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total force on a bubble for Re = 311. Therefore, for freely rising air bubbles in water, Fg is
usually neglected.
When the expressions for each component of F,, are introduced in [46], without considering

Faxen and Basset forces, the equation of motion can be rearranged to look like

dv

Du
V, (o, + 2 CM)_dt =V, o (1+CM)_Dt +Vy (05 - p1)8
, (48]
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where the subscripts b and [ are associated to the bubble and liquid, respectively. Cy, Cp, and
CL, are the added mass, drag and lift coefficients, respectively. V and A are the volume and
projected area of the bubble, p the density, and U, the relative velocity between the two phases

given by [41]. Using the current notation, U, is given by

U, =u-v, (49]
and

0=Vxu. [50]

The components of @ are given by [24]. The substantial acceleration of the liquid, the relative
velocity and the cross product in the lift force are all evaluated at the center of the bubble (as if

the bubble was not there).

6.1.3. Nature of the forces acting on the bubble

The left-hand side of [48] represents the bubble mass plus the liquid added mass times the
bubble acceleration. On the right hand side appears firstly the force resulting from the pressure
gradient and the shear stress of the liquid, when the bubble is not in the liquid. Next, it’s the
buoyancy force; then, the drag force; and finally, the lift force.

The virtual or mass force is an unsteady force due to the acceleration of the relative velocity

between the bubble and the liquid. It is the force needed to accelerate the bubble surrounding
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liquid. The liquid acceleration is produced by work done due to bubble/liquid interaction. The
added mass coefficient Cy has a value of 0.5 for spherical particles, according to potential flow
theory. However, Cy is actually a tensor called added mass matrix, or induced inertia tensor
(Brennen 1995). The elements of the added mass matrix are determined from steady potential
flows and/or the steady translation movement of the particle in the fluid. For spheres, the added
mass matrix contains non-zero values only across the diagonal. These values equal 0.5 only for
spheres embedded in infinite media. For non-spherical particles, however, all the elements of the
added mass tensor are non-zero. This implies that the amount of liquid mass displaced depends
on the shape of the bubble, as it is expected. For an ellipsoid, for example, the values depend on
the aspect ratio of the ellipsoid.

For particles moving in non-linear trajectories in unsteady flows, a correction to Cy is
introduced through the acceleration parameter (Crowe et al. 1998), or acceleration number

(Michealides 1997), or acceleration modulus (Clift ez al. 1978), Ac, which is defined by
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The corrected value of Cy is given by (Michealides 1997)

0.066

Cy =1.05 - —2D%0
M 0.12+ Ac?

[52]

Observe that as Ac tends to zero, Cy tends to 0.5. Recent results from numerical simulations
indicate, however, that Cy equals 0.5 for spherical particles for a wide range of Re and Ac
(Magnaudet 1997). Also, other experimental results have proven that Cy still is close to 0.5 even
for distorted bubbles. Therefore, Cpy = 0.5 is widely used in bubbly flow analysis.

The drag force is one of the well studied forces acting on any kind of fluid particle. The drag
coefficient Cp is accurately calculated through empirical correlations, which only depend on Re
(Clift et al. 1978; Fan & Tsuchiya 1990). These correlations, however, yield average values,

which can be far from the actual instantaneous values, because of unsteadiness of the flow, the
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oscillation of the particle projected area, and/or the particle’s acceleration. In fact, the average
Cp is usually determined through the expression for the drag force in [48] assuming that the
particle already travels at terminal velocity without the presence of lateral (lift) forces.
Therefore, the magnitude of the drag force equals the buoyancy force value. Results have shown
that depending on the average operation used to analyze the experimental data, Cp can be
considerably different (Hunt et al. 1992).

Another problem regarding Cp is the contamination of the systems in which the particle
flows. For air bubble of about 2 to 4 mm d, rising in water, for example, the terminal velocity is
reduced in contaminated systems, and the drag coefficient is increased. This contaminated Cp is
actually closer to the Cp of a rigid particle at the same Re, and usually is calculated through the
correlation for rigid particles. The contamination of the bubble surface brings out other
phenomena that complicate the analysis of the flow field. As the surface of the bubble gets
contaminated it affects its surface tension, o; and the shear stress, then the internal circulation is
suppressed. There is an enhancement of boundary layer separation, and then vortex shedding. As
mentioned above, wall influence on the drag coefficient is introduced by the empirical wall
factor A.

