2. INDIRECT LIQUEFACTION WITH LURGI GASIFICATION AND FISCHER-TROPSCH TECHNOLOGIES

This section addresses coal-based synthetic fuels facilities using dry ash turgi gasification and Fischer-Tropsch (F-T) product synthesis. Facilities of this type utilize all of the process operations normally associated with indirect liquefaction, namely coal preparation, coal gasification and raw gas cleaning, shift conversion and acid gas removal, and synthesis of the desired fuel product. Auxiliary processes required to support these production operations are those required for steam and power generation, oxygen production, raw water treatment, and process cooling.

The dry ash Lurgi process is a commercially viable process which has been widely used outside the U.S. to produce industrial fuel gas and synthesis gas from coal. To date, the Lurgi gasifier has been used primarily to gasify low rank coals. The technology has demonstrated the capability to handle highly caking coals such as those used during the trials of American coals at Westfield, Scotland (1) and at SASOL, where a Kentucky No. 9 coal was gasified (2). Companion technologies have also been developed for gas cooling/heat recovery, gas liquor treatment, acid gas removal, and byproduct (tar, oil, naphtha, phenol, and ammonia) recovery. Of the commercial facilities in operation, only those operated by the South African Coal, Oil, and Gas Corp., Ltd. (SASOL) are representative of the completely integrated facilities (i.e., coal gasification and product synthesis) addressed in this report. The SASOL facilities produce a wide range of crude and refined liquid products utilizing Fisher-Tropsch technology as the primary product synthesis step.

A wide variety of domestic coals are potential feedstocks for Lurgi based synthetic fuels facilities. Each coal will have associated with its use a specific set of process and waste stream characteristics. The most advanced Lurgi based synfuels project in the U.S. is the Great Plains Gasification Associates' project in North Dakota which will be using a lignite

TABLE 2-1. CHARACTERISTICS OF DUNN LIGNITE SELECTED FOR USE IN INDIRECT LIQUEFACTION BASE PLANT (4.5)

	!	As Revised Basis (wt I)	Dry Bases (wt 1)
Motsture	-	38.6	··-
Volatile Matter		27.0	
Fixed Carbon		27.6	
Ash		6.8	11.1
С		39.1	63.6
H		2.7	4.4
Q		11.6	18.5
\$		0.8	1.3
N		0.4	0.6
Heating Yalue			
MJ/kg		15.0	24.5
Ca	1.6	Na	0.24
(I, on moisture-fr		: emais)	
A1 C=	0.67	Mg	0.50 0.24
Cl	0.005	Si	2.2
Fe	0.72	T1	0.03
K	0.005	•	
Trace Elements (ppm, on moisture-	-free whole c	nal basis)	
As	16	Hg	0.33
₿	100 ,	Mo	36
Be	0.50	Mn	400
Br	2.8	N f	19
Çq	0.34	p'	213
Co	8	? b	88
€ e	100	29	0.50
Çu	37	Se	1.4
F.	34	Zn	18
•			

feed coal (3). Thus, a North Dakota lignite (Dunn County) was chosen for examination to provide a basis for sizing and characterizing base plant process and waste streams and evaluating waste stream control options. Characterization data for the Dunn lignite are presented in Table 2-1.

In developing the base plant material flow estimates, a fixed coal feed rate of 27,216 Mg per day (as received basis) to gasification was used. In addition to the gasifier coal requirements, most Lurgi based synfuels facilities are expected to include on-site coal fired auxiliary boilers. The size, and hence fuel requirements, of these boilers will depend on a variety of factors, including whether electric power is purchased or generated onsite, the efficiency of on-site energy recovery, and whether Lurgi by-products and high energy content waste gases are used as boiler fuel. Although no attempt has been made to estimate auxiliary boiler duties, boiler energy requirements are expected to be about 30 percent of the coal energy input to the gasifier (6.7.8).

A typical upgraded product slate for the Lurgi based synfuels plant examined in this study is summarized in Table 2-2. It should be noted that large quantities of methane are present in Lurgi synthesis gas. It is assumed that this methane would be recovered as a coproduct SNG rather than reformed to produce additional synthesis gas.

TABLE 2-2. ESTIMATED PRODUCT/BY-PRODUCT SLATE FOR LURGI BASED F-T SYNFUEL FACILITY*

Product/By-Product	Mg/day	TJ/day
Gasol ine	1340	62.5
Diesel Oil	272	11.4
Fuel 011	79.6	2.8
LPG	101	8.50
SNG	3700	186
Alcohols	230	8.5
TOTAL	5720	280

^{*}Coal feed rate to gasification is 27,216 Mg/day (as received basis). In addition to the tabulated products and by-products, tars, oils, naphthas and phenols are also produced and consumed onsite.

2.1 BASED PLANT DESCRIPTION

Based plant process operations consist of coal preparation, coal gasification, gas purification and upgrading, crude product synthesis and separation, and product upgrading. In addition, the auxiliary processes required to support a fully integrated, self-sufficient, liquid fuels production facility would include raw water treatment, steam and power generation, and oxygen production. Pollution control process applicable to the base plant are described and discussed subsequently in Section 2.2. Processes comprising the base plant and their associated waste streams are described briefly in this section. Simplified process flow diagrams are presented in Figures 2-1, 2-2, 2-3, and 2-4.

2.1.1 Coal Preparation

The coal preparation operation in a Lurgi based synfuels facility will be similar to those found in other coal based plants such as coal fired power plants. Equipment is provided to receive, transport, and store coal and to prepare a sized coal feed for the Lurgi gasifiers and a pulverized coal feed for on-site coal fired steam boilers.

Run-of-mine coal received by conveyor, unit train, barge, or truck is diverted to either an active or inactive (emergency) storage pile as necessary. Coal from storage is transported by a belt conveyor to the preparation plant where it is screened and crushed to a 3.8 cm top size. A 3.8 cm x 0.64 cm coal fraction is separated and conveyed to the gasifier feed storage silos. (Depending on the properties of the coal, a sized coal within the range of 0.3 cm to 7.5 cm can be qualified; the 3.8 cm \times 0.64 cm range shown is merely a representative example.) The undersize coal is stored in separate fine coal storage silos. As required to meet the auxiliary steam boiler fuel requirements, coal is removed from the fine coal storage silos and pulverized to nominally 70 percent through 200 mesh. Excess undersized coal may or may not be produced, depending on t a feed coal characteristics. If excess undersized coal is produced, it could be used to generate export power, gasified in a reactor capable of handling coal fines to produce additional syntheris gas, sold as a by-product, or disposed of as a solid waste. A potential, but currently undemonstrated, alternative is to pelletize the undersize coal to a nominal 3.8 cm size for use as 'urgi gasifier feed.

Operations associated with synthesis gas production in Lurgi-based indirect liquefaction facilities Flgure 2-1.

Figure 2-2. Fischer-Tropsch synthesis and product upgrading

Figure 2-3. Fischer-Tropach Product Fractionation and Upgrading

Figure 2-4. Auxiliary processes associated with Lurgi-based indirect liquefaction facilities

٠-٦

٠:

١,.

The major waste streams associated with the coal preparation operation are coal storage pile runoff (Stream 201), fugitive dust emissions from prepared coal storage and transport (Stream 200), and dust from coal crushing and screening (Stream 202). Runoff from coal storage tends to contain high levels of suspended and dissolved solids and can be quite acidic in the case of Midwestern or Eastern coals. Dust from coal preparation consists of natural soil and overburden material as well as coal.

2.1.2 Lurgi Coal Gasification

The dry ash Lurgi gasifier is a medium pressure (2.1 to 3.2 MPa), moving bed gasifier operating below the coal ash fusion temperature. Essentially all types of coals with moisture contents below about 40 percent can be gasified, although strongly caking coals require the use of a coal distributor equipped with a stirrer. The gasifier unit consists of a coal lockhopper, a water-jacketed pressurized gasifier vessel, an ash lockhopper, and an ash quench system.

Sized coal is stored in a coal hopper directly above the gasifier and is fed to the gasifier via a coal lockhopper. Cooled or raw Lurgi gas or an inert gas such as CO₂ or N₂ can be used as the lockhopper pressurant gas. As the coal descends through the gasifier countercurrent to gas flow, it passes through "zones" of progressively higher temperatures which provide for drying, devolatilization, gasification, and combustion. A revolving grate at the bottom of the gasifier supports the asi/coal bed, provides for a uniform flow or ash to the ash lockhopper, and distributes steam and high purity oxygen uniformly across the bottom of the downward moving coal bed. The ash lockhopper allows for discharge of the ash into the ash quench system. Quenched ash is transported as a wet solid or water slurry to a clarification and solids handling system.

The hot crude gas leaving the gasifier is composed primarily of hydrogen, carbon monoxide, carbon dioxide, methane, and unreacted steam. Also present are high molecular weight organics (e.g., tars, oils, phenols), reduced sulfur and nitrogen compounds (e.g., $\rm H_2S$, COS, mercaptans, NH3, HCN), low molecular weight hydrocarbons (e.g., $\rm C_2S-C_5S$, benzene, toluene), and entrained coal dust. Waste streams generated by the gasification operation

include coal lockhopper vent gases (Streams 204 and 205), ash lockhopper vent gases (Stream 206), gasifier ash (Stream 403), and transient waste gases (Stream 208).

The composition of the coal lockhopper vent gases reflects the characteristics of both the raw Lurgi gas and the lock pressurant gre. When Lurgi gases are used for lock pressurization, the lock vent gases are similar in composition to the Lurgi gases and contain organics and volatile sulfure and nitrogen-containing compounds. Coal lockhopper vent gases may also contain entrained particulates consisting of coal particles and tarry hydrocarbon materials. When CO₂ or N₂ is used for lock pressurization, a flow of pressurizing gas into and through the lockhopper is maintained in order to minimize, or possibly eliminate, the backflow of raw gas. As a result, the lockhopper gases will consist largely of the pressurization gas, e.g., N₂ or CO₂ but will also contain raw gasifier gases and particulate. Transient gases generated during gasifier startup, shutdown, and upset conditions contain the same types of substances as coal lockhopper gases do when Lurgi gases are used as the lockhopper pressurant.

Ash from the Lurgi gasifier is similar to ash from coal combustion in that it consists almost entirely of mineral matter originally present in the coal. However, gasifier ash will have somewhat higher levels of residual carbon. Ash lockhopper vent gases consist primarily of steam with some entrained particulate matter (ash fines) and raw gasifier gases.

2.1.3 Gas Purification and Upgrading

The gas purification and upgrading operation consists of: (1) gas cooling and quenching to reduce the gas temperature for subsequent processing and to remove condensible organics, moisture, entrained particulates, and water-soluble inorganics; (2) shift conversion, if necessary, to obtain the required ratio of $\rm H_2$ to CO for product synthesis; (3) acid gas treatment for removal of $\rm CO_2$ and reduced sulfur compounds; and (4) removal of trace sulfur compounds using "sulfur guards."

