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points. After these points are identified, the DGHT algorithm is applied.

4.3.1. The dynamic generalized Hough transform algorithm

The Hough transform decomposes a boundary into its constituent shape primitives. In
principle, for any analytically given curve, the DGHT can be used to compute all of the
parameters associated with the curve (Leavers 1992). In the present case, we will apply the
DGHT algorithm for detection of the ellipsoidal shape, since it was already assumed that the
bubble would have an ellipsoidal shape according to the values of the parameters Re, Eo and M.

In this analysis, the equation for an ellipse is written as (Leavers 1992)

 +y* — Al ~ y2)=2Bxy~ Cx-Dy—-E=0. [12]
Randomly choosing five of the connectivity points, one can solve for A, B, C, D, and E, by
utilizing, for example, Gauss elimination with back propagation. The ellipse parameters are

estimated after each iteration. The five parameters A, B, C, D, and E, are related to the ellipse

parameters through

= larctan (E) [13]
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b=aqae [18]

where @is the rotation angle of the ellipse from the horizontal axis; e is the eccentricity (the ratio
of the semiminor to semimajor axis); xo and yo are the center coordinates of the ellipse; a is the
semiaxis in the X-direction; and 4 is the semiaxis in the Y-direction.

Although effective stopping criteria to end the calculation cycle for the DGHT algorithm is
known, here it was simply iterated for a number of times. For the case of images from the PIV
cameras, 150000 iterations were performed, while 10000 iterations were performed for the
images from the shadow camera. These numbers for the iteration process were chosen by
considering the average number of the connectivity points available, as well as the quality of
such points. It should be mentioned that between 30 and 50% of the iterations for the PIV images
did not yield values that satisfied the ellipse equation [12]. The shadow images successfully
satisfied equation [12] about 90% of the iterations. For each parameter, the value with the

highest frequency corresponds to the value that best satisfies the ellipse equation.

4.3.2. Accuracy of the reconstruction

After the iteration process finishes, the computed parameters of the ellipse can be used to
draw the ellipse that best fits the connectivity points employed in the DGHT algorithm. Figures
10e and 11e show the ellipse that best satisfied the connectivity points given in figures 10d and
11d, respectively. Once the ellipse parameters are known, one can visually overlay the
reconstructed ellipse over the original image for a fast comparison of the reconstruction process
accuracy. Figures 10f and 11f present an overlay of the reconstructed ellipse and the original
images 9a and 9b. The results are very encouraging; the agreement between the reconstructed
ellipse and the original image is very good even for the PIV image. These images demonstrated
the capabilities of the DGHT to be used in the study of bubbly flow images.

Histograms can be constructed for each parameter. The width of the histogram is related to
the standard deviation, so it is a direct measurement of the uncertainty associated with the
determined parameter. A well-defined, isolated peak indicates that the parameter has a good
statistical value. When the distribution (the histogram) shows multiple or wide peaks, the
quantity or quality of the connectivity points is insufficient or bad. Histograms of 6, x, and a are
showed in figures 12 and 13, for the PIV and shadow images analyzed here, respectively.

Clearly, the shadow image produced narrow and sharp peaks for x, and a; while these
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figure 9a, computed through the DGHT. a) Rotation angle; b) center of the ellipse on the

x-direction; and c) value of the semiaxis on the x-direction.
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parameters from the PIV image show wider and bimodal peaks, as a consequence of the quality

of the connectivity points used. For the PIV image, it should be mentioned that in the Y-direction
the parameters produced well-defined peaks, because more information was available in the
direction.

With respect to the rotation angle, both images yielded small and wide peaks. This, however,
is not a failure of the DGHT, but a consequence of the very close values of the semiaxes. In
other words, when a and b are close to each other, the ellipse becomes closer to a circle, and
therefore the rotation angle becomes more undefined.