The lift force is the most difficult one to measure or compute. This is so because it is
generally smaller that the other interacting forces. Its importance comes from the role it can play
on bubble migration, and then phase distribution, because it is normal to the direction of motion
of the particle. According to Batchelor (1967), the lift force arises due to the vorticity generation
at a rigid surface. As mentioned above, bubbles moving in liquids with non-high purity behave
close to a rigid particle. The vorticity can also be generated because of shear in the liquid.
Further, the liquid velocity gradient may induce a rotation of the bubble. The uneven pressure
distribution surrounding the rocking bubble yields a lateral force on the bubble. This force is
called Saffman lift force. For some authors, however, the lift force arises from the Saffman effect
only when there is no particle rotation. Even if the bubble would not rotate, the pressure field
can induce lateral movement to the bubble. This Saffman force, without rotation, usually appears
in the equation of motion as the only component of the total lift force. This is the case shown in
[48] for the lift force.

The Magnus effect is the lift force due to the rotation of the particle. In this case the lateral
force arises from the pressure difference between the sides of the particle. This is due to the

different velocities at each side, generated by the rotation. The particle may be spinning because



92

of collisions with other particles or the wall. Rotation also may be induced by the shear in the
liquid flow. The Magnus effect is rarely included in the equation of motion of the particles
because there is no information available about the rotation of the particles. An expression for

this force is given by (Crowe et al. 1998)

U, xo,

1
FMag =Epl "Ur" CLR Ab [53]
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where CiR is the rotational lift coefficient and ®, is the difference between the angular velocity

of the particle €, and half the liquid vorticity @, that is

q=ﬂ—%m. [54]

®; can be considered as the relative rotation motion of the particle with respect to the fluid.

It should be noted that the lift coefficient Ci, in [48] is only due to shear, and has been called
the pure straining lift coefficient Crs (Magnaudet 1997). The total lift coefficient Cy is the sum
of Crg and CR, and then the total lift force is the sum of the contribution from the flow shear
plus the rotation of the particle. For large Re, Cy, = 0.5, obtained from potential inviscid flow, is
widely used. When one of the lift forces is not considered in the equation of motion, the lift
coefficient of the other force is assumed to equal Ci. As pointed out by Crowe er al. (1998), CL
remains unclear for intermediate Re.

Finally, the buoyancy force is due to the density difference between the bubble and the liquid.

6.2. Accuracy of measurements
The uncertainties in determining both the shape and the forces acting on the bubble come
from the accuracy of the DGHT algorithm presented in Chapter IV. The value obtained for the

error was 0.08 mm (3 pixel), and it corresponded to the measurements in the X-direction (the

images from the center camera). This value is the error associated to the value each of the
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semiaxes a, b, and ¢, and also for the centroid of the bubbles.

Following the error analysis presented in Chapter V, the maximum errors of the velocity
components of the bubble are 4.8 mm/s, and consequently 288.0 mm/s” for the acceleration
components. The errors of the acceleration of the liquid, calculated from the velocity
components given in Chapter V, are 94.8 mm/s® in the X-direction, 346.2 mm/s’ in the Y-
direction, and 83.4 mm/s’ in the Z-direction. Although these values are of the order of the
velocity and acceleration of the bubble, it should be noted that the bubble travels at an order of
magnitude faster.

To determine the error associated to the calculation of the forces acting on the bubble, and

consequently on the calculations of Cp and Cy, [48] can be casted as

Py dv dv Du) Du 1
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The left hand side represents the total inertia of the system. On the right hand side the expression
for the lift force in [48] has been changed to the common expression used in aerodynamics for
the total lift. This expression allows for an easier calculation of the lift coefficient. The parallel
and perpendicular symbols are introduced to stress that the drag force acts parallel to U, while
the lift 1s normal to it.

The maximum error on the calculation of the inertia force comes from the y-components of
the acceleration terms. By combining the error from both the bubble and the liquid accelerations,
by using [25], the error in the Y-direction is 450.3 mm/s”. The error in the X-direction is 303.2
mm/sz; and 299.8 mm/s” for the Z-direction. The error in the calculation of the bubble is about

0.4 mm”.

