery, and estimating the separation cost. A more rigorous model will eventually have to be developed.

1.1 Model Development

The ATM permeation model assumes reaction equilibria and then correlates permselectivity at various values of P/Po. Details of the model can be found in Appendix A. Briefly, the model is of the form:

$$N = P/\ell \bullet \Delta P \bullet R \bullet F$$

where $N = local CO_2$ flux

 $P/\ell = CO_2$ permeance $\Delta P =$ partial pressure driving force

R =semi-empirical P/Po correlation factor

F = facilitation factor (F>1 for CO₂ and H₂S; F<1 for CH₄)

As indicated earlier, R and F were derived from experimental data. It is important to note that when this model was derived only limited information was available on the P/Po dependence of $\alpha(CO_2/CH_4)$ and, thus, the results described below are tentative and, in this respect, need further verification. The model will be updated early in the next phase of this work.

1.2 Results

The model predicted CO_2 permeance is compared to the experimental data in Figure 6-1. The model adequately represents the experimental data as a function of CO_2 partial pressure in the range 100-400 cmHg and P/Po 0.16-0.45. In Figure 6-2 the predicted CO_2 and CH_4 permeance is compared to experimental values as a function of P/Po for a constant CO_2 partial pressure. Again, the fit is good within the range of experimental data. Additional experimental data outside this range is needed to extend the range of operating variables and increase confidence in using the model as a predictive tool.

Figure 6-1 Experimental and Model Predicted CO₂ Permeance of PVBTAF MLC at 34° C

CO₂ Pressure in Feed (cmHg)

Figure 6-2 Experimental and Model Predicted CO₂ and CH₄ Permeance as a Function of P/Po

P/Po H2O

2.0 ATM Process for Upgrading Natural Gas

2.1 Test Case: Upgrading 6.5% CO₂ in CH₄

The simulation used the model described above. Two additions to the model were necessary:

1) The feed gas to the membrane was saturated with H_2O . The H_2O permeability of the ATM was assumed to be $250 \times 10^{-6} \text{ cm}^3/\text{cm}^2 \cdot \text{s} \cdot \text{cmHg}$ and independent of pressure.

2) The model was expanded to vary the concentration of CO_2 , CH_4 and H_2O in the feed and permeate gas as function of position in the module.

The test case used a natural gas feed containing 6.5% CO₂ at 800-1000 psig at 150 MMSCFD. The goal was to provide at least 20% lower gas processing costs than competing technologies. Additional design specifications were to maintain hydrocarbon losses at less than 1% and power at less than 25 BHP per MMSCFD. The natural gas product specification was 2% CO₂. Module productivity was assumed to be > 0.5 MMSCFD per module.

The process flowsheet is shown in Figure 6-3. After removing condensable components, gas is fed to the ATM at 834 psia. The nonpermeate stream is pipeline quality CH_4 at 822 psia. The membrane permeate is further processed to recover CH_4 . It is recompressed from 17 to 864 psia and fed to a second, much smaller, membrane. Permeating CO_2 is vented and the CH_4 - enriched permeate is recycled.

We have found a number of advantages of the idealized ATM-based process:

• Fewer modules. Figure 6-4 shows that the optimized ATM requires ≈50% fewer modules than conventional membranes.

• Less energy. Figure 6-5 compares the power requirements for the current membrane technology and ATM. An optimized ATM would require about one-half the energy of other membrane systems.

Figure 6-3 Process Flow Diagram: CO₂ Separation from Natural Gas by ATMs

.

Figure 6-4 Number of Modules

115

.

Figure 6-5 Compressor Power

• Lower product loss. The inherently high selectivity of the ATM manifests itself as low CH₄ loss (Figure 6-6). Thus, the ATM system has a high CH₄ recovery.

The gas processing costs of the ATM system are compared to diethanolamine (DEA) as a function of capacity in Figure 6-7. An ATM system would be an attractive option for a wide variety of feed rates. By contrast, the market niche for conventional membranes is generally considered to be less than about 10 MMSCFD³⁹

2.2 Preliminary ATM Targets

Based on computer modeling to date and the above test case, preliminary permeance targets have been set for the ATM. Since ATM performance is a function of several process variables, this target is not a simple P/ℓ , α combination as it would be for a conventional polymeric membrane. The preliminary ATM permeance target is shown as the solid curve in Figure 6-8. Also shown in Figure 6-8 is the laboratory performance of ATM coupons and hollow fiber modules. Currently, neither PVBTAF planar coupons nor hollow fiber modules meet the performance target, however, it is anticipated that further improvements in membrane fabrication (e.g. thinning the ATM layer) will improve their CO₂ permeance. An attractive ATM material option is the recently discovered EXTM6-4. Planar composite coupons of this ATM do meet the preliminary permeance target. It will interesting to see if hollow fiber modules also exhibit this improved performance.

3.0 Recommendations

The results to date demonstrate the effectiveness of an optimized ATM system. It is important to note that certain assumptions were made in this analysis. It will be critical to verify these assumptions in the next segment of this program. Such a program should address:

³⁹R.W. Spillman et.al., "Gas Membrane Process Optimization", presented at the AIChE mtg., New Orleans, LA, March 9, 1988.

Figure 6-6 Hydrocarbon Loss

Figure 6-7

Economics of ATM and DEA Systems for CO₂ Separation from Natural Gas

Figure 6-8 Comparison of Laboratory Properties to Targets

• Experimentally determine the H₂O permeance of the ATM. Since water plays a critical role determining ATM permselectivity, it will be essential to have an experimental value for this parameter. The rate at which the ATM permeates water from the gas stream may have a large effect on the membrane area and, hence, gas processing costs.

• Experimentally determine ATM performance at extremes of P/Po and

incorporate into model. Work to date has focused on ATM performance in the P/Po range 0.2 to 0.6. An ATM module will also have to function outside this range. The current ATM computer model extrapolates into this range from the current dataset. It will therefore be essential to experimentally measure these properties.