The DGHT algorithm offers some advantages over other reconstruction techniques. It yields
all five parameters associated with the bubble, so dimensions, shape and travel path can be
determined. Other techniques, simply interpolate, and sometimes extrapolate, between the
boundary points available for the reconstruction. Although this can give a closer match to the
real shape of the bubble, the dimensions and 3D movement will have to be determined by other
means. Memory storage and computation time in the DGHT algorithm are low. When occlusion
of objects exists the DGHT algorithm has also been proven to get good results. The primary
disadvantage of this scheme is the need for an a priori analytical expression for the curve to be
detected. Thus, for a very distorted bubble, the best that the DGHT algorithm can achieve is the

approximation of the actual shape to a given curve.

4.4. Three-dimensional bubble shape reconstruction

Once the parameters of the ellipse are known for both the PIV and the shadow images, it is
necessary to compute these parameters in world coordinates. Observe that the world coordinates
can be easily calculated in this case, because the PIV center and the shadow cameras are parallel
to the XZ and YZ planes, respectively, as demonstrated in Chapter II. The process is very similar
process to that of the 3D reconstruction of the position of the tracer particles, shown in Chapter
III. The calibration curves for calculating world coordinates from image coordinates are shown
in figure 14.

After combining the parameters of ellipses from each view, a 3D reconstruction was
achieved. The parameters of this bubble were the following. The centroid of the bubble was
located at X = -0.16 mm, Yo = -1.99 mm, and Zy = 3.86 mm. The values of the semiaxes were:
on the X-direction, @ = 1.24 mm; on the Y-direction, b = 1.46 mm; and on the Z-direction, ¢ =

1.39 mm. The rotation angles about the Y and the X axes were &= -4 and § =235 degrees,



5
4 R y = -0.0252x + 7.7149
\ R = 0.9996

-~ 3
: N
— 2
R \
o
z \
Q
® 0
£ \
k-]
5 -1
3 \
> 2

5 \\

-4 . T T r

0 100 200 300 400 500
x-coordinate on image [pixel]
(@

12

10 y =-0.0257x + 12.311
—_ R? = 0.9999
g
5 8 \\
5
H
) 6
3]
£
i \
o 4
<]
Q
N \

2
0 T T T T
0 100 200 300 400 500

y-coordinate on image [pixel]

(b)

46

Figure 14. Calibration curves for computing world coordinates from image
coordinates. a) Variation of y against u on images from the Shadow camera;
and b) variation of z against v for images from both the Shadow and the

Center cameras.
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respectively. These angles are measured positive from the z-axis, and are positive counter-
clockwise. The spherical-equivalent radius of the bubble was 1.36 mm. The scale factors used
for the calculations were 38.8 pixel/mm, 39.7 pixel/mm, and 39.5 pixel/mm on the X-, Y-, and
Z-directions, respectively.

Figures 15 presents three different views of the 3D reconstructed bubble. Experimental data
for air bubbles rising in stagnant water indicate that for a bubble with a spherical-equivalent
radius of the computed dimensions, the shape of the bubble should be very close to an sphere.
Observe that the bubble reconstructed here is very close to a spheroid.

Finally, the error associated with the reconstruction algorithm presented was always less
than 3 pixel (0.08 mm). This maximum error is obviously for the PIV image, on the X-direction.
For the localization of the centroid the error is smaller, but it will be considered as 3 pixel in the

error analysis calculations.
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CHAPTER V
FLOW AROUND A RISING BUBBLE AND WITHIN ITS WAKE

The previous chapters have dealt with the development of a methodology capable of providing
transient, three-dimensional information about the flow field generated by a freely rising bubble
in a liquid. Such methodology is based on the measurement capabilities of the PIV technique.
Furthermore, with the aid of the SPIV technique, an accurate quantitative and qualitative
description of the bubble shape fluctuation, orientation, and trajectory can be obtained. In this
chapter, the experimental results concerning the flow field upstream and downstream of an
ellipsoidal air bubble rising in stagnant water, in a small-diameter pipe are presented and
discussed. The wall influence on the development and behavior of the liquid flow is particularly
addressed. The information obtained from the SPIV measurements is presented in the next
chapter.