Gas Cooling and Bust/Heavy Organics Removal

Raw Lurgi gas is cooled in stages with some heat recovery via steam generation. Initial cooling is carried out in a "wash cooler." Gas from the wash cooler is further cooled in a waste heat boiler which produces medium

pressure steam. Moisture and heavy organics such as tars, oils, and phenols are condensed as the raw gas is cooled, producing a gas liquor stream which is routed to the gas liquor separation unit. The gas liquor also contains water soluble gaseous species such as ammonia, sulfides, cyanides, and carbon dioxide. In the gas liquor separation unit, dissolved gases, tars, and oils are separated from the water in a depressurization vessel followed by phase separators. The gas washing process also removes essentially all of the dust entrained in the raw gas, which subsequently becomes admixed with the tar. The separated pils and tars are recovered as by-products which can be used as on-site fuels, sold as by-products, gasified in an auxiliary partial oxidation gasifier to produce additional synthesis gas, or upgraded into materials suitable for blending with other facility products. Dusty tar from the tar separator can be recycled (to extinction) to the top of the gasifier (2) or gasified in an auxiliary partial oxidation gasifier to produce additional synthesis gas. Gas liquor (Stream 210) and depressurization gases (Stream 209) are the major waste streams leaving the gas liquor separation unit.

Lurgi gas liquor contains appreciable quantities of dissolved/suspended organic compounds. Inorganics present are mainly ammonia and bicarbonate, with smaller amounts of sulfide, sulfite, sulfate, thiocyanate, and cyanide. This liquor also contains trace elements which were scrubbed from the raw gas or leached from the entrained coal particles that were scrubbed from the gas. In general though, Lurgi gas liquor contains low levels of inorganic suspended and dissolved solids. The quantity of gas liquor generated is determined by the moisture content of the raw gas, which in turn is a function of the coal moisture content and the gasifier feed stream-to-coal ratio. In general, as the quantity of gas liquor generated (per unit of coal gasified) increases, the pollutant concentrations in the gas liquor decrease.

Shift Conversion

Gases suitable for feed to F-T synthesis should have slightly greater than a 2:1 ratio of hydrogen-to-carbon monoxide and no more than a few percent carbon dioxide. Depending on the specific coal gasified and/or the degree of ${\rm CO}_2$ removal obtained in the downstream acid gas removal step,

"shifting" of a portion of the Lurgi gas may be required to obtain the necessary ratio.

For application to Lurgi based synfuels facilities, it is desirable to conduct the shift reaction at moderate to high temperatures (greater than 500K) for reasons of thermal efficiency. Sulfided cobalt molydate based catalysts, which are active at temperatures above 500K, are not affected by the presence of gaseous sulfur compounds. Cobalt molybdate based catalysts are also active for the hydrolysis of carbonyl sulfide. HCN may also be partially hydrogenated to NH₃ over the catalyst.

Shift catalysts must be periodically regenerated to remove accumulated carbon deposits. This is accomplished by controlled exidation with air to burn off carbon and reduced sulfur. An offgas is produced containing large amounts of oxidized sulfur. After a few regeneration cycles, shift catalysts lose activity due to physical degradation or accumulation of chemical poisons and must be replaced. Thus, spent shift catalyst (Stream 212) and catalyst regeneration/decommissioning offgases (Stream 211) are the major waste streams from shift conversion.

Acid Gas Removal

Removal of $\rm H_2S$ and other sulfur compounds from quenched Lurgi gas is necessary to prevent catalyst poisoning in subsequent synthesis operations. The removal of most of the $\rm CO_2$ is necessary to obtain a gas composition meet—ing the stoichiometric requirements for synthesis feed gas.

Most existing Eurgi gasification plants overseas as well as proposed Eurgi plants forthe U.S. feature the non-selective Rectisol process for acid gas removal (AGR). This process is based upon the physical absorption of ${\rm CO}_2$. H₂S. COS, and high molecular weight organic compounds in cold methanol. With non-selective operation, ${\rm CO}_2$ and sulfur species are removed together and a single acid gas stream is produced when the methanol is regenerated. Naphtha recovered by Rectisol processing can be used as an on-site fuel, sold as a by-product, or upgraded for blending with other facility products.

Waste streams generated by the Rectisol process are H_2S -lean acid gas (Stream 213) and methanol/water still bottoms (Stream 216). The acid gas

stream is expected to contain about 1.3% $\rm H_2S$ and 1400 ppmv COS plus mercaptans. Water condensed from the quenched Lurgi gases entering the Rectisol unit and water added to enhance recovery of the by-product naphtha leave the Rectisol unit as methanol/water still bottoms. This stream will contain small amounts of cyanides, sulfides, ammonia, chlorides, methanol, and other organics.

Trace Sulfur Removal

To protect synthesis catalysts from sulfur poisoning, zinc oxide guard beds may be used following the Rectisol process to remove residual traces of sulfur compounds. Ordinarily, the Rectisol process can attain levels down to 0.1 ppmv total sulfur species in the synthesis feed gas, but ZnO beds would provide insurance against sulfur species being present in the synthesis feed gas during periods of Rectisol process upsets. Periodically, sulfur guard material must be decommissioned and replaced. Thus, if sulfur guards are used, a solid waste consisting of spent ZnO/ZnS is generated (Stream 217).

2.1.4 Product Synthesis

Hydrocarbon production via Fischer-Tropsch synthesis can be represented by the following reactions:

$$nCO + (2n + 0.5x) H_2 = C_n H_{2n+x} + nH_2O + heat$$

where n ranges from 1 to about 20 and is determined by process operating conditions, x = 2 for paraffins and x = 0 for olefins. Synthesis gas usually contains some CO_2 in addition to CO and H_2 . Because synthesis catalysts are also active for the hydrogenation of CO_2 , the presence of CO_2 does not create problems as long as the synthesis gas contains the proper ratio of $H_2/(CO + CO_2)$. F-T synthesis proceeds over from based catalysts at 600K and 2.3 MPa (fluidized bed reactors) or 500K and 2.7 MPa (fixed bed reactors)(6).

The crude liquid fuel products will require upgrading (probably onsite) to yield final products which are marketable as substitutes for petroleum derived products. This is particularly true for motor gasolines where crude gasoline fractions would not meet octane requirements for the retail market in the U.S. F-T products could be upgraded by HF alkylation of the C_3 - C_4 fraction to yield gasoline blend hydrocarbons and commercial grade LPG, by hydrotreating for destruction of olefins and oxygenated organics, by catalytic

reforming to produce more cyclic and branched chain hydrocarbons, by ${\rm C_5/C_6}$ isomerization to increase the anti-knock quality of pentanes and hexanes, and by catalytic polymerization to convert propene/butene fractions into higher molecular weight gasoline blending compounds. All of these upgrading processes are expected to use currently available petroleum refinery technology, and have been included in the base plant. It should be noted, however, that the specific upgrading processes employed will depend largely on the desired product characteristics.

Synthetic liquid fuels synthesis generates a purge gas containing large amounts of methane and unreacted CO_{X} and H_2 . Several options are available to handle the purge gas including use as an on-site fuel, reforming to generate additional synthesis gas, or conversion of the residual hydrogen and carbon oxides into additional methane to produce SNG. Because Lurgi derived synthesis gases initially contain large amounts of methane and because SNG has considerable market value, the methanation option was selected for analysis purposes. In actual practice, the decision regarding the disposition of synthesis purge gases involves site- and design-specific considerations which are outside the scope of this document.

Product synthesis and upgrading generates a variety of waste streams. Gaseous waste streams include CO₂ offgas from SNG purification (Stream 231), SNG dehydration offgases (Stream 236) and flue gases from process heaters (Streams 502 to 507). The principal aqueous waste stream is the F-T wastewater (Stream 219), although smaller amounts of organic-containing wastewater (Stream 508) are generated by product upgrading. Synthesis and upgrading catalysts periodically require replacement and, in some cases, require disposal. Since HF alkylation has been included in the base plant, a small volume alkylation sludge (Stream 509) will be generated.

2.1.5 Auxiliaries

The major auxiliaries required to support Lurgi based synfuels facilities are: (1) steam/power boilers; (2) makeup water treatment; (3) process cooling water; (4) liquid product/by-product storage; and (5) oxygen production.

The most significant source of waste streams from the auxiliary processes is the steam/power boiler. The boiler flue gases (Stream 302) are particularly important because the boilers will generally be coal fired and because of the potential for using the boilers to combust a wide range of gaseous, liquid, and solid wastes. Energy-rich streams which are candidates for use as boiler fuels include coal fines; by-product tars, oils, phenols, and naphtha; and hydrocarbon rich acid gases. In addition to flue gases, waste streams resulting from boiler operations include boiler blowdown condensates (Stream 303) and bottom ashes (Stream 304).

The major waste streams from makeup water treatment are sedimentation pond sludges and lime/soda softener sludges (Stream 300), and demineralizer regeneration wastewaters from the boiler feedwater treatment unit (Stream 301). Evaporation volatiles and drift (Stream 306) and cooling tower blowdown (Stream 307) are the major waste streams from the cooling water system.

Storage of synthesis products and Lurgi by-products is accompanied by evaporative emissions (Streams 309, 310, 311, 313, 314, 315, 316, and 317). These vapors consist primarily of low molecular weight organic compounds and, in the case of gasolines and Lurgi by-products, aromatic compounds such as benzene and toluene.

The oxygen plant itself is not a major source of waste streams. However, as a major consumer of energy, it impacts the magnitude of the waste streams produced in other units, particularly in the steam/power generation unit and the cooling water system.

2.1.6 Fugitive and Miscellaneous Wastes

In addition to the waste streams associated with specific processes, there are wastes which are of non-specific origins such as fugitive organic emissions (Stream 233). There are many potential sources of fugitive organic emissions in an indirect coal liquefaction plant. These include pumps, compressors, valves, flanges, and pressure relief devices.

2.2 POLLUTION CONTROL

At the present time, there are no Lurgi based indirect coal liquefaction plants in commercial operation in the United States. In addition, very limited information is available which relates to pollution control processes used by the only significant Lurgi based indirect liquefaction plant in commercial operation outside of the U.S. (i.e., the SASOL facilities). The emphasis on pollution control which has been incorporated into designs for most Lurgi based facilities abroad is generally less than that which is anticipated for U.S. plants. Therefore, directly applicable performance data for most pollution control technologies are quite limited. The potential application of most pollution control technologies to waste streams identified in Section 2.1 has, therefore, been extrapolated from their use in similar applications in industries such as petroleum refining, coke production, natural gas processing, coal cleaning, and electrical utilities. This section identifies the pollution control technologies selected for evaluation. These technologies reflect the types of alternatives which are under consideration for facilities in the U.S. It should be noted, however, that a variety of control technologies with similar performance characteristics are potentially applicable to most waste streams identified in Section 2.1.