• Examine process variable sensitivity to processing costs. A follow-on program should address the impact of gas composition, flowrate and membrane selectivity on the natural gas processing cost. Additionally, that analysis should compare the cost of using conventional amine scrubbing and membrane technology.

VII. Commercial Opportunities

Air Products researchers have identified AT membranes which selectively permeate CO_2 from CH₄ and H₂, H₂S from CH₄ and H₂, and NH₃ from N₂ and H₂. Throughout this program commercial development activities have focused on identifying and evaluating industrial applications for ATM, understanding market needs and forces, and setting ATM performance criteria. The following sections describe potential large-scale commercial opportunities for ATM technology.

1.0 Upgrading Subquality Natural Gas

1.1 Recent Market Trends

Background information on the natural gas industry, including size and competition for gas treating, was detailed in a previous report.²⁹ An update is summarized below.

• US Consumption and domestic production growing. Table 7-1 summarizes US natural gas consumption, domestic production and import data since 1987.⁴⁰ US consumption is expected to increase nearly 4% in 1994 to 21.1 trillion cubic feet (60,285 MMSCFD). This is the highest consumption level since 1974. Domestic production is expected to increase by 2% in 1994 to 18.8 trillion cubic feet (53,715 MMSCFD). Since 1986, domestic production has been growing at about 2.4% each year, or between 1000 and 1500 MMSCFD. Increased domestic production is expected to meet only about one-half of the increase in demand. The balance will be made up by new imports. Canadian imports will account for roughly 11% of US consumption in 1994.

• "Gas Bubble" (in capacity) is over. Figure 7-1 shows US production capacity and utilization rates for the last 8 years. Domestic production capacity surpassed production for this period. The low utilization rate period was commonly termed the

⁴⁰U.S. Chemical Outlook, U.S. Dept. of Energy, Energy Information Administration, 1994.

gas bubble. Recent data estimate utilization rates will near 100%; projected growth in production will require construction of new processing plants.⁴¹

Table 7-1U.S. Natural Gas Consumption and Production(Dry Gas Basis)

	Consur	nption	Production		
<u>Year</u>	Trillion CFY	MMSCFD	Trillion CFY	MMSCFD	
1987	17.21	47,151	16.62	45,534	
1987	18.03	49,397	17.10	46,849	
1989	18.80	51,507	17.31	47,425	
1990	18.72	51,288	17.81	48,795	
1991	19.13	52,411	17.75	48,630	
1992	19.75	54,110	17.78	48,712	
1993*	20.36	55,781	18.41	50,438	
1994**	21.10	57,808	18.78	51,452	

* estimate

** forecast

1.2 Natural Gas Impurities

Natural gas is obtained from three types of wells: 1) oil wells in which natural gas is associated with oil (associated gas), 2) wet gas wells, which are predominantly natural gas but also produce natural gas liquids (NGLs), and 3) "dry" gas wells which contain low concentrations of heavy hydrocarbons (though the gas is still H₂O saturated). Sources 2 and 3 are collectively termed non-associated gas production. In the US, non-associated gas accounts for 80 to 85% of domestic production. Wellhead gas contains various impurities that must be removed before transmission by pipeline including:

⁴¹ SRI, International, Chemical Economics Handbook, CEH Product Review, Natural Gas, June 1993.

Figure 7.1

Source: Reference 43

*H*₂*O*: Wellhead gas is saturated with water. Gas dehydration is necessary to prevent hydrate formation and corrosion in transmission pipelines. The industry standard is 4 - 7 lbs H₂O per MMSCF of natural gas ($\approx 85 - 150$ ppm H₂O). The lower specification is typical for northern pipelines due to lower temperatures.

CO₂: The concentration of CO₂ in transmission pipelines is controlled to prevent corrosion and to maintain a high heat value. The most common CO₂ specification is <3 vol%, however, some pipelines limit CO₂ to less than 2 vol%.

 H_2S : Most pipeline companies specify a maximum concentration of 4 ppm H₂S. There is also a limit on mercaptans and total sulfur content of the treated gas. Gas treating plants at highly contaminated wells employ a method to convert H₂S to elemental sulfur which can then be sold or disposed.

In 1994, the Gas Research Institute $(GRI)^{42}$ estimated gas treating needs for non-associated gas production and reserves using 1988 data (Table 7-2). A large fraction of natural gas (nearly 75% of non-associated 1988 production) required only dehydration. Only 15% of 1988 non-associated gas production needed CO₂ removal. However, by comparing the GRI data for production vs. reserves, it can be seen that the fraction of raw gas needing acid gas removal is expected to increase as the US begins to consume lower quality reserves.

The GRI report did not consider H_2S -containing sources. We met with representatives from GRI to estimate the fraction of gas likely to require H_2S removal. Table 7-3 contains our estimates for the 1988 proven reserves. The data can be summarized as follows:

62% of non-associated gas reserves will require dehydration only.
3% of the gas will require both H₂S treating and dehydration.
10% of the gas will require only CO₂ treating and dehydration.
7% of the gas requires CO₂ and H₂S treating, and dehydration.
18% of the gas is high in N₂ and/or CO₂ and H₂S.

⁴² "Chemical Composition of Discovered and Undiscovered Natural Gas in the Lower-48", Gas Research Institute, 1994.

Table 7.2

	1988 Proven Reserves	1988 Production	Undiscovered and Undeveloped Gas Resource	Discovered / Non-Producing Low Quality Gas Resource
		All number	rs in Trillion SCF -	
High Quality	95.1	10.81	376.9	0
High N2 Only	19.25	1.32	35.2	0
High CO2 Only	24.05	2.18	167.6	1
High N2+High CO2	4.12	0.31	16.6	134
High N2+CO2 Total	1.44	0.09	3.1	0
Totals	144	14.7	599.A	135

US Natural Gas Production and Reserves Data

Definitions:

- 1. High Quality gas contains less than 2%CO2, and less than 4% N2.
- 2. High N2 ONLY gas contains more than 4%N2, and less than 2% CO2.
- 3. High CO2 ONLY gas contains less than 4%N2, and more than 2% CO2.
- 4. High N2 + High CO2 gas contains more than 4%N2, and more than 2% CO2.
- 5. For High N2 + CO2 Total gas, % N2 + % CO2 is more than 4.

NATGASS3.XLS

Table 7.3

	1988	1988	1988 Res	serves	
		Proven	H2S	No H2S	
	Production	Reserves	Treating	Treating	
Gas Type		Total	Needed		
	 All numbers in Trillion SCF 				
High Quality	10.81	95.1	5	90.1	
High N2 Only	1.32	19.25	2.4	16.85	
High CO2 Only	2.18	24.05	9.6	14.45	
High N2+High CO2	0.31	4.12	2.2	1.92	
High N2+CO2 Total	0.09	1.44	0.5	0.94	
Totals	14.7	144	19.7	124.3	

Non-Hydrocarbon Impurities Estimate for US Natural Gas Reserves

NATGASS2.XLS

1.3 Natural gas treatment costs

Figure 7- 2^{43} shows how the price of natural gas increases as it passes from producer to consumer. In 1991, the composite well head price for natural gas was around \$1.59 per MSCF. Today it is \approx \$1.65 per MSCF. Some portion of the price is related to the cost of upgrading raw gas to pipeline specifications. A recent presentation at the 73rd Annual Gas Producers Association Conference,⁴⁴ estimated gas treating costs for commonly used acid gas treating processes. A summary of the total treatment cost (operating + recovered capital) is provided in Table 7-4.

Table 7-4 Natural Gas Treatment Costs at 10 MMSCFD

Impurity	Treatment Process	Treatment Cost in \$/MSCF
H ₂ O	Glycol Dehydration	0.04 (@ >10 MMSCFD) 0.09 (@ <1 MMSCFD)
CO ₂ (2-7%), H ₂ O	Amine Scrubbing (DEA) + glycol dehydration	0.20 (10 MMSCFD)
CO ₂ , (6%) H ₂ S (1%), H ₂ O	Amine Scrubbing + Liquid Oxidation + Glycol Dehydration	0.50 (10 MMSCFD)
CO ₂ (3%), H ₂ S(3%), H ₂ O	Amine Scrubbing + Claus Process + Glycol Dehydration	0.47 (10 MMSCFD)
N ₂	Cryogenic + Glycol Dehydration	0.85 (10 MMSCFD)

Source: reference no. 44

 ⁴³Natural Gas Monthly, U.S. Department of Energy, Energy Information Administration, March 1992,
 in "Chemical Economics Handbook", SRI International, (June 1993.)
 ⁴⁴Tannehill et. al. "Cost of Conditioning your Natural Gas for Market" presented at 73rd Annual GPA

Convention, March 1994.

Figure 7.2

Natural Gas Prices in the United States—1991 (national average price per thousand cubic feet)

Source: Reference 43

1.4 Amenable U.S. Market

The information in Tables 7-2 and 7-3 was used to estimate the amenable U.S. market segments for the CO_2 ATM. Unassociated production was ~15 trillion ft³, while the total active reserves are estimated at 144 trillion ft³. The estimate for the discovered/non-producing low quality resource is comparable to that of the reserves for active wells and the undiscovered/undeveloped resource is estimated to be >4 times that of the current reserves. The portions of low quality gas, as seen, are substantially higher for the latter categories of the resources.

Of the segments identified in the report, two segments are amenable for CO_2 removal technologies: high CO_2 only (>2%), and high CO_2 and high H_2S (>4 ppm). Based on this assumption, the total amenable production and reserve segments (1988) are estimated to be about 2.2 trillion CFY and 24 trillion CF, or 15% and 17% of the total production rate and reserve, respectively. Assuming the ATM technology will capture 5-10% of the amenable production rates, or 0.8-1.7% of the total U.S. production, the market size projected for ATM is 400-800 million CFD/YR. To reiterate, the amenable segment in the discovered/non-producing low quality resource is <u>comparable</u> to the active reserve and the undiscovered/undeveloped resource is about <u>6 times</u> that of the active reserve.

1.5 ATM Product Differentiation and Technology Benefits

The acid gas removal market is highly competitive as shown by the number of major vendors listed in Table 7-5. As shown in Table 7-6, the most commonly used technologies are absorption systems based on chemical or physical solvents. Major characteristics of amine versus general membrane technologies are compared in Table 7-7. Diethanolamine (DEA) and methyl diethanolamine (MDEA) systems have captured greater than 50% of the AGR market. An increase in market share for membranes and adsorption technologies is forecast if expected improvements to current generation products are realized. Indeed, this is projected to be the fastest growing market segment.

Table 7-5
Acid Gas Removal Market Players

Vendor	<u>Technology Type*</u>	Process Name
Shell	AC, AP	Sulfinol, -M, etc.
	AC	ADIP
Union Carbide	AC	AmineGuard
	AC	HS
	AC	Benfield
	AC	PSA
Dow	AC	GasSpec, ST-1, FT-1
Exxon	AC	Flexsorb -SE, PE, HP, PS
BASF	AC	MDEA
	AC	TEA
	AC	Alkazid
	AC	Sepasolv
Lurgi	AP	Rectisol
-	AP	Amisol
Parsons	AP	Purisol
Koch	CR	Ryan-Holmes
Permea	М	Prism
Grace Membrane Systems	М	Grace Membranes
Separex	М	Separex
Delta Engineering	Μ	DELSEP
Peabody Holmes	DC	Stretford
ARI-Technolgies	DC	LO-CAT

* A=Absorption; C=chemical solvent; P=physical solvent; CR=cryogenic; M=membrane PSA=pressure swing adsorption; DC=direct conversion

<u>Technology</u>	Current Market Share	Projected Market Share
DEA (diethanolamine)	29	43
MEA (monoethanolamine)	25	2
Sulfinol (Mixed Solvents)	9	9
DEGA	6	2
(diethyleneglycolamine)		
Potassium Carbonate	4	0
MDEA (methyl diethanolamine)	4	19
Selexol (glycol derivatives)	2	5
Membranes	<1	3
Ryan-Holmes (cryogenic)	<1	2
Other	<u>20</u>	<u>15</u>
TOTAL	100%	100%

Table 7-6 Acid Gas Removal - Dominant Technologies, U.S. 1984-1995

* all existing units ** new units only from "North American Gas Treating Market Study", Purvin and Gertz, Inc., for Air Products and Chemicals, Inc., May 1984.
Table 7-7Technology Comparison of Amine and Membrane Technologies

Amine Technology

Pros: long-term proven technology know-how in engineering contractors H₂S/CO₂ handling*

good economy of scale

low hydrocarbon losses*

Cons: liquid processing/inventory maintenance

waste disposal energy consumption increases as CO_2 in feed increases

Membrane Technology

active since early 1980s easier field operation enhanced flexibility in meeting gas production criteria (flow rate) attractive characteristics for off-shore markets (weight, size, no chemicals, modular design, etc.) short start-up time

limited operating temperatures tolerance to trace contaminants (performance & life)

* These benefits will diminish in the event of a commercialized ATM technology.

There is some disagreement in the literature concerning the exact fit of membrane technology to this market, however, it is generally held that even currently available membrane systems are preferred over amine systems for production capacity of less than $\approx 20-30$ MMSCFD.⁴⁵ In fact, Grace Membrane Systems claims to be competitive up to 60 MMSCFD.⁴⁶ It is also generally true that membrane technology is favored as the CO₂ concentration of the gas increases. As shown in Table 7-6, the market share currently held by membrane technology is <1%; but increasing. Membrane technology is becoming more attractive at remote wells, off-shore platforms, etc. Furthermore, the new U.S. energy initiative emphasizing natural gas will encourage future production of discovered but non-producing subquality wells and undeveloped resources.

Key suppliers of polymeric membranes are Grace, Hoechst Celanese (Separex), and Dow Cynara. Dow has been active in EOR application and markets an "own-and-operate" concept. Their overall activities in this application are⁴⁷ outlined below.

GRACE:

- o spiral-wound technology originally developed by Bend Research
- o active since 1984
- o large research efforts in CO₂ membranes
- o mainly sale-of equipment
- o ~100 small plants
- o unattended at well head & remote areas
- o <1,500 psia

HOECHST CELANESE/SEPAREX:

- o spiral-wound technology
- o active since early 1980s
- o ~20 plants, generally <3.5 mmscfd
- o <1,400 psia

⁴⁵ .K. Changela et. al., "Technical Evaluation of Hybrid Membrane/DEA Modeling", Topical Report, GRI (1990).

⁴⁶R.È. Babcock et. al., "Natural Gas Cleanup: A Comparsion of Membrane and Amine Treatment Processes", presented at the AIChE Spring National Mtg., March 1988.

⁴⁷ Torleiv et. al., "CO₂/HC Membrane Separation: A Mature Technology", presented at the AIChE Spring National Meeting, March 1992.

CYNARA/DOW:

- o hollow fiber technology
- o mainly own-and-operate concept
- o primary focus in EOR (C0₂ flooding)
- o SACROC operation (80 mmscfd) start-up in 1983, 240 membrane elements
- o a few other small plants

Based on our analyses to date, we believe that a successful ATM technology will be significantly differentiated from current membrane technology and will lead to a number of technology benefits:

DIFFERENTIATION:

- o High selectivity with a CO₂ permeance at least comparable to conventional CO₂ membranes
- o Light gas (CH₄, etc.) recovery at high pressure
- o Outstanding performance characteristics in the low partial pressure region

TECHNOLOGY BENEFITS:

- o Higher product recovery
- o Lower energy consumption
- o Simpler process (number of stages) and less equipment
- o Greater market penetration

2.0 CO₂- Selective ATM: Other Opportunities

In addition to the natural gas application, several large volume markets with good growth opportunities have been identified for ATM materials that will selectively permeate CO_2 from synthesis gas or process gas streams in chemical manufacturing plants. Because the applications and treating specifications vary, we have quantified the size of the amenable market by estimating the gas handling volumes.

As discussed above, roughly, 5100 MMSCFD of natural gas is treated for CO_2 removal in the US. This represents about 10% of current US production. Another 3500 MMSCFD of natural gas is treated for CO_2 and H_2S impurities. This portion of the amenable market

requires AT materials that can withstand some exposure to H_2S . This area is an ongoing part of our Active Transport materials development program.

Chemical manufacturing operations treat large volumes of gas to remove CO_2 . They include SYNGAS treating for H₂ and ammonia production; ethylene manufacturing, and selective oxidation processes for ethylene oxide, vinyl acetate monomer, and other chemicals. Since the 1950's, the chemical industry has used selective oxidation routes for key commodity chemicals. Some oxidation processes have evolved from using air to using pure oxygen (> 95% O₂). The oxygen based processes generally remove CO_2 from gases that are recycled to the main reactor. This trend is continuing as evidenced by incorporation of such technology into new processes being developed for maleic anhydride and acrylonitrile. In general, the chemical manufacturing plants require very selective CO_2 removal because they cannot afford to lose high valve feedstocks or products to the permeate.

2.1 Synthesis Gas Treating

Our last interim report provided some background on the use of ATM's for removing CO_2 from synthesis gas in ammonia and hydrogen manufacturing plants. We presented process schemes using hybrid CO_2 removal systems - ATM and MEA combinations for ammonia manufacturing, and ATM-PSA combinations for hydrogen manufacturing.

Ammonia Plants

For ammonia plants, the acid gas treating is for CO_2 removal only. If H₂S is present in the natural gas feed to the plant, it is usually removed by adsorption ahead of the natural gas reformer. The synthesis gas feed to the acid gas removal step contains from 16-19 mole per cent CO₂. It is processed to less than 0.05 mol % CO₂. The tight CO₂ product spec would normally rule out a stand-alone membrane system. The total synthesis gas volumes treated for ammonia manufacturing in the US and the world are 7500 and 30,000 MMSCFD, respectively²⁹. The US volume assumes 100% capacity utilization. The world volume assumes 75% capacity utilization.

As discussed earlier,²⁹ growth in the US ammonia market will occur mainly through retrofits rather than new construction. We concluded from discussion with ammonia producers that the industry is not likely to replace sunk AGR capital with other technologies. In specific

plants, ATMs used ahead of an existing AGR system might be considered for retrofits in connection with capacity increases. At the same time, new inhibitors and additives are being introduced that allow higher MEA concentration solutions be used. This reduces the required solvent recirculation rates (allowing some room for debottlenecking) and the steam needed for solvent regeneration.

Hydrogen Manufacturing

Synthesis gas treating for hydrogen manufacture requires the removal of several impurities - N_2 , CO, CO₂, and H₂O. Roughly 3400 MMSCFD of synthesis gas needs to be treated for hydrogen plants serving refineries and chemical plants in the US. (This figure excludes ammonia, methanol, and acetic acid manufacturing.)

The hybrid ATM-MEA combination, discussed above for ammonia plants, can also be used for older hydrogen or carbon monoxide plants using MEA for CO_2 removal. Newer hydrogen plants have adopted PSA technology for synthesis gas purification. The advantages of PSA are 1) the H₂ product is retained at high pressure; 2) the PSA can remove all impurities in one step. (Older methods required MEA (for CO_2 removal), a drier, and then a cold box for high purity H₂ or CO plants; or a MEA -methanator combination for lower purity hydrogen used in refineries and ammonia plants.)

Air Products is the world's largest producer of merchant hydrogen (more than 25 plants) and produces over 400 MMSCFD of hydrogen. We reviewed ATM integration schemes with PSA or MEA systems for CO₂ removal with our HYCO (hydrogen-carbon monoxide) plant process engineering group. If ATMs were commercially available, they could have limited use for older plants using MEA. Some benefits may be derived from ATM-PSA combinations in new plants. At first pass, the HYCO designers estimate there will not be a downsizing significant of the PSA. PSA size is set more by the N₂ and CO removal requirements, rather than CO₂, however, this application is still under review. A perceived drawback to the ATM system is the potential return to multiple process steps for hydrogen clean-up.

2.2 Chemicals Manufacturing by Selective Oxidation Processes

In addition to synthesis gas treating, CO_2 removal is used in chemicals manufacturing for selective oxidation processes. These include ethylene oxide, vinyl acetate monomer, vinyl chloride monomer, and new routes being developed for acrylonitrile and maleic anhydride.

Most of the oxidation processes requiring CO_2 removal use pure O_2 instead of air. They recycle a large volume of gas around a reactor loop to help with reactor temperature control and to avoid flammable conditions since oxygen is being reacted with a hydrocarbon feed. CO_2 is produced in the reactor through nonselective, by-product reactions and must be removed from the recycle gas, usually to optimize catalyst performance. Grouped together, the gases treated for CO_2 removal in the selective oxidation plants represent a large market, comparable to the natural gas treated for CO_2 removal in the US.

Generally, these processes require very selective removal of CO_2 to avoid costly losses of chemical feedstock, e.g., ethylene. The standard technology for the industry is the Benfield process because of its high selectivity and its ability to process gas streams that contain oxygen. Most amine based absorption systems and physical solvents can not be used. Polymer membranes have not been used to remove CO_2 in any of these applications because of their poor selectivity, but they have been used in some plants for purge gas treating.

We met with Scientific Design, a leading licensor for ethylene oxide technology. They expressed interest in an all membrane process to replace the Benfield process in their ethylene oxide plants (Figure 7-4). They stressed high selectivity would be required. Table 7-8 lists typical stream compositions for a CO₂ removal unit in an ethylene oxide plant. The flows are for a 300 MM pound per year plant. Complete CO₂ removal is not required (treated gas CO₂ specification is $\approx 1 \mod \%$). Also, the recycle gas does not need to be dehydrated, as in natural gas treating. On first pass the ethylene oxide process conditions are well suited for an ATM. In addition, because it is an attended plant, humidity control schemes, if required, would be more readily accepted.

3.0 Ammonia-Selective ATM Materials

Marketing activities for ammonia applications were completed in 1992. The details are documented in the latest interim report, "Development of Active Transport Membrane Devices - Interim Report" (issued January 1993). The highlights are presented here.

Table 7-8

Ethylene Oxide Plant - CO2 Removal Service

Component	NWT	CO2 Removal.		Gas Cas
		% Iom		mol %
Ethylene	28	20.50		20.89
Oxygen	32	3.54		3.60
Carbon Dioxide	4	3,94	(a)	0.78
Argon	39.95	9.72		9.91
Methane	16	59.95		61.34
Ethane	30	2.10		2.14
Ethylene Oxide	4	20 - 100 ppm	(q)	20 - 100 ppm
Acetalhyde	44	0.00	•	0.00
Formaldehyde	30	0.00		0.00
Water	18	0.27		1.34
Ethylene Dichloride	66	2- 3 ppm	(9	2- 3 ppm
Potassium Carbonate	138	0.00		0.00
TOTAL		100.00		100.00
GAS TREATED, MMSCFD		140	(0)	
Notes:				

a) Calculated from SRI report. SRI confirms range is from 4 to 7 mole% CO2.
b) Provided by Scientific Design.
c) Gas treated for a 300 MM lb/yr EO Plant (136.1 M MTPA)

nameplate capacity expressed in MM lb/yr, or equal to nameplate Rule of thumb : Gas treated (expressed in MM 8CFD) equals about half of EO plant capacity, expressed in M MTPA.

EOCO2L.XLS

Figure 7-3 Generic Ethylene Oxide Process

3.1 Technology Status

Air Products researchers fabricated and tested multi-layer composite membranes for NH₃ removal from mixtures of NH₃, H₂ and N₂. These materials exhibited high NH₃ permeance and selectivity over N₂ and H₂. The membranes were stable at pressures up to 1000 psi. The permselectivity at these pressures, while less than at low pressure, was acceptable. Process simulations were completed for several membrane applications in an ammonia synthesis plant. (This analysis assumed that commercial modules could achieve the high permselectivity of laboratory membranes and that concentration polarization effects were not dominant.) The results were encouraging and showed

- Ammonia selective ATMs could be used to increase product recovery and debottleneck existing plant capacity by 25% without major revamps to the refrigeration system.
- For new plants, ammonia selective ATMs could be used with much smaller refrigeration equipment and yield substantial capital and operating savings.
- Ammonia selective ATMs could be used to recover NH₃ product from an existing plant purge gas by sweeping with a low pressure slipstream of syngas. This would compete with water wash systems used in today's operations.

3.2 Marketing

Macro world market conditions were assessed and discussions were held with four major ammonia producers (The producers we contacted account for almost 36% of US production). The findings are summarized below.

World Market Conditions

The world ammonia industry is undergoing a period of restructuring that began in the early 1980's. The industry is recovering from a period of stagnant growth, overcapacity, and relocation of major production facilities to less developed regions with low natural gas feedstock costs. The interim report referenced earlier presents details for ammonia production and consumption by geographic area. The data

includes 1990 actuals and projections for 1995. New plant capacity is anticipated for less developed regions - SW Asia, Africa, South America, and the Middle East.

US Industry

Between 1980 and 1990, US ammonia consumption remained essentially flat, between 14,000 and 15,000 Metric Tons per year. Imports grew 52% and domestic production fell 13%. 34 plants were shutdown. Retrofits for better efficiency and some debottlenecking capacity projects are the only on-going activities. No new capacity is forecast for 1995. Imports are forecast to increase.

3.3 Contacts with Ammonia Producers

Air Products reviewed the potential membrane applications for ammonia manufacturing with four US producers. Most of the producers also manufacture urea; and they discussed membrane uses for both chemical processes.

We presented two process schemes using ATMs for ammonia recovery from the converter effluent gas. One used ATMs to recover bulk NH₃. (This would displace existing equipment.) The second scheme used ATMs before or after the deep level refrigeration stage (last stage) to get higher product recovery. This process would reduce the ammonia content of the gas recycled to the ammonia converter section, and increase conversion per pass.

The producers put a low priority on the bulk removal scheme; however, they thought the second scheme would be useful for their debottlenecking and efficiency improvement programs if we could attain the membrane performance assumed for the process simulation work.

Ammonia recovery from the plant purge gas was also considered. Most existing plants use membranes for H_2 recovery and a water wash operation for ammonia. Producers were interested in an all membrane purge gas treating system. However, it is unlikely that producers would replace existing water wash units with ATM's because operating savings may not be large enough to justify replacement of existing capital.

3.4 Competition

There are no competing membrane technologies for NH_3 removal from N_2 or H_2 containing gases. ATM's would however need to out perform conventional ammonia separation technologies including refrigeration and water wash systems. New catalysts for NH_3 converters that enhance conversion per pass would also compete with the debottlenecking process schemes developed.

4.0 Conclusions

Phase 1 commercial development activities have focused on identifying and evaluating potential ATM applications, understanding market needs and forces, and in setting performance criteria for new gas separation technologies based on active transport membranes.

- Several large volume markets with good growth have identified for AT materials that selectively remove CO₂ from natural gas or process gases in chemical manufacturing plants.
- CO₂ removal from natural gas has been selected as the first target application. Between 15 and 20% of US production and proven gas reserves require treatment to reduce the concentration of CO₂ or CO₂ and H₂S to pipeline specifications. U.S. production is growing at ≈4% per year and capacity utilization rates are high; forecasted growth will require construction of new plants. An H₂S tolerant membrane will be required to capture portions of the market.
- CO₂ removal from natural gas is a highly competitive market. Membrane technology is gaining acceptance, and is now competing with solvent based absorption technologies in small capacity installations. AT materials will need to outperform existing membranes.
- CO₂ removal from process gases in chemical plants represents a potential market as large as natural gas treating (on a volume of gas treating basis). Specific applications include synthesis gas treating for ammonia, hydrogen, and carbon monoxide manufacturing, and CO₂ removal from process gases in chemical plants using oxygen based selective oxidation technologies (e.g. ethylene oxide).

- CO₂ removal services in selective oxidation plants represent an attractive potential market for CO₂ AT materials. Treated gas volumes and projected growth are good, and the service requires very selective CO₂ removal. The competition is limited down to Benfield systems, since the processed gases contained oxygen. On first pass, these applications appear well suited for AT membranes. The treated gas can contain water and some residual CO₂. The operations are attended, so humidity control systems, if required for AT membranes, would be more readily accepted.
- Ammonia manufacturing offers limited market opportunities for new ammonia selective AT materials (especially in the U.S.). Membrane performance targets were established.

We have assigned a low priority to the ammonia selective AT materials, and stopped R&D efforts in order to pursue better opportunities for CO_2 selective membranes in natural gas applications.

VIII. Technology Development Status and Overall Recommendations

ATM developmental efforts have thus far focused on identifying ATM and substrate materials, spinning support fiber, and fabricating and evaluating thin film composite hollow fiber lab modules for the natural gas application. Other work focused on developing a computer model of the permeation mechanism in ATMs.

A number of ATM materials have been identified as candidates for the CO_2 separating layer. These materials are based on polyelectrolytes and have been tested in flatsheet or hollow fiber forms. In general, they exhibited a high selectivity (>>100) but a relatively low permeance rate (<30 X 10⁻⁶ scc/cm²•sec•cm-Hg). EXTM6-4 is the leading candidate ATM material. The CO₂ flux of planar EXTM6-4 composite membranes meets the preliminary flux target. Since the economics (and competitiveness) of the ATM system in large natural gas applications are determined mainly by membrane investment (area / permeance), it would be highly desirable to maximize the CO₂ flux.

In addition to the attractiveness of obtaining an optimized permeance, it is also highly desirable to minimize the impact of H_2O vapor on polyelectrolyte ATMs. If the permeance rate of H_2O is very high, the H_2O level in the latter half of the ATM module may become very low and consequently the ATM performance and stability may become issues.

The best support material is PAI, which shows a high tolerance to hydrocarbon solvents and is processable into a microporous hollow fiber substrate. However, the ultimate compatibility and coatability of this support material to the ATM remain to be determined.

Future efforts in ATM should address following development issues:

- Maximizing the CO₂ permeance
- Maintaining high α(CO₂/CH₄), α(H₂S/CO₂) and α(CO₂/H₂) over the range of process conditions
- Establishing the relationship of CO₂ permeance and selectivity to ATM thickness

- Verifying reproducibility and reversibility of the CO₂ permeance versus CO₂ partial pressure and relative humidity
- Further investigate the effect of temperature on performance
- Measuring the H₂O permeance and assessing the impact of feed H₂O level on ATM performance
- Assess the impact of sulfur impurities on process economics and seek material modifications if required
- Extending lifetime and stability studies to real process streams

As these issues are addressed, two key objectives must be accomplished:

- 1) Achieve the flatsheet EXTM6-4 permeation characteristics (selectivity and intrinsic CO₂ permeability) in a thin hollow fiber membrane form using a substrate material that meets our selection criteria (hydrocarbon tolerance, etc.) such as PAI.
- Develop a ATM-based thin film composite membrane and its continuous fabrication technologies that require minimal modifications to Air Products' commercial fabrication facilities.

Finally, in addition to developing the ATM technology, one should continue to monitor and assess new conventional polymeric membranes being developed and determine if any of these new polymeric membranes may offer an attractive interim product or overall superior system.

Appendix A - Derivation of ATM Computer Model

A semi-empirical model is proposed for estimating the acid gas flux through active-transport membranes. The flux equation is similar to standard facilitated transport expressions with the exception that the effective permeance is corrected for relative humidity and, if applicable, for carrier facilitation:

$$N_{i} = P/\ell_{i} \bullet (p_{if} - p_{iL}) \bullet R_{i} \bullet F_{i}$$
(1)

where, $N_i = flux of component i$

 p_{if} = partial pressure of component i on feed side

 p_{iL} = partial pressure of component i on permeate side

 P/ℓ_i = permeance of component i as dissolved free gas at reference humidity \Re^*

 R_i = relative humidity correction factor for permeance of component i:

$$R_{i} = 1 + \frac{\delta_{i} (\Re_{f} - \Re^{*})}{\Pi_{i^{*}}}$$
(2)

 δ_i = change in permeance of component i per unit change in humidity

 \Re_{f} = relative humidity of vapor on feed side

 \Re^* = reference relative humidity

 F_i = facilitation factor, which is unity for non-reactive components

For an acid gas, the facilitation factor is given by the following expression, which is based on the assumption of reaction equilibrium throughout the membrane.

$$F_{i} = 1 + \frac{\alpha_{i} \beta_{i}}{\Pi_{i}^{*}} \left\{ \frac{\frac{p_{if}}{(p_{if} - p_{iL})}}{1 + \beta_{i} p_{if} + \beta_{j} p_{jf}} - \frac{\frac{p_{iL}}{(p_{if} - p_{iL})}}{1 + \beta_{i} p_{iL} + \beta_{j} p_{jL}} \right\}$$
(3)

- where, α_i = product of diffusivity of carrier-solute complex and total carrier concentration divided by the effective thickness of the membrane. This parameter is factor a_4 if the solute is CO₂ or factor a_6 if the solute is H₂S. They are determined by curve-fitting performance data as discussed below.
 - β_i = product of equilibrium constant of carrier-solute reaction and Henry's Law solubility constant for the solute; factor a_1 or a_2 . These parameters are also based on curve-fitting performance data.

The subscript 'j' refers to the second acid gas if present.

The following reactions are assumed to occur within the polyelectrolyte membrane:

$$H_2O + 2F^- \leftrightarrow HF_2^- + OH^-$$
(R1)

$$\text{CO}_2 + \text{OH}^- \leftrightarrow \text{HCO}_3^-$$
 (R2)

$$H_2S + OH^- \leftrightarrow HS^- + H_2O^{\uparrow}$$
(R3)

For simplicity, we will use the following symbols to denote the various species:

$A = CO_2$	$E = H_2S$	$F = F^{-}$
B = OH-	$S = HS^{-}$	$G = HF_2^-$

$$AB = HCO_3^- \qquad W = H_2O$$

At equilibrium, the flux of any volatile component through the membrane is simply[#]:

$$N_{j} = \frac{1}{L} \sum_{i=1}^{M} v_{ij} D_{i} (C_{i0} - C_{iL})$$
(4)

[#] J.S. Schultz et.al., "Facilitated Transport via Carrier Mediated Diffusion in Membranes," *AIChE Journal* 20 (1974).

where, $N_j = flux$ of volatile species j through membrane of thickness L

- D_i = diffusion coefficient of species i
- v_{ij} = number of molecules of species j contained in species i
- C_{i0} = concentration of species i in membrane at feed interface

 C_{iL} = concentration of species i in membrane at permeate interface

M = total number of species

We are assuming that mass transfer resistance between the bulk gas and the membrane interface is negligible and the PDMS coating and microporous support contribute no mass transfer resistance.

Thus for carbon dioxide,

$$N_{A} = \frac{D_{A}(C_{A0} - C_{AL})}{L} + \frac{D_{AB}(C_{AB0} - C_{ABL})}{L}$$
(5)

Likewise for hydrogen sulfide,

$$N_{E} = \frac{D_{E}(C_{Eo} - C_{EL})}{L} + \frac{D_{S}(C_{So} - C_{SL})}{L}$$
(6)

Assuming that the solubility of the dissolved acid gases can be described adequately by Henry's Law, we have

 $C_{A} = H_{A}p_{A} \tag{8}$

$$C_{\rm E} = H_{\rm E} p_{\rm E} \tag{9}$$

where, $p_i = partial pressure of species i$

 H_i = Henry constant for species i, assumed to be a function of temperature only

The concentrations of the non-volatile species are derived from the reaction equilibrium relationships:

.

$$K_1 = \frac{C_B C_G}{C_W C_F^2}$$
(10)

$$K_2 = \frac{C_{AB}}{C_A C_B}$$
(11)

and
$$K_3 = \frac{C_S}{C_E C_B}$$
 (12)

where, K_i = equilibrium constant for reaction **i**, which is assumed to be a function of temperature only.

For HCO_3^- we have,

$$C_{AB} = K_2 C_A C_B = \frac{K_2 C_A C_T}{1 + K_2 C_A + K_3 C_E}$$
(13)

where, C_T = total concentration of carrier, the hydroxyl ion, given by

$$C_{\rm T} = C_{\rm B} + C_{\rm AB} + C_{\rm S} = C_{\rm B} \left(1 + K_2 C_{\rm A} + K_3 C_{\rm E}\right)$$
(14)

Since the fluoride loading is fixed, then C_T is fixed if the water loading is also fixed. Thus most experiments can be analyzed without the need to incorporate the total fluoride concentration, given by

$$C_{TF} = 2C_G + C_F$$

which is a true system invariant.

Likewise for HS⁻ we have

.

$$C_{S} = \frac{K_{3}C_{E}C_{T}}{1 + K_{2}C_{A} + K_{3}C_{E}}$$
(15)

$$N_{A} = \frac{D_{A}H_{A}(p_{Ao} - p_{AL})}{L} + \frac{D_{AB}C_{T}K_{2}H_{A}}{L} \left\{ \frac{p_{Ao}}{1 + K_{2}H_{A}p_{Ao} + K_{3}H_{E}p_{Eo}} - \frac{p_{AL}}{1 + K_{2}H_{A}p_{AL} + K_{3}H_{E}p_{EL}} \right\}$$

(16)

$$N_{E} = \frac{D_{E}H_{E}(p_{Eo} - p_{EL})}{L} + \frac{D_{S}C_{T}K_{3}H_{E}}{L} \left\{ \frac{p_{Eo}}{1 + K_{2}H_{A}p_{AL} + K_{3}H_{E}p_{EL}} - \frac{p_{EL}}{1 + K_{2}H_{A}p_{AL} + K_{3}H_{E}p_{EL}} \right\}$$

(17)

With a sweep stream, the permeate pressures become negligible,

.....

$$N_{A} = \left\{ D_{A} + \frac{D_{AB}C_{T}K_{2}}{1 + K_{2}H_{A}p_{Ao} + K_{3}H_{E}p_{Eo}} \right\} \frac{H_{A}p_{Ao}}{L}$$
(18)

$$N_{E} = \left\{ D_{E} + \frac{D_{S}C_{T}K_{3}}{1 + K_{2}H_{A}p_{Ao} + K_{3}H_{E}p_{Eo}} \right\} \frac{H_{E}p_{Eo}}{L}$$
(20)

In terms of permeance

CO ₂ Partial Press (cmHg)	CO ₂ Permeance scc/(cm ² -s-cmHg)	H ₂ S Partial Press (cmHg)	H ₂ S Permeance scc/(cm ² -s-cmHg)
4.2	0.140	4.2	0.98
5.3	0.11	5.4	0.84
9.5	0.10	9.6	0.76
13.6	0.09	13.8	0.64
17.7	0.08	17.9	0.59
21.2	0.06	21.5	0.49
29.1	0.05	29.5	0.36
34.5	0.04	36.1	0.33
46.9	0.06	49.2	0.39
54.5	0.05	57.1	0.33
29.82	0.183		
48.74	0.155		
66.58	0.145		
99.05	0.12		
146.74	0.087		

Table A-1

Values obtained for the six parameters were:

Value of Parameter - a(i)	
0.0166308	
0.245230	
0.0289735	
13.6300	
0.218506	
6.80230	

The sum-square relative error was 0.3334. The overall quality of the curve-fits is quite good as may be seen in Figures A-1 and A-2.

For this example, the selectivity of H_2S over CO_2 is shown in Figure A-3. The amount of scatter in the data is typical. In Figure A-4, the predicted facilitation factors are presented as functions of the feed partial pressures for an equimolar mixture of H_2S and CO_2 . As expected, the best enhancement in mass transfer occurs at the lowest compositions.

The effect of relative humidity on the permeance of CO_2 for the same membrane was also investigated. In this series of tests, the objective was to measure the permeance of water so a dry sweep gas was used. Thus the CO_2 permeances are not directly comparable to those

above where the sweep gas was humidified. Nonetheless, the CO_2 permeance is a linear function of the relative humidity as shown in Figure A-5.

Data for a PDMS/PVBTAF membrane also indicated that the permeance of CO_2 is linearly dependent upon the relative humidity.

Table A-2

The data were fit to the following function:

CO ₂ Partial Press	CO ₂ Permeance	Relative Humidity
(cmHg)	scc/(cm ² -s-cmHg)	
111.0	0.229	0.163
106.0	0.291	0.163
200.0	0.179	0.163
279.0	0.111	0.163
350.0	0.085	0.163
111.0	0.378	0.231
201.0	0.235	0.231
272.0	0.185	0.231
350.0	0.158	0.231
348.0	0.291	0.321
111.0	0.785	0.440
202.0	0.587	0.440
272.0	0.520	0.440
344.0	0.499	0.440

$$P / \ell_{CO_2} = \left[a_3 + a_4 \left(\Re_f - \Re^* \right) \right] \left\{ 1 + \frac{a_2}{a_3 p_{CO_2}} \right\}$$
(23)

Note that the term in brackets is the facilitation factor when the term $a_{1}p_{CO_2} >> 1$, which is true in this case. In order to accurately determine a_1 , data at lower partial pressures of CO₂ are required.

Using a reference humidity of 0.163, values obtained for the 3 parameters were:

 $a_2 = 20.99$ $a_3 = 0.03838$ $a_4 = 0.4165$

and the sum-square relative error was 0.2053. As shown in Figure A-6, the data correlate fairly well, with the worst deviation between data and model occurring at the highest relative humidity tested.

....

Figure A-1

155

Figure A-2

Figure A-3

Figure A-4

Figure A-5

Figure A-6