The substantial accelerations above are easily computed in a Lagrangian reference frame.
This is an advantage of the particle tracking techniques. This also justifies the need of a hybrid
tracking technique in these situations. The ART2 NN tracked the seed particles during 4
consecutive frames, which is the same number of frames in which the bubble appeared in the

viewing volume, in general. Therefore, the Lagrangian approach can be used for both the liquid
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and the bubble simultaneously.

6.3. Experimental results and discussion

In this experiment 81 bubbles were released, one at a time, in quiescent water, in a 12.7 mm
i.d. pipe. The time interval between each release was of few minutes. It is known that it takes
less than a second for the disturbances generated by the bubble to vanish, so the flow was totally
stagnant when the next bubble was released. Each camera captured the image of the bubble only
for 3, or 4, or in very rare events 5 frames, out of the total 27 frames for each bubble release. In
general, the bubble could be seen in 4 frames; however, only three frames from the Center and
Shadow cameras could be used for the 3D reconstruction method shown in Chapter IV. The
following results are those from bubbles that could be three-dimensionally reconstructed.

Following the nodalization scheme for the bubble presented in Chapter V (figure 17a), the
data were divided according to the bubble trajectory. In this case a similar trajectory is specified
for the bubbles which rose up in similar fashion at least two consecutive frames out of the three
frames. Although this condition seems too weak for the motion of the bubbles in the test volume,
it should be considered that the lateral motion of the bubbles was nicely continuous. That is,
when a bubble moved from a region into other, the distance traveled was small and the trajectory
was smooth enough that the bubble was considered to be rising in a similar trajectory. On the
other hand, if a bubble moved in different regions and did not satisfy the condition of staying at
least two consecutive time steps in one of the nodal zones, then it did not belong to the same
trajectory. Also, bubbles crossing more than two boundaries during its rising path were not part
of a similar trajectory.

Few bubbles traveled in regions 2 and 3 (see figure 16) so they were not considered for the
data analysis. The final trajectory distributions considered for data analysis were: 24 bubbles
traveled through trajectory 111; 18 bubbles rose up in trajectory 444; and 15 bubbles followed
trajectory 555. Combinations of all trajectories, and for those close to the wall were also
included in the averaging operations. The combination of all trajectories (111, 444, and 555) is
referred to as trajectory all, while the combination of trajectories close to the wall (444 and 555)

is denoted as trajectory out.

6.3.1. Bubble shape and velocity analysis
The Reynolds number of the bubbles, Re,, was in the range from 350 to 700. At this range, a
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Table 2. Bubble dimensions

Bubble a and o, b and G, ¢ and o, d and 64

Trajectory [mm] [mm] [mm] [mm]
111 1.24 1.46 1.34 2.69
0.10 0.08 0.07 0.12

444 1.26 1.43 1.36 2.70
0.10 0.09 0.07 0.13

555 1.27 1.45 1.38 2.73
0.09 0.09 0.09 0.13

out 1.27 1.44 1.37 271
0.09 0.09 0.08 0.13

all 1.25 1.45 1.36 2.70
0.10 0.08 0.08 0.13

bubble freely rising in stagnant water presents oscillations in shape and rising path. The
predicted shape is ellipsoidal, although not necessarily symmetric. The motion is expected to be
helical and/or zigzag, and even a rocking motion. The ellipsoidal shape, however, would be
observed in systems with high-purity working fluids, and with negligible wall influence. Clift ez
al. (1978) considered that for 0.12 < A < 0.6, and Re, > 100, walls can cause elongation of
bubbles in the vertical direction, so for the ellipsoidal shape, the result would tend to change to
spheroidal shape again.