This chapter first presents an analysis of the uncertainties associated to the PIV
measurements, and then the error propagation in the calculations of average and fluctuating
quantities, vorticity, and kinetic energy. Then a brief theoretical background of the flow around

bubbles is presented. Finally, the experimental data is presented and discussed.

5.1. Uncertainty analysis of PIV measurements and error propagation

Flow visualization techniques cannot resolve the whole time and length scales due to camera
resolution and limited frame rate. In our measurements, limits on the minimum and maximum
range of the 2D tracks were set after analyzing many of the acquired pictures. It was found that 4
pixels < u < 25 pixels (38.80 pixels/mm), and 4 pixels < v < 40 pixels (19.56 pixels/mm) were the
optimum values for the 2D tracking of the velocity vectors. In terms of the velocity units, the
ranges are 6.19 mm/s < V, < 38.66 mny/s, and 12.27 mm/s < V,, < 122.72 mm/s.

The uncertainty in the velocity measurements is a direct consequence of a combination of
errors from three main sources. These are the localization of the centroid of the seed particle
images and their displacements in the 2D images, the determination of the 3D position of the seed
particles, and the uncertainty of how well the tracer particles follow the actual fluid motion. These

uncertainties are considered in detail next.
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5.1.1. The Stokes number

Estimation of how closely the seed particles follow the flow, or how fast the seed particles
respond to the flow changes, can be calculated utilizing the particle Stokes number. This
parameter can be calculated as the ratio of the relaxation time of the seed particle to the

characteristic time of the flow. The particle relaxation time, 7, also known as the momentum or
velocity response time, is the time needed by a seed particle to reach ¢! U, if the particle was

initially at rest. Here U is the fluid velocity. The time 7, can be computed from

Q2p,+ps)d,
Tp= ,

19
Ty [19]

where p is the density, d the seed tracer diameter, x the viscosity, and the subscript p refers to
particle properties, and f to the fluid properties. In this experiment, the relaxation time of the
seed was calculated to be 140 ps. The fluid time scale, 7 is the time needed by the fluid to be

advected a characteristic length L, that is,
L
Tp=—. [20]

For the characteristic time of the flow, an equivalent diameter of the bubble of 3 mm was used as

the characteristic length, and the maximum measurable liquid velocity. The resultant time was 24

ms. Then, the Stokes number, Tp/7Ts , was calculated to be 5.72x1073 . Therefore the 40 Lm

seed particles closely followed the fluid motion changes, and therefore did not significantly

contribute to the total error.

5.1.2. Accuracy of two-dimensional localization of particle centroid

Adrian (1986) determined the error associated in localizing the 2D particle-image centroids,
and their displacements between two or more consecutive frames. For the continuous laser
employed in this experiment, the uncertainty in the time interval comes from the laser pulse

width, (250 ps), so it had a negligible effect on the total error of the velocity measurements. The

error in locating the centroid displacements depends on the optical parameters of the camera,
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lenses, and laser, and the algorithm for finding the particle-image centroid. The FINDSPOTS
computer program (Blanchat 1992) used has a subpixel accuracy of about 95%, and the
magnification of the system used in the experiment allowed for even better accuracy. The error in

determining the centroid displacement was less than 1% of the total error.

5.1.3. Uncertainty of three-dimensional particle position and instantaneous velocity

The main error source in the velocity measurements was the calculation of the three world
coordinates of the seed particles. For this type of error, the calibration is the main source, since it
was done by using a least squares method, as explained in Chapter II. To calculate the error
associated with each world coordinate, [11] was used to compute the 3D positions of all the
calibration points. Then, the computed values were compared against the known positions of the
calibration points. The root mean square (r.m.s.) error in each direction Ox Oy, and oy,
respectively, was 26.4 um in the X-direction; 96.1 pm in the Y-direction; and 23.2 pum in the Z-
direction. In terms of the velocity, the r.m.s. error for each component, oy, &, and G,
respectively, was: 1.58 mny/s in the x-component; 5.77 mm/s in the y-component; and 1.39 mm/s
in the z-component. These values are estimated for a framing rate of 60 Hz. It can be concluded

that the error associated with small magnitude velocity vectors can be significant.
5.1.4. Error propagation