2.2.1 Air Pollution Control

Pollution control technologies considered for gaseous waste streams presented in Section 2.1 are summarized in Table 2-3 along with the secondary waste streams generated by the control technologies. Also included in the table are the pollution control technologies considered for gaseous secondary waste streams. A majority of the gaseous waste streams are analogous to streams encountered in other industries (e.g., fugitive dust and particulate, fugitive organic emissions, and evaporative emissions) and analogous approaches to controlling these streams have been considered. Control of other gaseous waste streams generally involves Stretford sulfur recovery and/or thermal incineration, depending upon their magnitude and compositions.

2.2.2 Wastewater Treatment

Pollution control technologies considered for wastewater streams are presented in Table 2-4. Streams of major importance are the Lurgi gas liquor

TABLE 2-3. FOLLUTION CONTROL TECHNOLOGIES FOR GASEDUS NASTE STREAMS

			And the second of the second o
	Straw Description	Control Technology Considered	AND THE STATE OF T
280	Funitive dest from meterial storage	Vegetative and chemical stabillization	Mona
줬	fogistic perticulates from exteriol	Enclosures, heads, and fabric filters	Hone
1	Conceptual and processing	larianrable to the boller	flee gas
2	CAR-MARKET CARE MACHINESIA IL MAN		Hone
ž	Ash lockhopper vent pas	Last terms of the first last last	3 9 1
£ !	Transfer testing appears	Amenda recovery and combination with MyS	See Streem 213
Ž		lass gases for treatment	
E	Shift catalyst regeneration/decomes. - Amelian influes	Caustic scribbing for SO ₂ removal	Sodies selfthe sorether slades [Mines Att)
613	to the delet	Stretford sulfur recovery followed by inchmeration in the boiler	Stretford exiditer vent gas (Streme 41%). Stretford solution bloodeen (Streme 71%). Time gas
7	en attach from QR comiffication	Theras! Secionres for	incinerated CO, effges (Stream 420)
3 3	Fagility organic delitions from	Leak detection and repair methods	None
236	San dehydration offgasot	Store	Kohe
ğ	flut gas from state and power generation	Electrostatic prucipitator for particulate control and limeatone acrubing for 502 control	bedier Ty ask (Streem 441), FCD sludge from theptone wrubbis, (Streem 444), treated bolts: Sum yas (Streem 443)
	Cooling tener evaporation and drift	Rose	#cme
ş	Expositive emissions from guseline startes	Floating roof task with primary and secondary seals	Mone
Ē	Emperative emissions from dinsal all streem	first rest test with internal Flasting 190f with closure weels	Mone
Ē	Eusparative amissions from fuel all	Fixed ruef task with internal Floating ruef with closure seels	Hose
Ë	Everyouther enigaters from aixed about the	Floating roof lank with primary and perundary seals	Mone
ŧ	Evaporative aminimus from Luryl ter storage	fixed roof tank with internal floating roof with closers seals	1
şir	Evaporative animateus from Luryl oil glorage	Fined roof tank with internal floating roof with circums sadis	Rose
316	Expected two amissions (ram Lury) manifeta storame	Fiesting roaf tank with primary and secondary small	None
ŝ	Evaporative esizatores from Lurgi	Fixed roof tank with Internal flatting roof with closure seals	None
	Stretford exteller went qui	Incineration in the boiler	flor tes
2	Amon's recently evertheed pases.	Cambined with NgS-tuan gazes for treatment	See Straw 283
\$42.503	Flee ass from process beaters	Mone	#C-04
	- } }		

TABLE 2-4. POLLUTION CONTROL TECHNOLOGIES FOR AQUEOUS WASTE STREAMS

Î

Stream	Stream Description	Control Technology Considered	Secondary Muste Streams Generaled
52	Caal starage pile numoff	Sedimentation and postralization	Sedimentation sludge
210	Lurgi gas liquor	Control Detion 1. Page of recovery +	Amonie recovery overhead gases (Stream
316	Methanol/water still botu. s	activated sludge + chemical precipitation + activated carbon	428), 4011Mated Sluage waste (attemen 139), Chemical precipitation sludge (56ream 433)
508 208	F-I wastmater Upgrading wastmater	Control Option 2 Frend straction + amonia recovery + activated sludge + forced evaporation + surface impoundment	Ammonia recovery overhead gases (Stream 428), activated sludge waste (Stream 431), leachate
ğ	Desineral izer regeneration wastewiter	lautral;zatiem	None
30,	Coaling tawer blowdown	Sedimentation and neutralization	Seafmentation sludge
9	Stretferd solution bloodown	Reductive incineration	M ₂ S offges for recycle to Stretford

Stream 210) and F-T wastewater (Stream 219) which are combined with the Rectisel condensate/still bottoms (Stream 216) and upgrading wastewater (Stream 508) for common treatment. Two treatment alternatives were considered for these streams: (1) phenol extraction, ammonia recovery, activated sludge, chemical precipitation, and activated carbon adsorption followed by discharge to surface waters; and (2) phenol extraction, ammonia recovery, forced evaporation and surface impoundment. Block flow diagrams of these treatment schemes are presented in Figure 2-4. Blowdown from the Stretford Unit (Stream 416) is treated by reductive incineration; liberated H₂S (Stream 417) is recycled to the Stretford inlet and residual salts are recycled as makeup chemicals. Other wastewater streams are essentially identical to wastes generated by coal-fired power plants or refineries, and are treated accordingly.

2.2.3 Solid Waste Management

Based upon solid waste management practices currently applied in the synfuels and other industries, and those being considered for proposed synfuels plants, many of the solid wastes will be landfilled. As indicated in Table 2-5, the only material likely to have reclamation value is the spent methanation catalyst. This mickel-based catalyst will probably be recycled to the vendor for metals recovery or reprocessing and reuse. All other solid wastes are expected to be landfilled.

2.3 SOURCE TERM ESTIMATES FOR WASTE STREAMS

This section presents source term estimates for Risk Analysis Units (RAUs) in both uncontrolled waste streams and discharge streams after waste treatment. The RAU categories considered have been previously listed in Section 1. Data sources for characterizing uncontrolled waste streams from the Lurgi based F-T synfuels facility and for estimating control technology performance are briefly described in Section 2.3.1. Source term estimates for gaseous waste streams, aqueous waste streams, and solid waste streams are presented in Section 2.3.2, 2.3.3 and 2.3.4, respectively. Where data are available, source term estimates are presented in ranges. For the majority of waste streams, only a single number is presented for each RAU representing a specific set of design/operating conditions. A single number does not imply a high accuracy for source term estimates but, rather, reflects the absence of data for estimating the influence of varying design/operating

Block flow diagram for wastewater treatment

Figure 2-5.

2-20

TABLE 2-5. POLLUTION CONTINUE TECHNOLOGIES FOR SOLID MASTE STREAMS

Stress	Stream Description	Control Technology Considered	Streams Generated
212	Spent shift catalyst	Offsite catalyst reclamation	Mone
217	Spent salfur goard	tandfill	Leschate
216	Spent F-T synthesis catalyst	t.andfill	Leachete
622	Spent methanation catalyst	Offsite cetalyst rectamation	Kene
8	An ester treatment sludges	Lendfill	Leachate
ĕ	Boller bottom ash	Landfill	Leachate
1 00	Quenched gas if fer ast:	Lange 1:1	Leachate
25	Activated studge maste	Landf 111	Leachate
63	Chemical practipitation studge	Landfill	Leachate
3	Botler Fly sah	Lindfill	Leachate
3	FGD sludge from Timestone scryoting	Fluation followed by lendfill	Leschate
445	Sodiam suffite scrubber sikdym	Flantion followed by landfill	Leschate
9	Miscellantous sedimentation/ treatment sludges	Land+†\$\$	Leachate
606	Alkylytion studge	Meutralization followed by Landfills	Leschate
0	Spent polymentration encalyst	Lendfill	Leachate
\$15	Spent bydrogenation :: talyst	Offsite catalyst reclamation	Hane
512	Spent hydrotreating schalyst	Offsite catalyst reclamation	#ene
51.3	Spent isomerization catalyst	Offsite catalyst reclamation	.
\$14	Somet reduceday cotalext	Offsite catalyst reclamation	Norse

conditions. Uncertainties in and limitations of the source term estimates presented in this section are presented in Section 2.4.

2.3.1 Data Sources for Stream Characterization and Control Performance Estimates

The major sources of data used to develop base plant/process configurations and to define the types and characteristics of uncontrolled synthetic fuels facility waste streams were: 1) a test program of a Lurgi-type gasification facility in the Kosovo region of Yugoslavia (10); 2) a program involving the gasification of American coals in a Lurgi gasifier at Westfield, Scotland (1); 3) SASOL plant test data provided to EPA by SASOL (11); 4) a gasoline-from-coal research study conducted by the Mobil Research and Development Corporation (6); and 5) various permit filings and environmental impact statements for proposed U.S. Lurgi based SNG facilities (7,12,13).

Characteristics of treated waste streams depend largely upon the performance of the control technologies employed. Data sources used to estimate control performance include published performance data, contacts with control technologies in related conventional industries, experimental data regarding the performance of controls on Lurgi gasification waste streams, and engineering evaluations. Since few of the control technologies considered have been routinely employed in Lurgi gasification or F-T facilities, some extrapolation has generally been required in projecting control performance to a Lurgi based F-T facility.

2.3.2 Source Term Estimates for Gaseous Waste Streams

Source term estimates for uncontrolled and controlled gaseous waste streams are presented in Tables 2-6 and 2-7, respectively. Uncontrolled fugitive dust (Stream 200) and fugitive particulate (Streams 202 through 205) emissions estimates were based upon published emissions data from other industries with similar coal handling/preparation operations (14,15,16). Dust and particulate were assumed to have the same composition as the parent coal with restrict to ash and trace elements, regardless of particle size. In the case of uncontrolled fugitive dust, the tabulated range of respirable particulate corresponds 5 to 100% of the uncontrolled emission. A fugitive dust control efficiency of 90% was assumed. In the case of uncontrolled fugitive

TABLE 2-6. SOURCE TERM ESTIMATES FOR INCONTROLLED GASEOUS WASTE STREAMS

		!	e j		1		112
	22	702	To the same	Man and a second	Transfer T	209 Democraritation	Shift Catalyst Remeration
Bigl Andlysis Units	Augst ive	Part (culate	Year Ges	1 (4) X	Bate Ser	6110	Difess
	•	=	8	•	13080	8	•
Culture and date	·c	-	۵	-	•	٥	9
TATE OF THE PARTY	a	-	o;	- ;	_!	•	в •
Artic 04505	•	-		<u> </u>	9 1	200	• •
Altaline gases	~ •	9 -	23	3-	3	3	
Mydrocarben geten	5 4	-	₹	•	-	•	
Ferries designed	9 4	-	•		•	•	•
Weighting engeneralerings Weighting engeneralis de fide	•	•	•	-	-	•	•
Valuation 465 betweencyclics	•		• ·	-	•	5 •	9 <
tolatila #-haterocyclics	-		a (5 e		• =	> 0
Benzene	01	- •	•:	• c	• 4		•
Aliphatic/olikyclic Kow/Diarundiic hydrocarbon		••	::	ф	•	寮	ø
(excluding benzene)	9	•	:	•	140 6	•	0
hydroca rhans		•	•	•	•	•	•
displate anthes lessinates	•	•	٥	9	•		,
Armentic select (excluding	٠	•	•	٥	•	•	•
E-terrecyclics)	•	*	•	•	=	•	•
Alkaline eltresse betare- cerites ("atarimes")	•	•	=		,	İ	
(auclialing "unintilun")	•	•	•	¢	•	•	٥
mentel H. O. > Metern- cyclics (eschwing	•	,	,	1		•	
"welst Lies"	•	٠,٠	•	6	•	•	•
(4:04:04:01)	•	•	•	,	ì	. '	•
Phanols	•	0	•	٥.	90	••	9 4
Aldebydes med between (*corbonyis") (ext) with	5	5	•	• :	•	•)
Torasidehyda	•	5	•	•	•	2	
AND MANAGEMENT OF THE CONTRACTOR SERVICES	•	•	•		• •	•	•
Mostels	•	-	•	• •	-	•	• •
Middle romatics	,	-	• •	-			•
	•	• •	•	0	-	•	•
Militer	0	۰.	• •	•	•	-	• •
Part Beentrible sarticles	\$ 0-6 20-68	· 2	9.30	· :	9.6	•	0
Artes Ic	3.4230-4-S.4210-4	0.0045	•	7.1210	•	- 1	-
Mercury	4. 14.10.	4, 34.0°°	•	- T-	• 4	5 C	•
u ke ka l	4. Anto-6.1 2210"3	5-01×9.5	•	4. E. 10-6	: 1	.	•
(earl	0.0022-4.0030	Q.025	•	5,6x10-4	•	0	-
Albar Iraca alemants Redusctive esterials		•	•	DAY AVALLA	-	01	٥.
Giber reministry meterials	•	-	•	•	•	=	- !

TABLE 2-6. CONTINUED

			Haste	Naste Stream Coneretten Bate, taffer	for fair, to		
•			233			\$	
	- 10	15. 25. 26. 25.	Feg 11 ive	ä	305	Evaporativa Emissions	Estation of
Bick Amilyata Units	Pys-tem	_	from Process Equipment P	Debydration Offess	Fine Gar	from Sasol Inc	from Dinsel 011 Storage 6
		I	٠	•	25	•	0
Carbon mana file	•	<u>.</u>			2600	•	-
Total Contract of the contract	•	• =	•	۰	096	•	•
	100	•	•	•	•	וי כו	7
6 Altal fee pasts	-	- j	6	54	ã	, c	3 &
Systematics passes	900		₹<	• =			. 0
į		, 4	•	• •	•	•	•
	•	-		_	•	•	•
•	•	•	•	e 1	•	٥,	3 6
1177	0	•	• •	۰.	D (= <	Beating School C
To the same	0	•	-01.0.1 -01.0.1		= <	2 6-4 4	n. 024_0.006
=	E:	•	2 5	-	2 2	0.64-0.99	B. (1073-0, 029
Post, Whereastic Approchames	2	•	3	•			7
feliciality production		۰	8.05p	0	9500°0	0	2.6k)0 '-1.0119 "
7	۰	•	4		•	0	•
H-before K1 ks	,		,	,	1	•	•
ly Aronatte animen fanctuding	•	۵	5	9	9	•	•
E-Material No. Altaine edurages betwo-	•	٠	9	=	٥	٥	÷
cyclics ("azarmes")							
[excluding "valorities."]	•	•	•	•	•	0	•
Cyclics (ere	•	ı			•		
**elat(#6"]	•	٠	•	•	•	~	•
	ı		' '	•	•	•	•
Name of Street	~ •	•	-:		•	> ©	•
. Aidebydes and halones ("conferents")(excludion	9	2	r n	•	,	•	•
termal deflyde)				,	,	•	•
2) Hombetantcyclife organs	1300	•	•	0	-	>	•
Alcebals	35	•	z.	•	0	61	e (
	٥.	0	•	9 6	D e	9 6	•
[Sier]	8 6	p	•	90	•	. 0	•
-	a		0	ю.	•	Φ.	•
_	•	•	•	a <	. 5	.	> •
	-	• <	5 4	•	4	•	•
Market Control of the	, eo	. •	•	0	0.058	.	5 4
-	91	۰	٥,	a c	0.7	• •	5 <
K Color	· •	• •	• e	•		•	,
Other trecs elements				_	MAILANE	•	•
O Redissoctive enteriets (att/hr) Antere resolution motorial	e e	ća	ė c	0 4	0.21-4.42 0	••	90

(Cont Inned)

TABLE 2-6. CONTINUED

		:		Maste Strawn Generation Rate, 44/hr	st ton fate, by/hr		
		311	313	386		景	
		Exaporative	Evaporative	Evaporative	Evaporal ive	Everorative	Evaporativa
		from Fort	Hised Alcohol	from Tor	Lury! Oil	free flightha	free Press
1	List herivels letts	All Staroger	Yeres 1	3004063	3501698	24013 011	# 1 A 1 A 1
	Carben movex16e	•	•	8	•	•	•
	Calfar author	•	0 •	& 4	• •	96	-
	ATTENDED TO SEC.	•	>=	0.21-15.1	0.12.0.30	. e	•=
	Altaline uses	00	•	0.021-0.11	0.012-0.839		-
	Mydracurban gates	•	•	0.866-5.45	B. 049-0.16	•	
	Farm labyde	0	•	•	•:	-	-
	Walatti e ergementiter ines	9 4	•	-	• •	•	:
	TOTAL OF CHARLESTEE SCHOOL	•	•	• •	• •	A 813 A 898	
	TOISTILE US MEMBERS JET 16:3 Noistile M. Astronomeiller	• •	•	•		E/8.0-6.18.0	-
	Bearing.	• •	• •	0.077-0.41	9.045-0.14	0.14-0.28	
	Al fate tic/al texelte	2. Brita-4-0. 2x30-4	•	0.12-0.90	4.098-0.12	0.676-0.15	***
	Spend Planters to hydrac private	1.9x18-4-6.4x10-4	-	0.060-0.12	8.035-8.11	0.47-0.95	•
	(exc)witeg benzeng)	S. W. C. Parkers	•	from a company of	4	•	•
	PRINCIPLE MARKET	Deal - Links	•	- WING DIKY -		•	В
	Alliphatic animos (encluding	**	-	•	•	•	•
	H-hettenkyc) k.s.)		•	•	•	•	•
	Armetic denses (accident	-	•	•	-	•	•
	Altaline sitragen betero-	6	•	•	٠	=	٠
	Cycl Rob [area passed]						
	Mercel E. C. S Matery	-	•	•	•	9.0077-8.945	0
	cyclifes (excluding						
	Carbonal to seids	6	•	Ģ	¢	-	•
	(excluding "voletiles")	•	•	•	•	•	•
	flere)!	0	•	£40.0-520#.0	0.0015-0.0047	•	2.0.2
	Aldebydes and tatenes ("tarbemyla") (ext) ading	8	0.13-0.30	~	•	o	•
	(ersel delyste)		-		1	,	
	technical tentral	•	5	0.024-0.13	340'0-tig'0	•	•
	(Perhal)	•	4.54-1.	•	•	0	•
	Mitrocramic Ica	¢	•	•	-	•	•
	Esters	•	•	c (-	•	ć 1
	721645 845-11-	.	5 6	-		D C	.
		• •	• •	, =		• 4	•
	Despirable particles	•	•	-	-	•	•
	Arsente	.	•		•	•	e :
	Torcery Historia	0 4	•		••	-	• :
	Cotalian	••	••	•	•	• 0	
		•	•	-		•	•
	Redinactive materials		•	WI SPAINS	ILABEL O	•	•
	Other rum falley exterisis	•	•	•	-	æ	-

TABLE 2-6. CONTINUED

		Haste S	tream Generat	ion Rate, kg/hr	
	Risk Analysis Units	415 Stretford Dxidizer Vent Gas	428 Amonta Recovery Overhead Gases	306 Cooling Tower Evaporation and Drift	502-507 Flue Gas From Process Hosters
<u> </u>	Carbon monoxide	0	130	, <u>p</u>	1.8
ż	Suifur oxides	9	. 0	Ö	0.
3	Nitrogen oxides	0	0	_ 04	<u>]</u>]
i	Acid gases	0	230	2.6x10 ⁻⁴	O
5	Al ka i ine gases'	3.9	19	7.3×10 ⁻⁴	0.72
6	Hydrocarbon gases	D	700	<u>o</u>	
7	Forms I dehyde	0	0	0	0
É	Volatile organochlorines	Q	0	Ó	<u>o</u>
ă	Wolatile carboxylic acids	0	0	0	ā
10	Yolatile D&S heterocyclics	0	Ò	Õ	0
iĭ		0	Ō	Õ	<u> </u>
12		Ġ	Õ	Ď	Ċ
13	Alimetic/alievelic	Ö	Q.	0	o a
14	Mono/Diaromatic hydrocarbons	0	51.0	0	u
15	(excluding benzeme) Pelycyclic aromatic	0	0	0 .	0
	hydrocarbons	٥	0	0	Ð
16	N-heterocyclics)	_	•	0	В
17	Aromatic amines (excluding	٥	. 0	v	•
18	N-heterocyclics) Alkaline mitrogen hetero- cyclic ["azaremes"]	Đ	G	G	0
19	(excluding "volatiles") Reutral N. O. S hetero- cyclics (excluding	a	0	0 .	0
70	"voeltiles") Carboxylic acids	0	٥	a ·	0
	(excluding "volatiles")		_		0
21		ā	D	0	ě
22	Aldehydes and ketones ("carbonyls")(excluding	0	0	u	
z	formaldehyde) Nonheterocyclic organo	0	120	0	0
	su) fur	0	0	0	a
24		Š	ŏ	ŏ	ā
25	Hitrogrometics	0	ŏ	õ	ā 0
26	Estars	0	ŏ	0 0	0
27		ŏ	ŏ	ŏ	٥
25	Hitriles	ğ	ŏ	ŏ	9
2	lars	ŏ	ă	Ď.	8.45-1.3
3	Respirable particles	ŏ	. 0	5.0x10 ^{-\$}	o.
31	Arsenic	ä	Ğ	1.3x10 ⁻⁵	0
3:	2 Mercury	ŭ	ŏ	3.5x10-4	0
3.	3 Nickel	ŏ	Ď	7.5x10-5	Ō
3	Cadmists	Ó	Ó	2.5x10-4	0
3			NOT AVAILABL	LE	g
30		0	0	ů	0
3	6 Other remaining materials	ŏ	ā	Ò	Q

*Maximum duration is I hour at this rate plus am additional 7 hours at about half this rate. This is the worst case transient amission and could occur up to 45 times per year. Thift catalyst regeneration/decommissioning is estimated to occur for a total period of of 60 hours per year. As small quantity of methane and glycal would be present in this stream although no basis exists for estimating the emission rates.

\$50011 amounts of other organic compounds may be present in this stream, although supporting data are not available.

2-26

²⁻²⁶

TABLE 2-7. SOURCE TERM ESTIMATES FOR CONTROLLED GASEOUS WASTE STREAMS

		3	Marte Stress Severation late, tothr	n Bate, tgebr			
	2	203	233 Fugitive Organic	925 255	Evaporative Emissions	Evaporative Endssions	45 A A A A A A A A A A A A A A A A A A A
Rink Jestveits Ibits	Patties Patt	Furt Sculete	Process Septemble	07/925	Morage	Oil Sterage	feet fer
Carton manoxide	•	01	90	D G	0 9	••	- 0
1	0 4	9 4	• •	•	. 6	•	•
3 Milrages enider	• •	•		.	•	e ¢	
	•	•	66.79	5 4	• •	•	•
Mydracarban garan	0 •	•	× •	•		•	•
7 Fermildsbyte Friedly Americalism	• •	• &	•	•		۰ ۹	•
Teletife carboxy) ic acids	•	D	•	• •		- 0	•
_	•	•	.	6 4	•	. 6	•
# (• •	•	1,3410-5-6,7x10-5	•	-	3.9×10-7	0 0
13 A) taken te/ell teyen te	• •	•	74-57 74-57	•	0.14-0.24	0.62	* 0
	•	•	7.0-3.1	•			•
(excluding beneath)	•	•	0.0043-0.b23	•	ø	6.4410	•
	•	•	Ф		۰	•	•
•			c	•	0	Þ	•
17 Arenet is defeat (excheding	•	•	•	•		,	•
Mailtee attergen betere-	•	c	•	•	6	•	-
cyclics ["startens"]					•	•	•
Manager II. 4. 4 tolera-	•	•	•	6	3	•	•
	•	•	e	•	•	•	•
Carbeaglic actes (Arrivated Arrivation 1)	•	•	•	1 :	•	•	•
2) Phanels	•	ъ.	0,	.		•	
Carbonic letters	D	•	0,	•	•	•	
	•	•	٠	6		•	•
23 Bechgerenyel's arpas	,	•	•	,	•	•	•
	6.	•	6.7-7.7	96	o &	• •	•
	9	• •		.	91	•	••
	-	•	•	.	9 0		•
	. •			•	0 (•	• ;
	wi.	Ξ,	a :	e c	00	, 0	J. 1210-4
R Arsenic Placemen	6.3x10-7-13x6-6	2.0x10-6-9.3x10-6	. 0	•	01		
	4.310-5-4.5ald-4	1.6x10-4-5.4x10-4	¢ ia	•	99	.	
	7.3x10-4-3.0x10-4	7.5x10-4-2.5x10-3		04	•	.	9. T
M diber trace elements V Lediportive materials	4, 7x10+4-6, 5x10+7	4650 -0-0100 -	***	• 0 0		90	••
	,				(40)	Samed)	

1]		t	thatte Stream Congration Batm. 19/Nr.	1. t4/lr	
and basical falls	110	III .	314 Evaporative	Systemation	Evaporative
3	facts tens	Kaissjens from	Caissions frod Tar	Caisalons from Lungi Oil	from Naphtka Storess
	all Statem	States	2104 (186)	3 mile	•
	••	••	o 5	5 0 1	9 9 9
A Valley British	• •	•	0 0000	0 00 0 000 0	-
4 K. S. 4 Sec.	•	o 4	F.9110-4-0.2×10-4	3.4x10-4-4.2x10-4	•
6 tylender pasts 6 tylender pasts	> 0	•	0.0028-0.0034 0.0038	0.0014-0.0017	•
7 Carmi delgete	•	.	. 0	•	•
	• •	-	•	• =	7. Bulb.4-1.4k10-3
	43 1	• •	5 G		
Velocitie M-beteracyclica	D =	• •	M 60-0-9208-0	9.0012-0.0016	
	2.6.10 5-1.0x10 6	e c	5.000 0-9600 0 1.000 0-0200 0	9. FullO-4-1. Ex10-3	0.029-0.053
Banay Princes the dydrathrons for full the beauties	J	•	Andreas Andreas	B-RI-D C-IN-6	•
	3.6x16 x1.4x10	•	4 , Falgre, 4 , 9×10	BIVE - 2- 0480'3	•
hydrac arbitra 24 - 21 a-2-24 for ambase (excludible	•	۰	5	-	•
H-Metorical test	•	•	•		•
	. •	•		•	•
TO A JUSTICE OF COMPANY PARAMETERS.	•	i			
(antiating "minitals")	•		a	•	4.8x9-4-8.7x90.4
			·	•	<
STATE STATE	0	•	6	-	•
3.	•	•	4 4E10-5-1.0x10-4	4.1410-5-5.1x10-5	94
Z Manydes and betones	•	0.047-0.15	œ.	o	5
	•	•	8.2x10-4-9 6x10-4	4.0210-4-5.6210-4	P
1			•	•	•
2	-			•	•
25 Exterior			•	- C	• 0
-	.	o -	.	•	
-	. 0	•	•	e c	5 @
_	Q <	• •		•	•
N. Artenic	.=		•	ø c	9 0
	90		301	• • •	00
	•	••	-		0 6
W Hiller trace elements D' Refloagilite miterialit	100	•	•	-	••

	Eraporet Ive	213	¥	Trunslent	Incinerated	Casting Tener	Flee Cas From
alot tealer is that	Care Parel	Regeneration Officer	1 S	Haske Gesen ⁶	8	Evaporation	Frace 13 Restors
5	- WILLIAM F		4		- 	10	•
Cartes mounties	e c	• <u>\$</u>	1032	2	•	- 60 1	ŀo
		•	1200-1-003	운.	••	- C - C - C	= 1
ficht auser	•	•	-:			Paris C	D 4
That he gones	•	0	¥ 2	77		•	2.0
Sydracarbon polici	•	.	i a	0	•	•	45
	. 6	• 0	•	-	0	•	•
alabile communication and	113	•	0	•	01	۰.	•
statile this hetarecyclics	•	-	•	٥.		• e	•
Pajatija K-betoracyci ica	••	0 4	5 6	• •	•	. 0	•
Jan.		9 4	> =	•	•	•	•
At the tic/officeritie	9 0	. .	3 4 3	•	=	•	•
Anti-	•	1		,	•	•	•
officer to a remail to	•	-	.	b	•	•	۵
Aybuc erbere	•		•	ď	=	•	•
Attitudes police terribuled	•	•	•	•	,	1	;
Accessive assistant describition	•		•	•	•	•	•
			•	•	•	•	•
Altestine attrages better-	•	٥		•	•	•	•
					•	1	•
strel M. O. 5 hetero-	•	•	•	•	•	•	•
eyelles lexeluding							
#6 st ()es";	•	•	*	•	•	•	9
(cx 14 14 14 14 14 14 14 1	Ì	•		•	•	•	•
	016° 4° 768° 9	¢	•	•		, p	•
Aldehydes and between	-	-	•	•	•	ı	
				•	•	•	•
until teres yelle organo	•	•	•	•	•	=	•
-	•	•		•	-	۰	•
		•	• •	•	•	•	•
	•	•	•	0	~ (•	- 4
	0	•	6	00	.	>6	
Itriies	D (o :	> C	• 0	•	•	=
Territoria fortica	•	• •	251-14	1.1-1.3	-	٥	6.6-1.3
	•	•	4.041-0.27	0	••	10 - CE - C	• •
Marc way	•	•	1500.0	9 =	•	- O. S. E.	•
	-	- 4	19.4.6. M		•	4-0145.V	•
	• •	•	0,83-7.7	•	•	7 OF 5	• 4
Other trace elements	•		0,44-1,5	•	• :	¥ 6:-	• •
	•	•			b	•	•

This supply quantity if sethane and direct moved be present to this strong although no basis unlike for estimating the marsion ratus.

*Saire catalyst regeneral backcommissionales is estimated to occur for a total pariod of 60 hours per year.

*Saire catalyst regeneral backcommissionales in the belief service; the transities waste passe (Strong 200). Transities of little regenerately due to their intermittions generation.

**National durations is from at this rate plus an additional 2 hours at about half this rate. This is the norst case transities and could occur up to 45 times per year.

**Saire transities an advance compounds may be present in this stream, although supporting date are not available to answers of other urganic compounds may be present in this stream, although supporting date are not available.

ds may be present in this othern, sitherny supporting date are not available.

particulate, all particulate was assumed to be respirable. A fugitive particulate control efficiency of 90 to 97% was assumed.

Compositions of uncontrolled lockhopper vent gases are based upon test data from commercial scale Lurgi gasification (10). Low pressure coal lockhopper ver: gas (Stream 205) characteristics reflect pressurization with Lurgi gas rather than an inert gas. Transient waste gases (Stream 208) were assumed to be similar in composition to gases from air-blown Lurgi gasifiers, with frequency, duration, and volumetric flow rates based upon information in permit applications for a U. S. Lurgi based SNG facility (13). Controlled emissions from combustion of low pressure lockhopper vent gas and transient waste gases*are based upon emission factors for natural gas-fired utility boilers (17) and NSPS emission limitations.

Characteristics of the uncontrolled gas liquor depressurization gases (Stream 209) and $\rm H_2S$ -lean gases (Stream 213) are based upon test data from pilot and commercial scale Lurgi gasification (1,10). Control of total sulfur species in these streams in combination with ammonia recovery overhead gases (Stream 428) is based upon 100 ppmv residual $\rm H_2S$ and no removal of COS, $\rm CS_2$, or RSH. Controlled emissions from these waste gases are based upon emission factors for natural gas-fired utility boilers (17) and NSPS emission limitations.

Characteristics of uncontrolled shift catalyst regeneration/decommissioning offgases (Stream 211) are based upon information in permit amplications for a U.S. Lurgi based SNG facility (13). Controlled emission rate estimates are based upon an assumed SO_2 scrubbing efficiency of 90%.

Two routine offgases are associated with the product synthesis section: 1) $\rm CO_2$ from SNG purification (Stream 231); and 2) SNG dehydration offgas (Stream 236). The estimated composition of the $\rm CO_2$ from SNG purification was based upon published engineering estimates for SNG production applications (6,8). This stream was assumed to be controlled by thermal incineration producing an incinerated $\rm CO_2$ offgas (Stream 429) containing 50 ppmv CO and 30 ppmv total hydrocarbons. Although no characterization data are available for the dehydration offgas, this stream may contain small quantities of

^{*} The combustion of these gas streams is similar to the combustion of fuel gas.

methane and glycol sorbent. It has been assumed that the dehydration offgas is discharged to the atmosphere without control.

Fugitive organic emissions from process equipment (Stream 233) have been estimated based upon published emission factors for pumps, compressors. valves, flanges and drains (18) and on an equipment count for a conceptual indirect coal liquefaction facility (19). Fugitive organic emissions from process equipment in gas or vapor service were all assumed to be hydrocarbon gases (RAU category 6). Emissions from process equipment in light liquid service were assumed to be casoline and mixed alcohols in proportion to the product slate and published composition data for these products (6.20), and is the major contributor to tabulated emissions for RAU categories 13, 14, 22 and 24 in this stream. Emissions form process equipment in heavy liquid service were assumed to have a composition similar to petroleum diesel oil (21) and contribute to tabulated emissions from RAU categories 12, 13, 14, and 15 in this stream. An overall reduction in fugitive organic emissions from process equipment of 72 to 85% was assumed, although higher efficiencies were assumed for light hydrocarbons and lower efficiencies were assumed for heavy hydrocarbons (22).

Emissions associated with the flue gas from steam and power generation (Stream 302) were estimated from material balance calculations and published emission factors for utility boilers (17,23). Fly ash was assumed to have the same composition of the whole coal ash except that all mercury in the feed coal is assumed to be volatilized. Approximately 4% of the uncontrolled particulate was assumed to be respirable (23). Ranges in emission estimates for treated flue gas reflect ranges in NSPS control requirements for electric utilities and industrial steam generation units. Enrichment of arsenic, nickel, cadmium, and lead in the controlled particulate has been assumed, and approximately 73% of the controlled particulate was assumed to be respirable (23). Tabulated controlled flue gas emissions include emissions from boiler combustion of waste gases. Controlled transient waste gases have not been included due to their intermittent generation.

Evaporative emissions from product and by-product storage were based upon published emission factors from other industries (17). The composition of evaporative emissions from alcohol storage (Stream 313), gasoline storage

(Stream 329), naphtha storage (Stream 316), and phenol storage (Stream 217) were estimated from published composition data (6,20,24,25). The composition of evaporative emissions from diesel oil storage (Stream 310) was estimated from composition data from petroleum diesel (21). The composition of evaporative emissions from fuel oil storage (Stream 311) was estimated assuming that 59% of the emissions were saturates (RAU category I3), 40% were aromatics (RAU dategory 14) and 1% were polycyclics (RAU category 15) which is consistent with trends in shale-derived residual fuels and petroleum diesel (21). In all cases, evaporative emissions from product and by-product storage were assumed to have the same composition as the bulk liquids. This is a conservative assumption from the risk assessment standpoint because the heavier fractions of the hydrocarbon products, those usually associated with higher risks, have lesser tendency to be evaporated due to their low vapor pressures. Evaporative emissions from Lurgi tar and oil storage (Streams 314 and 315) are based upon tar tank went gas characterization data from a commercial Lurgi facility (10).

Control efficiencies for evaporative emissions from product and byproduct storage were assumed to range from 60 to 99% based upon published
emission data from other industries. Tabulated ranges in uncontrolled and
controlled evaporative emission rates reflect average annual values and maximum values estimated for a facility located in North Dakota.

Uncontrolled Stretford oxidizer vent gas emissions (Stream 415) are based upon vendor-supplied information (26). Controlled emission estimates are based upon an assumed NH₃ thermal destruction efficiency of 98%.

Under normal operating conditions, negligible quantities of RAU components would be expected in the cooling tower evaporation and drift (Stream 306). However, cooling tower concentration of plant wastewaters (not incorporated in the example wastewater treatment options) could result in residual wastewater contaminants being volatilized and/or entrained as drift.

Process healer sizes were established based upon published designs for F-T facilities (6). Heaters are fired with sulfur-free fuel gas. Flue gas characteristics are based upon AP-42 emission factors for gas-fired commercial heaters (17).

Estimated stack heights, exit velocities and exit temperatures for gaseous waste streams discharged through stacks are presented in Table 2-8. All other streams (e.g., fugitive dust and particulate, fugitive organic emissions and evaporative emissions) are discharged near ground level at low velocities and ambient temperature.

TABLE 2-B. STACK HEIGHT AND EXIT PROPERTIES OF GASEDUS DISCHARGE STREAMS

Stream Number	Stream Description	Stack Height.	Exit Velocity, m/sec†	Exic Tamperature, K
211	Shift catalyst regeneration offgas	46	20	405
302	Boiler flue gas	76	20	405
429	Incinerated CO ₂ offgas	46	20	405
502-507	Flue gas from process heaters	46	20	478

^{*}Stack height information obtained from Reference 27.
tNo data on exit velocity are available. Exit velocity was assumed to be 20 m/sec, a typical design velocity for gaseous discharges through stacks.

2.3.3 Source Term Estimates for Aqueous Waste Streams

Source term estimates for uncontrolled and controlled aqueous waste streams are presented in Tables 2-9 and 2-10, respectively. Coal storage pile runoff (Stream 201) flow rates were based upon rainfall data for North Dakota. Uncontrolled emission rates for trace elements present in the runoff were based upon limited published data (28,32,33). Trace elements in the runoff were conservatively assumed not to be removed during neutralization

Uncontrolled emission rate estimates for Lurgi gas liquor (Stream 210) and methanol/water still bottoms (Stream 216) were based upon published test data (4,11,29). Uncontrolled emission rate estimates for F-T wastewater (Stream 219) were based upon a published design study (6). Uncontrolled emission rates for upgrading wastewater (Stream 508) were based upon published refinery test data and design studies (6,35). These wastewater streams would

TABLE 2-9. SOURCE TERM ESTINATES FOR UNCONTROLLED AQUEOUS WASTE STREAMS

State Continue C					CALLED MAN VENT AND	u			
11 Amount 1		198				ឆ្	Ř		444
		į,	210	517	- 219	Der (ners) 127		Strettore	1
		Starter Pile		Pathenel/Heter	<u></u> -	Regressive ton	Danier.		Manage of the second
Compare and the compare and	Alab Analente Welte	J.Ourill	į	\$111 \$410 0	No s types till	Man Company			
			•	•	•	•	•	φ.	••
		94		•	o	•	a 1	•	> 1
	Ž	•		•	•	9		D =	• •
A		6-01:0-8	2	42-0.56	Q 1	. Mar. 4		9 =	• «
		0.0	â	1.7-5.1	9 (8 =			d
	4	a	•	•	- 4	7 5	. 0	•	•
		•	•	-	. 4		Q	•	•
	Take the properties	•	•	.	2 MAY 2 MIN		. 7	•	•
	*	¢	•	2	2 mark #	•	•	٥	-
	Table 165 betereye	ø	•	7	. 6		•	æ	•
	Talletile B teterrescite	•				-	-	a	
Comparison Com	The Control	•	٤,	4 000	-	٥	حث	•	-
Comparison Com	Mintertic/allegelic	•	.:	A \$4.0.74	9	•	-	•	0.00
Continued Cont	Bengitterantife tyfrichtieff	•	¥ "		ı			ı	
	(partied in bearing)	•	3	•	9	٥	•	•	•
		•			•	•	•	•	•
Designation of the collection of the collectio	-	•	0	•	•	•	•	•	1
	=	•	۶,	•	•	•	a	•	•
	•	9	•	•	•	,	,	•	•
	Description of the second	•	•	•	•	•	6	D	D-
	Carlier ("Asserted)	•	l						
	(one buffen 'wildtifer')	,	;	e 1000 0 013	•	9	•	•	٥
	Bestrol B. O. S beture	•	•	310.0-76/M-0	•				
Constituting Constitution Cons	Cyclics (excluding					•	•	•	•
	_	۰	£	•	•	5	•	•	•
		. •	USAS Z	8	•	٥	0	•	0.00
	_	• •	}~		9	0	•	•	5
Section Color Co		•							
Machine Argument	į	•	•	•	•	•	0	9	•
Microsoft State icrosoft State Micr	-	•	9	•	•		•	•	•
Extension of the control of the cont		٥	-	1.1-1.7	-	*	•	= =	ع د
Exists 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	.	- •	9 4	-	•	•	7.4410-4
Markets Mark	_	.	⇒ 9	9 60	. 0	•	•	•	5 F
Array Barrello B		•			0	•	p <	•	a
New place 1. At 16 - 3 - 4. At 16 - 3 - 4. At 16 -		•	•	•	5 <	• 3		•	3
Account to the control of the contro				.	•	4.2×10-4	0.0024	•	-
Exemple 1.1x19**-1.7x10**-4.0x60 9.25 0 0 1.1x10**-4.0x10** 0.003** 1.1x19**-1.7x10**-1.7x10**-1.1x10*		2.7.14-5-6-10"S	*0.0°		Ð.	P.0024	4.5×10	.	
1.24(0-4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		7,510 -0.060	Ž,	6 C	3 6	+ O	0.0037	0	.
#Character trace elements 0.095 7.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9-13-1-10-1	1	• •	•	0.22	6.03	۰.	-
Big floor time materials 0 0 0 0 0 0 0		6.035	F.	-	91	6. ZB	` a	Ø	•
	figlocator materials	•	•	•	•	•	÷	•	•

"Conclusion upperfedent and indian splits of thiosulfate, sulfate, curbonate and thinsymmeter.

"Small assumin of other organic companies may be present in this stream, although supporting data are not eveliable.

TABLE 2-10. SOURCE TERM ESTIMATES FOR CONTROLLED AQUEOUS WASTE STREAMS

•				Congretion Let		
	. Risk Anglysis Units	Cost Cost Storage Pile Ruroff	500 Treated Hastqueter (Option))	iO) Trusted Hastawater (Option 2)	Sit Desiners I izer Regeneration Vastinator	Sg) Cool Ing Tower 5) gordend
1	Cartos meroxido	0	٥		······································	٥
ż	Sul fur oxians	ă	Ď	ŏ	ē	ā
ì	Mitroeen exides	ó	ō	Ò	Ď.	ō
ĭ	Ac 1d gases	6.4×10 ⁻⁵	4.3	9.7	4.1210**	6.07.3
5	Alkaline ghons	0.010	58	58	0.90	0.035
ñ	Hydrocarbon gases	0	Ģ	ō	Ď	90
7	Forma i deligide	9	<u>o</u>	о 2	ğ	0
ē	Moistile Organochiprines	0	<u> </u>	120	G G	Ģ
9	Molatile carboxylic acids	0 B	35 4.4±10 ⁻⁵	8.905 6	Č	0 0 0
o	rolatile OES neterocyclics	á·	4,4210 -	D.2034	C	ň
! 2	Yolatiie N-heterocyciics Senzene	Ď	0.0042	0.56	Ď	č
3		ň	7.8×10-4	0.037	ŏ	ă
i		ž	5.023	3.1	č	Ď
-	(excluding bengena)	-			•	_
5	Polycycliz aromatic	o	0.034	4.5	C	Ĉ
-	hydroca rooms	-	• • • • • • • • • • • • • • • • • • • •			
6	Aliphatic amines (sucluding	Ó	0	Q	C	0
	R-haterocycl ses)					
7	Arometic emines (uncluding	0	0	e	0	0
	N-neterocyc) (cs)		_		_	_
8	Allışline hitrogen hetero-	9	0	O	0	C
	cyclics ["aggrees"]					
_	(excluding "wolatiles")		0.0069	3.2	0	Ď.
9	Routral M. C. S hetero-	0	0.0009	1.2	4	
	cyclics (excluding foother)					
В	Carbourite acids	a	3.5	12	۵	D
•	(exclusing "voletiles")	•	7.2	. •	•	•
1	Phone s	ā	D. 19	9.0	D	0
2		ã	4.7410-5	3,4x1G-4	Q	9
_	("carbonyls")(sucleding	-	•			
	formal deltade)					
:3	Nonheterocycl ic organe	Q	0	Ď	0	0
	şul fur	_			_	_
14	Alcohol s	<u>o</u>	0.017	9 .005	0	5
4	#1 trearons vics	Ğ	0.45-5	0 3. 9 x10=5	Ž.	ŭ
*	Estèri	Ç G	7.6x10-6	3. WILE-3	Ů O	, ,
Ž	Antides Hitrijes	Ď	ŭ	č	Ÿ	ů
3		č	č	č	ŏ	ĕ
Ŕ	Tars Respirable particles	ă	ŏ	Ď	ă	ŏ
ĩĭ	Armenic	7.4x10**-0.027	3.8	3.0	4.2110-4	0.0024
Ë	Hertury	3.7x10"5-4.6x10"5	<0.038	-0.034	0.0024	6.5x10
13	Aichel	2_6=10~5-4_061	0.25	1.25	b.ii .	0.017
y.	Caderium	1.3210-6-1.7210-6	0.038	0.036	1.1:10-4	0.0037
H K K K	Lord	1.2×10-4-6.1×10-4	0.25	0.25	Ó. 22	8.013
16	Other trace elements	0.091,	7_2	7.9	0,20	0,17
37	Redicactive waterists:	Õ	D	O	Ó	ō
3	Other remaining materials	Ð	0	Ç	¢	Q

be combined for treatment and two treatment alternatives were evaluated:

1) phenol extraction, ammonia recovery and activated sludge followed by chemical precipitation, activated carbon adsorption and discharge to surface waters; and 2) phenol extraction, ammonia recovery and activated sludge followed by forced evaporation and surface impoundment. The assumed performance for the Option 1 control alternative included 95 to 98% removal of H₂S, HCN and NH₃, and 98 to 99.99% removal of organic compounds. The assumed performance for the Option 2 control alternative included about 98% removal of H₂S and NH₃, 86% removal of HCN, 95 to 97% removal of organic acids, tars and alcohols, and 99.7% removal of phenols.

The quality of uncontrolled demineralizer regeneration wastewater (Stream 302) and cooling tower blowdown (Stream 307) (in the absence of cooling tower concentration of wastewater) is largely dependent upon the quality of available feed water. Although these streams are likely to contain low levels of trace elements, emissions of trace elements in these streams are expected to be small relative to emissions from other sources within the facility. Emission estimates for these streams are based upon average concentrations in the electric utility industry (33).

Stretford solution blowdown (Stream 416) would contain vanadates and sodium salts of thiosulfate, sulfate, carbonate, and thiocyanate. This waste would be largely recovered by reductive incineration with recycle of salts to the absorber solution and recycle of gaseous reduced sulfur species to the absorber feed gas.

It should be noted that leachates from solid waste disposal may also be generated. However, no landfill leachate data relating to the landfilled waste streams are publicly available. The limited leaching data for quenched gasifier ash are summarized in Table 2-11.

2.3.4 Source Term Estimates for Solid Waste Streams

A summary of uncontrolled solid waste streams and available characterio zation data are presented in Table 2-11. Spent shift conversion, methanation, hydrogenation, hydrotreating, isomerization and reforming catalysts (Streams 212,229,511,513 and 514) would be recycled to the vendor for metal recovery or reprocessing and reuse. All other solid wastes would be either landfilled

TABLE 2-11. SUMMAY OF UNCONTROLLED SULID MASTE STREAMS

Stream	Streem Inscription	Generation Bate, kg/hr	Composition Data/Leaching Cheractaristics
212	Spart shift catalyst	2	Cobalt-molybdate catalyst
	Spant mifur quard	3	Contains after exists and after sulfittee (30)
51.8 81.2	Spant P-T synthesis	25	row-based catalyst - no published information regarding promoting elements
229	Spent methanation catalyst	urt.	Nickel-based catelyst
200	Raw water treatment sludges	570	Contains 362 Cat0g, 23 Mg(0H) 2 and 605 MgO (31)
Ŧ,	Better better sh	2400	Similar in composition to cool ash
60	Quenched gasiffer ash	100,000 (about 20% moisture)	Trace element leachability (my/kg dry ash); As = 0.60, Bs = 7.4, Cd = 0.050, Cr = 6.2, Hg = 0.0025, Mi = 0.40, Pb = 0.20, Ss = 0.16 (4)
Ē	Activated sludge weste	5500-7700	May contain refractory organics and trace metals
633	Chestos) precipitation	2800	May contain refractory enginies and trace metals
3	Boiler fly Ash	400	Statler in composition to coef ash
3	FGB sludge from 1 facstone scrubbing	15,600- 38,000	Contains 40% solids consisting of 488 CaSO3. 168 CaSO4 and 36% CaCO3 (23)
5	Sodium sulfite scrubber aludge	44 (dry bashs)	Consists primarily of Na ₂ SO ₃ with small amounts of Ma ₂ SO ₄ and possibly treck metals.
6 05	Alkylation sludge	=	Studge is expected to contain about 50% GaF_2 & may also contain altylation term.
210	Spent polymerization catalyst	06.0 11	Phosphoric acid on kinselguhr or querta chips
119	Spant hydrogenation catalyst	0.10	Cobalt-molybdate catalyst
512	Spent bydrotreating catelyst	99.0	Cobalt-malybdate catalyst
513	Spent isomerization catalyst	0.40	Platinum-based catalyst
15	Spent reforming catalyst	9.0	Platimm-rhenius catalyst

directly or landfilled following chemical fixation or neutralization. Very limited composition data and leaching data are available, and no landfill leachate data for the landfilled waste streams are publicly available. Hence, source term estimates cannot be prepared for either the uncontrolled or controlled solid waste streams.

2.4 DATA UNCERTAINTY AND LIMITATIONS

In the previous section source term estimates for most of the waste streams generated by a Lurgi based F-T facility, particularly waste streams unique to synfuels technologies, were presented. However, available data on the risk analysis units generally consist of single data sets which may not include data for all RAUs present in the waste stream. Moreover, source terms for waste streams from future commercial facilities could differ from those presented in this report for several reasons. One reason for such differences would be the uncertainty involved in estima emission/ effluent compositions at this time. As discussed in Section 2.3, the environmental data are limited, the foreign facilities tested are not entirely representative of proposed U.S. facilities, and there is necessarily some uncertainty in making engineering estimates of trace components in discharges from complex systems.

The major uncertainties and data limitations associated with source term estimates for controlled gaseous and aqueous waste streams are summarized in Tables 2-12 and 2-13. In the case of solid wastes, the composition of uncontrolled waste streams is of less significance than the composition of any leachate resulting from landfilling these wastes. Hence, the major uncertainty associated with solid waste streams relate to leachate characteristics (Table 2-13).

Of the parameters influencing waste stream characteristics, variations in the feed coal composition are the most easily evaluated. Variations in the characteristics of North Dakota lignites are summarized in Table 2-14. These data provide a basis for evaluating ranges in certain waste stream characteristics. For example, the design sulfur level is about twice the average sulfur concentration for North Dakota lignites. Hence, on the average

TABLE 2-12. GASEOUS NASTE STREAM DATA UNCERTAINTIES AND LIMITATIONS

Stream	Stream Description	Major Data Uncertainties and Limitations
200	Fugitive dust from material storage Fugitive particulate from material conveying and processing	• Emission factors are based upon test data from facilities with processing similar to that employed in synfuel applications. However, emission factors may vary greatly with local conditions.
	•	• Trace element emissions depend upon coal composi- tion, trace element distribution among size frac- tions, and control efficiency for each size frac- tion.
		 Data on the fraction of particulate which is respirable are limited.
506	Ash lockhopper vent gas	 Emission estimates are based upon limited test data from a foreign facility. Indicated volatiles may be directly associated with the vent gas or may be the result of impurities in the wash water stream used to scrub the gases.
		 Trace element emissions estimates are based upon the Lurgi ash composition which may differ in com- position from the entrained particulates.
233	Fugitive organic emissions from process equipment	 Emission estimates are based upon petroleum refinery experience and equipment counts from conceptual F-I designs. Total mass emission rates may differ greatly in operating f-I facilities.
		 Emission composition estimates are based upon product slate estimates and limited data from Lurgi, F-I and petroleum products. Composition may differ greatly in operating F-I facilities.

Stream		
Merch	Stream Description	TAJOT DATA OTCETTAINCES SIN LINIELIONS
308	Evaporative emissions from gasoline storage	 Total emission estimates based upon correlations for petroleum liquids. Total emissions from F-T limide man differ.
310	Evaporative emissions from diesel oil storage	Composition estimates are based upon limited
311	Evaporative emissions from fuel oil storage	data from F-T and petroleum products. Approach should be conservative in that emissions of
313	Evaporative emissions from mixed alcohol storage	Composition of emissions from F-I liquids may differ.
314	Evaporative emissions from Lurgi tar storage	
315	Evaporative emissions from Lurgi oil storage	
316	Evaporative emissions from Lurgi naphtha storage	
317	Evaporative emissions from phenol storage	
112	Shift catalyst regeneration/ decommissioning offgas	• Suifur emission rates are largely dependent upon the sulfide content of the catalyst which is pro- prietary information. CO emissions (if any) depend upon the extent of carbon buildup on the catalyst and the efficiency of combustion during regeneration/decommissioning operations; data relating to CO emissions are not available.
		 The frequency of regeneration/decommissioning operations is dependent upon process conditions and catalyst properties.
		(Continued)

Stream	Stream Description	Major Data Uncertainties and Limitations
302	Boiler flue gas	 High degree of accuracy assumed for the fraction of flue gas resulting from coal combustion since estimates are based upon a large, directly appli- cable data base and potentially applicable emis- sion standards.
		 Residual tars and high molecular weight organics from waste gas combustion are unknown but are likely to be low due to long residence time and high combustion temperatures.
306	Cooling tower evaporation & drift	 Emissions are based on average cooling tower blow- down quality in the electric itility industry. Actual emissions are dependent upon local water quality, cycles of concentration and additives used.
205 208 415	Low pressure coal lockhopper gases Transient waste gases Stretford oxidizer vent gas	 Efficiency of destruction of high molecular weight organics by incineration in boiler is likely to be high, although performance data are not avail- able.
429	Incinerated ${ m CO}_2$ offgas	 Emissions are based upon average data from similar applications. With proper incinerator operation, emissions are not expected to exceed estimates by more than a factor of two.
502-507	Flue gas from process heaters	e Emissions are based upon published emission factors for gas-fired commercial heaters. Estimates are assumed to be accurate since process fleaters and fired with sulfur-free light process gases. However, actual emissions will vary depending on heater operation.
		(Continued)

TABLE 2-13. AQUEOUS WASTE STREAM DATA UNCERTAINTY AND LIMITATIONS

Coal storage pile rumoff Treated wastewater (Option 1) Treated wastewater (Option 2) Leachate from solid waste disposal	Stream Number	Stream Description	Major Data Uncertainties and Limitations
Treated wastewater (Option 1) Treated wastewater (Option 2) Leachate from solid waste disposal	203	Coal storage pile runoff	 Quantity and quality of coal storage runoff are site- and coal-specific.
from solid waste disposal	903 .	Treated wastewater (Option 1) Treated wastewater (Option 2)	 Complete characterization of the gas liquor and F-I wastewater in terms of organics speciation and trace elements is not available. The validity of extrapolating control efficiencies from petroleum refining experience is unknown.
		A	 No landfill leachate data relating to the land-filled waste streams are publicly available. Leachate generation rates are specific to the location and the design of the landfill

TABLE 2-14. VARIATIONS IN CHARACTERISTICS OF NORTH DAKOTA LIGNITES

	Other	r North Da	kota Lignites	(23,24)
Coal Component	Design Coal (4,5)	Mean	Standard Deviation	Number of Data Points
Sulfur, % (dry basis)	1.3	0.64	0.08	Not Available
Ash, % (dry basis)	11.1	9.0	2.7	Not Available
Trace Elements, ppmv (dry basis)	•			•
Ag		0.049	0.03	10
As	16	5.24	0.50	7
В	1 00	54.2	32	10
Ba		501	272	10
Be	0.50	0.31	0.25	10
Cd	C.34	0.35	0.48	7
Cr		7.52	12	10
Cu	37	11.3	0.13	10
F	34	27.5	17	7
Hg	0.33	0.094	0.05	7
Ni	19	3.6	3.0	10
РЬ	88	2.31	0.06	10
Se	1.4	0.59	0.63	7
Y		7.23	3.8	10
Zn .	18	3.84	0.84	9

age, sulfur emissions from the power boilers and FGD sludge production rates are likely to be proportionately lower. Similarly, since the design trace element concentrations were selected conservatively, average trace element emission rates in all coal derived gaseous and solid waste streams would typically be lower in proportion to the ratio of the mean-to-design concentration. It should be noted, however, that such extrapolations cannot be made with respect to trace element concentrations in leachates or other liquid waste streams. Ash and slag production rates are, on the average, likely to be overestimated by 20 to 30% consistent with the mean-to-design ash concentration ratio.

2.5 REFERENCES

- 1. Trials of American Coals in a Lurgi Gasifier at Westfield, Scotland. Woodall-Duckham, Ltd., Sussex, England. ERDA R&D Report No. 105, 1974.
- 2. Information supplied by Lurgi to EPA IERL/RTP, Research Triangle Park, North Carolina, September 1982.
- 3. Beychok, M.R. and W.J. Rhodes. Comparison of Environmental Design Aspects of Some Lurgi-Based Synfuels Plants. Paper presented at Symposium on Environmental Aspects of Fuel Conversion Technology. Denver, Colorado, October 26-30, 1981.
- 4. Somerville, M.H., J.L. Elder, et al. An Environmental Assessment of a 250 NM SCFD Dry Ash Lurgi Coal Gasification Facility in Dunn County, North Dakota. University of North Dakota, Engineering Experiment Station, Bulletin No. 76-12-EES-01, Volumes I IV, December 1976.
- Draft Environmental Impact Statement, ANG Coal Gasification Company, North Dakota, U.S. Department of Interior, Washington, D.C. Document INT-DES 77-11, Narch 1977, 250 p.
- 6. Schreiner, Max. Pesearch Guidance Studies to Assess Gasoline from Coal by Methanol-to-Gasoline and SASOL-type Fischer-Tropsch Technologies. FE-2447-13. Mobil Research and Development Corporation. August 1978.
- 7. Final Environmental Statement, Western Gasification Company (WESCO) Coal Gasification Project. U.S. Department of Interior, Bureau of Reclamation, Washington, D.C., January 1976.
- Sinor, J.E. Evaluation of Background Data Relating to New Source Performance Standards for Lurgi Gasification. EPA 600/7-77-057, PB-269-557. Cameron Engineers Inc., Denver, Colorado, June 1977.
- 9. R.M. Parsons Co. Screening Evaluation for Synthetic Liquid Fuels Manufacture. EPRI AF-523, August 1977.
- 10. Lee, Kenneth W., et al. Environmental Assessment: Source Test and Evaluation Report Lurgi-Type (Kosovo, Yugoslavia) Medium-Btu Gasification. Final Report. EPA-600/7-81-142, PB82-114-075, Radian Corporation, Austin, Texas, August 1981.
- Information provided by SASOL to EPA IERL/RTP, Research Triangle Park, North Carolina, November 1974.
- 12. Final Environmental Impact Statement, ANG Coal Gasification Company North Dakota Project. U.S. Department of Interior, January 20, 1978.
- 13. Data provided by the American Natural Resources Corp. to the North Dakota Department of Health as Part of Air Pollution Control Permit Applications for the Great Plains Coal Gasification Project.

- 14. Blackwood, T.F., and R.A. Wachter. Source Assessment: Coal Storage Piles. Monsanto Research Corporation, Dayton, Ohio, May 1978.
- 15. Jutze, G.A., et al. Technical Guidance for Control of Industrial Process Fugitive Emissions. PB 272-288, PEDCo Environmental, Cincinnati, Ohio, March 1977.
- 16. PEDCo Environmental, Inc. Assessment of Fugitive Particulate Emission Factors for Industrial Processes. EPA-450/3-78-107, PB 288-859, Cincinnati, Ohio, September 1978.
- 17. U.S. EPA. Compilation of Air Pollution Emission Factors. Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, AP-42.
- 18. Wetherold, R. and L. Provost. Emission Factors and Frequency of Leak Occurrence for Fittings in Refinery Process Units. EPA-600/2-79-044, Radian Corp., Austin, Texas, February 1979.
- Conceptual Design of a Coal-to-Methanol-to-Gasoline Commercial Plant. Volume I, F2-2416-43, Badger Plants Incorporated, Cambridge, Massachusetts, March 1979.
- Hoogendorn, J.C. Experience with Fischer-Tropsch Synthesis at SASOL, In: Clean Fuels from Coal. Symposium Papers. Illinois Institute of Technology, September 10-14, 1973, pp. 353-365.
- 21. Quinlivan, S., A. Panaloo, and M. Ghassemi. A Compendium of Physical and Chemical Characterization Data for Petroleum and Synthetic Fuel Products, Volume 1. Petroleum and Shale Oil Products. Report prepared for the U.S. Environmental Protection Agency by the TRM Energy and Environmental Division, October 1982.
- 22. Control of Volatile Organic Compound Leaks from Petroleum Refinery Equipment, Guideline Series. EPA-450/78-036. Emission Standards and Engineering Division, U.S. Environmental Protection Agency, June 1978.
- 23. Shih, C.C. et al. Emissions Assessment of Conventional Stationary Combustion Systems; Volume III. External Combustion Sources for Electricity Generation. Report prepared for the U.S. Environmental Protection Agency by the TRW Environmental Division, November 1980.
- 24. Pacific Environmental Services. Compliance Analysis of Small Bulk Plants. Report prepared under EPA Contract 68-01-3156, Task No. 17, October 1976.
- 25. Information provided by Westfield Development Center to EPA's Industrial Environmental Research Laboratory, Research Triangle Park, North Carolina, November 1974.
- Information supplied to TRW by Carl A. Vancini, Peabody Process Systems, Inc., Stamford, Connecticut, February 2, 1980 and February 6, 1980.

- 27. Epperly, W.E., EI/S Coal Liquefaction Process Development Phase V. EDS Commercial Plant Study Design Update Illinois Coal. 3 volume report prepared by Exxon Research and Engineering Company for the U.S. Department of Energy. FE-2893-61, March 1981.
- 28. Cox. Doye P., T.Y.J. Chu, and R.J. Ruane. Characterization of Coal Pile Drainage. EPA-600/7-79-051, PB 294-271, TVA, February 1979.
- 29. Bromel, M.C. and J.R. Fluker. Biotreating and Chemistry of Wastewaters from the South African Coal, Oil and Gas Corporation (SASOL) Coal Gasification Plant. North Dakota State University, Fargo, North Dakota, December 1976.
- Allen, D.W. Final Sulfur Removal in Ammonia from Coal Plants, Symposium on Ammonia from Coal, Tennessee Valley Authority, Muscle Shoals, Alabama, May 8-10, 1979.
- 3). Permutit Company, Inc. Water and Waste Treatment Data. 1961.
- Wachter, R.A. and T.R. Blackwood. Source Assessment: Water Pollutants from Coal Storage Areas. Monsanto Research Corp., Dayton, Ohio. EPA-600/2-78-004m, May 1978.
- 33. TRM Environmental Division. Aqueous Discharges from Steam Electric Power Plants: Oata Evaluation, EPRI No. RP1851-1, October 1982.
- 34. Swanson, V.E., et al. Collection, Chemical Analysis, and Evaluation of Coal Samples in 1975. U.S. Geological Survey Open File Report OFR 76-468, 1976.
- Development Document for Effluent Limitations Guidelines and Standards for the Petroleum Refining Point Source Category. EPA 440/1-79/014-b. Docember 1979.