At least 3 images of a bubble need to be three-dimensionally reconstructed in order to
calculate the three components of the acceleration vector. The acceleration was assigned to the
second of the 3D reconstructions of a bubble (the one in the middle). Such second reconstruction
corresponded in 93% of the experiment to the third frame (z, = 33.33 ms), in which the bubble
appeared in the test volume. Table 2 shows the average and standard deviation from the mean
for each different trajectory, and combinations of trajectories, of the values of the semiaxes and

spherical equivalent diameter determined from the instantaneous reconstructions.
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From Table 2, it can be concluded that the shape of the bubbles was oblate spheroid. The
minimum and maximum eccentricity were e = b/ ¢ = 1.05 for trajectory 555,and e=b/a=1.18
for trajectory 111, respectively. Observe that the largest dimension was always in the Y-
direction (b in here), followed by the semiaxis in the Z-direction (c), and the smallest semiaxis
was in the X-direction (a). From Table 2, the wall effect factor was A = 0.21, and Re;, > 100 in
all cases, so the wall influence could be noticed. Since all bubbles were of the same size,
approximately, it was not possible to determine the role of the volume on the rise path. It is well
known that bubbles of less than 3 mm in diameter tend to collect close to the wall. In this
experiment almost all bubbles were smaller than 3 mm of d., and the trajectories were 42%
along the pipe core, so no tendency was observed for this experiment condition.

Another feature to note is that bubbles rising along the pipe center had a maximum value of
the semimajor axis, while the bubbles rising close to the wall had larger semiaxes in the X and Z
directions. This is in agreement with the fact that the wall influence is to elongate the dimensions
of the semiaxes parallel to the wall, while it diminishes the dimension of the semiaxis
perpendicular to the wall. The maximum error for any value in Table 2 is 6.5%, and it
corresponds to the average value of a for trajectory 111 (0.08/1.24). Because of the magnitude of
this error, the wall influence results presented are still tendencies (clear tendencies though). It
will be necessary to reduce the error to 1 pixel (0.03 mm) to draw definite conclusions. It should
be noted that the standard deviations ¢ of each parameter in Table 2 are not their associated
errors, but only the spread of data from the calculated mean value shown. The actual errors were
presented in the previous section.

In the present study, the bubbles rose in a helical path.. Actually, the prediction for rising
path is based on direct experimental observations. The rocking motion was also observed, with
both the PIV and shadow cameras, as shown in figures 18 and 19. Figures 18 and 19 are typical
samples of shapes and trajectories found in the measurements, so they can be used as examples.
The ellipsoidal shape of a bubble is the result of the pressure difference inside and on the surface
of the bubble. This pressure difference increases with higher Re,. During a PIV measurement,
seed particles are needed to track the liquid motion; and therefore the system is contaminated.
Contaminants can induce changes in the physical properties of the fluids, and/or can
agglomerate on the bubble surface. It is known that contaminants tend to harden the bubble
interface, tending to make the bubble to act as a rigid particle. Thus the bubble is not allowed to

laterally expand.
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For a bubble rising in a helical or zigzag path, the frequency of contact with the wall is high,
when the radius of the spiral trajectory that the bubble would follow in an infinite medium is
larger than the radius of the pipe in which it actually is moving. The collision induces a decrease
in the lateral dimensions, and an increase in the vertical ones. Therefore, by combining the
effects of the contaminants and the collision frequency with the pipe wall, the final shape should
be closer to a spheroid (an oblate spheroid actually) than to an ellipsoid. This was the case, as
deduced from figures 18 and 19, and the data shown in Table 2.

Another way to study bubble shape and trajectory is through the dimensionless numbers
associated to the bubble. Grace (1973) and Bhaga & Weber (1981) have presented maps of '
shape regimes for single bubbles rising in Newtonian liquids based on Rep, M, and Eo. The
maps, however, excluded any data where wall influence could be noticed. The map of the
regimes given by Grace (1973) predicts a transition between spherical to ellipsoidal bubbles for
Rep = 350, and from ellipsoidal to wobbling for Re;, = 700. Table 3 shows the average and
standard deviations of the dimensionless numbers Re,, M, and Eo associated to the second
reconstructed bubble, and the bubble speed. The value of the velocity is the magnitude of the
three-dimensional velocity vector, which was used to compute the dimensionless numbers. It is
important to address the shape of a fluid particle which allows for physical analysis of the forces
acting on the bubble. This is due to that Re,, is the ratio of magnitude of the inertial forces to the
viscous forces. M only involves physical properties of the system under study, so it is commonly
used as a parameter, which for the air-water system is M = 2.56x10™"!. A more general
expression for M, than the one given in [44], is presented by Fan & Tsuchiya (1990). Eo is the
ratio of the pressure of the liquid on the bubble due to gravity to the surface tension pressure.

The Weber dimensionless number, We, given by

2
we=2Ybde [56]
o

is the ratio of the liquid dynamic pressure to the surface tension pressure. The Tadaki number,

Ta, is frequently used in the calculation of the aspect ratio, and the frequency of oscillation of

the bubbles in their rising path. Ta is given by
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Table 3. Speed and dimensionless parameters of the bubble

Bubble U and oy Re; and Eo and We and Ta and

Trajectory  [mm/s] Oke Oko Owe Ora
111 1932 526.7 0.97 1.39 1.93
20.5 66.2 0.09 0.32 0.24

444 181.0 491.8 0.98 1.22 1.80
20.0 61.7 0.10 0.29 0.23

555 195.7 539.4 1.00 1.45 1.98
18.4 59.3 0.09 0.29 0.21

out 187.7 5135 0.99 1.33 1.88
20.4 64.3 0.09 0.31 0.24

all 190.0 519.0 0.98 1.35 1.90
20.5 64.9 0.09 0.31 0.24

Ta=Re, M%%, [57]

A frequently used correlation to compute the aspect ratio in 3D contaminated systems is (Fan &
Tsuchiya 1990)

=[0.81+0.206 tanh(2(0.8 - log Ta))]?, [58]

o>

where £ is the maximum vertical dimension (c). Then, the eccentricity e = 1.10, for Ta = 1.93.
Thus the difference between e from [58] and e = b / ¢ from Table 2 is only between 1 to 5%.
Other correlations were also used to calculate the eccentricity; they predicted shapes from
spherical to ellipsoidal with e up to 1.16. This value is at most 11% higher than e = b / ¢ from
Table 2. These other correlations, however, assume that there exists symmetry around the

vertical axis of the bubble, and that wall influence is negligible. No information was found to

compare the eccentricity for e = b/ a. Since only average values are shown in Table 2, for the
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whole range of Re,, in this experiment, the oblate spheroidal shape determined from the analysis
of the images of the bubble is in agreement with Grace's and Bhaga & Weber's maps.

Table 3 shows that the inertia of the bubble is 2 orders of magnitude higher than the viscous
forces, which are due to the low viscosity of the water. The pressure due to gravity is balanced
by the superficial tension pressure, while the dynamic pressure of the liquid is from 30 to 40%
higher than that due to the surface tension. The dominant force here is the inertia, but the system
cannot be completely considered as inviscid.

Regarding the velocity of the bubbles, Table 3 shows that those bubbles traveling in
trajectories close to the pipe wall are slower than those following a path in the pipe core. This is
expected, because of the wall friction, which opposes to the bubble motion. The data for
trajectory 555 is however unexpected. It seems that those bubbles in region 5 were actually
closer to the pipe center than to the pipe wall. As with the bubble shape, the contaminants and
wall affect the velocity of the bubble. The rigidness of the bubble’s surface, because of
contaminants present in the water, suppresses the internal circulation and decreases the rising
velocity of the bubble (Clift et al. 1978). It also enhances vortex shedding from the boundary
layer.

In an infinite medium, Grace's and Bhaga & Weber's shape maps predict Re;, = 800 for Eo =
1 and M = 2.56x10'!. The average values of Re, shown in Table 3 are lower with a factor of
about 30 to 40%. Observe that the errors of the velocity in Table 3 are less than 3%. The
experimental data for air bubbles rising in contaminated water given by Fan & Tsuchiya (1990)
and Clift et al. (1978) however show that Rey is actually lower than that predicted by the maps
of Grace and Bhaga & Weber. Fan & Tsuchiya show that the terminal velocity in an infinite
medium U+, is about 210 mm/s for d, = 2.7 mm, while Clift et al. give U, = 180 mm/s, for
the same d, and Eo = 1. Thus, Rep, = 486 from Clift et al.'s data, while Rep = 567 from Fan &
Tsuchiya's data. This implies that the shape maps should be considered more as qualitative
representation than a reliable quantitative information source, at least in this case.

If a bubble has terminal velocity in an infinite medium U+, , this will be reduced toUy,

because of wall influence according to (Clift ez al. 1978)

Ur =(1—K2)3/2. (59]
Too
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In this experiment A = 0.21, so the velocity decrease is only about 7%. The corresponding Rep
for Fan & Tsuchiya's data is 529.0, and 453.4 for Clift et al.'s data. In the present experiments,
however, the bubbles always had a significant acceleration while crossing through the viewing
volume, so terminal velocity was never reached. If, anyway, it is assumed that [59] is valid for
the instantaneous velocities measured, the difference between Rep in Table 3 and Re, from Fan
& Tsuchiya's data is less than 8%. This result shows that the tracer particles added to the water
follow the data for contaminated systems, in the average results. These contaminants, however,
can be responsible for the spread of the data around the mean.

Another aspect that needs consideration is that [59] is strictly valid for a fluid particle
traveling along the pipe center. As shown above, bubbles rise slower as they get closer to the
wall, but [59] cannot predict such velocity decrease. The data for the trajectory 444 in Table 3
shows a velocity decrease of about 7%, with respect to those for trajectory 111. In computational
simulation of bubble dynamics, it is usually introduced a force to stop the bubbles from
penetrating walls (Tomiyama 1998). This force, known as wall force or lubrication force,
includes the diameter of the bubble, the distance to the wall and the terminal velocity. An

empirical factor, the wall force coefficient, is introduced to consider different fluid systems.

6.3.2. Drag and lift forces acting on the bubble
The drag and lift forces are computed here by using the method outlined by Shridar & Katz
(1995). First, note that [55] can be represented as

Fl‘=Fi—Fg=FD +FL’ [60]

where Fj is the total inertia force, and Fy is the buoyancy force. This equation simply shows that
the drag and lift forces are balanced by the inertia and buoyancy forces. Since Fp is parallel to
the relative velocity Uy, it can be computed from the projection of F; in the direction of U,. Such

projection is simply the dot product between Fy and U,, that is,

F. U,

: [61]
[:]

FD=



The explicit expressions for the components of Fp are given by
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And then the lift force components can be calculated from

FL =Fl' _FD'
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Once the magnitudes of the drag and lift forces are known, the respective coefficients can be

computed from their expressions given in [55], that is,
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The drift and drag were computed using [60] to [67]. Then the drag and lift coefficients were
calculated from [68] and [69]. The required Lagrangian velocities and accelerations were
computed by tracking the bubble and tracer particles motion in three consecutive frames, as
shown in figures 18 and 19. The velocity and acceleration of the liquid were interpolated to the
centroid of the bubble using data from the whole test volume. These data were instantaneous
measurements, that is, before the ensemble average operaiion used in Chapter V.

Figure 40 shows the results of the drag coefficient for all bubble trajectories as function of
Re;, for two conditions. First, the full symbols present the drag coefficient under the éssumption
of u = 0 and Ac = 0. The open symbols, on the other hand, present the drag coefficient by using
[55]. In addition, Ac was included through Cy;, given by [52]. Figure 40 shows an important
result. The inclusion of the disturbed liquid flow field spread data. The full symbols, on the
contrary, show a nice continuous trend, similar to that of the standard drag curve. This is in
agreement with what was presented in the theory section, where it was stated that the flow field
of the liquid should be undisturbed (on the absence of the bubble). Shridar & Katz (1995) used
only liquid data from 2 to 4 d, away from the bubble, in order to ensure that the actual
undisturbed flow was used in the computations.

In this experiment all the liquid in the test volume was set in motion at the time the bubble
was present, and thus it was disturbed. As just mentioned, the velocity and acceleration of the
liquid used in the computations were from data of the whole test volume, including the wake.
The strong oscillations of the drag coefficient in figure 40, for this case, are therefore due to the
inclusion of the disturbed flow in the computations. Figures 21 to 28 show that only those

regions about 2 dj from the bubble's top can be considered undisturbed. In such regions both
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Figure 40. Drag coefficient as function of Rep. Full symbols present data where u = 0 and Ac =0

in [55]. Open symbols present data where both u and Ac are included in [55]. See text for

explanation.

energy and vorticity are very small, so the assumption u = 0 is justified. In these regions the
velocity magnitude is about 3 mm/s, while the acceleration has a magnitude from 100 to 300
mmv/s>. In fact, setting u = 0 only introduces an error to the computation of the drag and lift of
about 10%. This is so because there is an order of magnitude of difference between bubble and
liquid velocity and acceleration. This difference of magnitude is reflected in the magnitude of
the inertia force. Of the three terms that contribute to the inertia force, the term that most
contributes is the term involving Cy. This term is at least an order of magnitude higher than the
other two terms, so the error introduced by neglecting the flow field velocity only affects this
term. This error must be added to that due to uncertainties in the velocity and acceleration of the
bubble. The total error estimation for the drag and lift coefficients is 15 to 20%, when u = 0 and
Ac=0.

Table 4 shows averages and standard deviations of the bubble acceleration magnitude and
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Table 4. Bubble acceleration magnitude and drag coefficient

Bubble  gcando,, Cmiand Cppand  Cpand

Trajectory [m m/sz] ocpi Ocp2 oD
111 2775.3 0.90 0.87 0.90
1098.9 0.68 0.57 0.20

444 2886.7 1.04 1.00 1.07
670.4 0.49 0.39 0.34

555 2699.2 047 0.57 0.86
734.5 0.27 0.24 0.20

out 2801.5 0.78 0.80 0.98
695.5 0.49 0.39 0.30

all 2790.5 0.83 0.83 0.94
879.0 0.58 0.47 0.26

coefficients from 3 different computations using [55], for each bubble trajectory. The drag
coefficient Cp; results from the inclusion of both u and Ac in the computations; Cp; includes u,
but Ac = 0; and Cp assumes u = 0 and Ac = 0. Observe that Ac = 0 implies Cy = 0.5. The results
for the drag coefficient in Table 4 again show that the inclusion of the disturbed liquid flow in
the computations yields higher standard deviations, even when Ac = 0. Table 4 also shows that
bubbles rising close to the wall have higher drag as a consequence of the velocity reduction,
although the magnitude of the error does not allow for the quantification. The results to be
presented next are those in which u =0 and Ac = 0.

Figure 41 shows the drag coefficient versus the Reynolds number of the bubble computed
through [68], by a widely used correlation, and assuming that the bubble reached terminal

velocity. The expression of Cp at terminal velocity can be shown to be

4 d
Cp=——=%tg. [70]
D 3U3g
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Figure 41. Drag coefficient comparison.

The terminal velocity condition implies that only the buoyancy force balances the drag. The
correlation, for rigid particles but frequently used for fluid particles, between Cp and Re is given
by

24 0.687
Cn=—\14+0.15Re . 71]
D Re( ) [

An important result from figure 41 is that the experimental results for Cp using force balance
were very close to those when Cp was calculated through [70]. In fact, the difference in the
average Cp was from 5 to 10%. In all cases [70] yielded higher average values than force
balance. The difference may be explained by recalling that the bubbles were not traveling at
terminal velocity, so the inertia force has a contribution to the results. Another source for the

difference may be due to the projected areas used in each case, because [70] assumes an
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spherical particle, while in the force balance computations, the measured semiaxes were used to
calculate the area. Observe, anyway, that the error associated to Cp is higher than the difference
in values.

A bubble rising in spiral trajectory changes orientation. Experimentally it has been found
that the frequency of orientation change is the same as that of the oscillatory motion of the
bubble. The change in orientation is the angular velocity of the bubble or rotation. Bubble
rotation, as explained before, induces a lateral force to the bubble, the Magnus effect. The
rotation parameter R is the ratio of the angular velocity of the bubble to its translation motion,

that is

,/Uz +U%
R=_L__’3_ [72]

U,
where

Uy=a— [73]

and

Ug= —A—ﬂ— [74]

At

The change in orientation is given by Acrin the XZ plane, and ApBin the YZ plane, see figures 18
and 19. Observe that there is no information available on the XY plane, so the rotation of the
bubble in that plane is missing in [72].

Table 5 shows the average and standard deviation of the rotation parameter and the
oscillation frequency from two equations. The oscillation frequency fis related to the Strouhal

number Sr. Fan & Tsuchiya (1990) show that the f can be calculated from
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Table 5. Bubble rotation parameter and oscillation frequency

Bubble R and or fi and ©x f2and op

Trajectory {Hz] [Hz]
111 0.13 6.5 57
0.10 0.6 12

444 0.22 6.6 5.6
0.17 0.6 1.2

555 0.21 6.5 57
0.15 0.6 1.2

out 0.22 6.6 5.4
0.15 0.7 1.1

all 0.18 6.6 55
0.14 0.6 1.1

d
Sr=f 2=, [75]

b

where Sr can be computed from

Sr=0.100C}™*  for Cps2, [76]
or
2
Sr=0.16(l.0—0—'51) for Ta<8. {771
Ta

In Table 5, fi uses [76] and f> uses [77]. The average values of R clearly show that the wall
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Figure 42. Drag coefficient as function of the bubble rotation parameter.