If the errors associated to a measurement are small and symmetric around zero, the standard

deviation for any quantity s, o;, derived from, say, three measurements is given by

2 2 2
_( 9s 2 ds 2 ds 2
-(3’1] arl+(arzj ar2+(a’3) s 2]

where ry, ry, and r3 are the values of the measurements, and Gr1, Or2, and O3, are their respective

o;

associated errors. This equation is known as the error propagation formula, and it will be used for
the calculations of the errors of the quantities derived from the velocity measurements and their
associated errors.

For the calculation of the velocity gradients, the central finite difference scheme, given by



52

du; o Ml T

ar 2Ar

, (22]

which has a second order accuracy, was used. The error for the gradient of the u velocity
component, for example, can be computed by observing that the function s, in this case, is an

addition of measurements, so using [21],

our =g +0y), [23]

where it has been assumed that the g, is the same at every point. Then, ¢, = 2.23 Hz. For the rest
of the components, o, = 8.16 Hz, and o;,, = 1.97 Hz.

The vorticity vector is given by

ow Jv du Jdw Jdv du
S ALACA A PO LA I AL v 24
@ (ay Bz)H-[az axj“(ax Byj (241

Thus, the error for the vorticity vector components was estimated through equations similar to
[23], that is,

o =wﬂaf,y +0?, ). [25]

Therefore oy, = 8.39 Hz, 0,y =8.16 Hz, and 0, = 1.97 Hz.

For the calculation of the error in the average [21] yields, for the & velocity component, as an

example,
O; =—= [26]

where n is the number of samples utilized in the average operation. The expressions for v and w

are similar. The error associated to the mean kinetic energy,
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'K:%m(ﬁ%v%wz), [27]

where m is the mass of the liquid in motion, can be computed from

1(_ _ —
O'—Izzm\[;(u20’3+v20'3+w20'3,). [28]

The fluctuating components of the velocity vector are calculated by using Reynolds

decomposition. The #” fluctuating component of the instantaneous velocity can be obtained from
w=u—-u. [29]

The error for the fluctuating components of the velocity can be calculated from

Oy =40% +02 =1fn:10'u, [30]

and similarly for the other fluctuating components. Finally, the turbulent kinetic energy,

k:%m(u'2 +v2 +W'2), [31]
has an error associated given by
+1 ’ ’ ’
ak=mJ"—(u 262 4262 +wo2). [32]
n

5.2. Theoretical background

Newton’s second law of motion states that the product of the mass and the acceleration

experienced by a body equals the total external force acting on the body, that is
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m2Y_F, 33]
Dt
where F is the sum of all external forces, and
—D— = —@— +ueV [34]
D: 0t

is the substantial, or substantive, acceleration. This is the acceleration following the body (the
Lagrangian approach), and contains a local contribution, for unsteady flow, and a contribution
due to the convection of the flow.

Consider now a fluid element, and apply [33] to it. Then, when the fluid element is in motion
two kinds of external forces act on it. One is a gravitational force, which acts throughout the mass
of the fluid element. The other force acts on the fluid element surface. This force is composed of

the pressure and friction forces. If the fluid is incompressible and Newtonian with density, p, and

viscosity, 4, being constant, and the components of F are considered, [33] can be written as

Du

Y =pg-Vp+uVu, [35]

ol

which are known as the Navier-Stokes equations (NSE).

The continuity equation for an incompressible flow,
Veu=0, [36]

and the NSE, [35], are sufficient to solve for the unknowns u and p, provided appropriate
boundary conditions are applied.

For a system with two phases, one of them being continuous and the other dispersed, the
continuity and the NSE need to be solved for both phases. Interfacial relationships are then
required to close the problem. Consider a solid particle in a flow stream. The requirement of no

flow through the particle’s surface implies that the normal and tangential flow velocities are zero

relative to the solid particle velocity. The tangential velocity condition is known as the non-slip
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condition, while the normal velocity condition is known as the kinematic condition.