induces rotation to the bubble. The angular velocity is about 40% higher close to the wall. The
average rotation can be computed using the values of R in Table 5, bubble speed in Table 3, and
a and b in Table 2. Respect the oscillation frequency, fj is very close to the value reported for
contaminated system of 7.7 Hz, for a 2 mm d, bubble (Fan & Tsuchiya 1990). In this experiment

d, was about 2.7 mm, so it agrees with the fact that as deiincreases f decreases. The oscillation
frequencies in Table 5 are for infinite mediums. Observe that a comparison with the actual
oscillation frequency in this experiment is not possible, because the bubble only appears in 4
consecutive frames, which is equivalent to only 50 ms.

Figure 42 shows the influence of R in Cp. the data show no clear tendency, and simply
concentrate about the mean value given in Table 4. This result is in agreement with other
experimental results that showed no influence of the spinning of a particle in the drag coefficient
(Crowe et al. 1998), although only rigid particles at high Re were used in such experiments.

Figure 43 shows the variation of the lift coefficient as function of Re, while figure 44 shows
the variation respect R. There is no clear trend in the data in figures 43 and 44. Attempts to fit

the data with polynomial regressions yielded regression coefficients of about 0.6. The data for
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109



110

CL is spread around 0.4. The theoretical value obtained from potential flow, and also found in
some numerical studies, is 0.5. This value is for spherical particles in inviscid fluid, although it
has been found to very close for ellipsoidal bubbles. The difference between the theoretical
value and the present experimental results arises from the bubble shape, the wall influence, and
the rocking motion of the bubble. The oblate spheroid shape indicates an asymmetry of the
pressure field around the bubble. In addition, the rocking motion of the bubble implies that the
bubble experience different velocity at different parts. Consequently, the pressure field changes
to accommodate the velocity variations across the bubble. These pressure field variations induce
lateral forces on the bubble. The lift force that an ellipsoidal bubble feels, therefore, is different
than that exerted over a spherical bubble.

Observe that the measured lift force, and therefore the lift coefficient, has contributions from
the Saffman and Magnus effects. The first effect comes from the shear flow generated by the
flow acceleration around the bubble plus the flow deceleration because of wall friction. The
Magnus force arises from the rocking motion of the bubble. The average drag force for all the
bubbles rising in the trajectory in the pipe core was 9.2x107 N, while for the trajectory close to
the wall the average drag force was 9.3x10° N. The lift forces were smaller, as expected. For the
trajectory close to the wall, the average lift force was 4.0x10” N, while for the trajectory in the
pipe center was 3.4x10” N. The average lift force is at least 40% smaller than the drag force, so
the oscillatory trend of the data is directly related to the uncertainty in the measurements. Even
when the measurement errors are considered, it is clear from the figures that an average value
will not yield accurate predictions of the lift force.

Finally, Table 6 shows the results obtained for the average and standard deviation of the lift
coefficient for three different computations. The values of the lift coefficients in Table 6 were
computed in the same conditions as those in Table 4 for the drag coefficients, that is, Cp; was
calculated similarly to Cp,, Cro was calculated similarly to Cpy, and Cy, was calculated similarly
to Cp. The results in Table 6 again show that the introduction of the disturbed flow makes the
data to oscillate around the mean values shown.

An important result in Table 6 is that the lift coefficient is higher for the bubbles rising close
to the wall. Obviously, a bubble close to the wall should have experienced a higher lift force than

one in the pipe core. The difference in the average values is in the range of the measurement

errors, though.



Table 6. Bubble lift coefficient

Bubble Cpniandocr; Crpand o Crand GcL

Trajectory
111 0.60 0.54 0.37
0.32 0.31 0.25
444 0.67 0.50 0.48
0.35 0.28 0.23
555 0.66 0.45 0.38
0.38 0.24 0.14
out 0.68 0.59 0.44
0.37 0.34 0.20
all 0.65 0.47 0.41

0.35 0.26 0.22