The difference between fluid and solid particles cannot be neglected in the calculations of the
velocity field. In a viscous fluid particle there exists an internal velocity field, or internal
circulation, and the velocity at different locations on the particle can be different, for example
there might be a velocity difference at the center and the surface of the fluid particle. For a fluid
particle in a continuous fluid, additional boundary conditions are required to completely close the
continuity and NSE for each phase. These additional boundary conditions are that the normal and
tangential stresses must be balanced at the interface. These balances of stresses reflect the
Newton's third law of motion. The stress is a consequence of the pressure field around the
particle, and the tangential stress is due to shearing on the surface of the fluid particle.

By taking the curl of [34], the vorticity transport equation can be obtained as

2—0-)-=@—+u0Vm=c00Vu+VV2m. [37]
Dr ot

This equation states that the change in local vorticity plus the convection of vorticity by the flow
equal the stretching or compression of the vorticity by the flow plus a diffusion term due to
viscous friction. This equation is frequently used to describe the circulatory motion inside the
wake of a bluff body. The wake is the region downstream a body in a flow, where there exists
vorticity. The rotational flow inside a wake is due to the magnitude difference of the pressure and
velocity between the outer and interior regions of the wake. For two-dimensional axisymmetric
flows, the first term on the right hand side of [37] is equal to zero, which, in such a case, means
that the distribution of vorticity is due only to viscous diffusion.

Analytic solutions for the flow around rigid and fluid particles of spherical shape are only
available for Re < 1 (Re = p U d / u, where U is the free stream velocity and d the particle’s
diameter). For intermediate Re, numerical solutions exist, but usually limited to steady and
axisymmetric flows. In these studies, the most common approach is to use the potential flow
theory, limiting the boundary layer to a very small area surrounding the spherical particle. The
boundary layer theory has been applied with success only for high Re (Re > 3000). For lower Re,
the main difficulties are that the predicted velocity and pressure distributions are comparable to

the experimental data up to 20 to 30 degrees from the front stagnation point on the particle's

surface (Clif ez al. 1978).



56

The study of the turbulence structure in a two-phase bubbly flow is one of the problems in
which experimental, numerical and theoretical work is being extensively done nowadays. It is
now considered that the turbulence in two-phase flow has two different sources: one is the
turbulence generated in the continuous liquid phase, and the other is the turbulence induced by
the movement of the bubbles in the flow. This last agitation due to the bubbles has been called
pseudo-turbulence (Lance & Bataille 1991).

Most of the difficulties faced by the experimental and numerical communities when studying
turbulence structure are the large range of time and length scales existing in turbulent flows.
Consider, for example, the case of a single bubble rising in water. In this case all the liquid
turbulence is pseudo-turbulence. The ratio of the velocity magnitude for positions close to the
bubble to the points several bubble diameters away from the bubble’s surface is orders of
magnitude. This implies stiff differences in the time and length scales along at such given
positions. Further, the wake of the bubble causes flow fluctuations that reache up several bubble
diameters.

The most common approach to describe the flow field around a rising bubble is the potential
flow. For dispersed bubbly flow, the influence of each bubble on the liquid motion is applied by
using the superposition principle. Potential flow fails in describing the flow in the wake of the
bubble, so it is clear that the superpositioning effects will not provide an accurate prediction of a
bubbly flow.

The Reynolds stress tensor transport equation for a two-phase system can be written as:

5’% W)= Diff[u’u’ + P+®—c+11, [38]

where the left hand side of the equation represents the convection of the stress components by the
mean flow. On the right hand side presents the diffusion term, Diff; the production, P, due to
liquid shear; the distribution of the stresses, ®, due to pressure fluctuations; the dissipation term,
€ and an interfacial term, IT; respectively. This equation takes into account the liquid turbulence
in the two-phase flow momentum equations. It is assumed that the stress tensor is composed of

the single-phase liquid turbulence, denoted here by (I), and the bubble’s pseudo-turbulence,

denoted by (b). Consequently, it can be written as:



