2. INDIRECT LIQUEFACTION WITH.LURGI GASIFICATION AND FISCHER-TROPSCH
TECHNOLDGIES
" This sectfon addresses coal-based synthetic fuels faciiities using dry

ash Lurgi gasificaticn and Fischer-Tropsch (F-T) product synthesis. Facili-
tiss of this type utilize all of the process operations normal 1y associated
with indirect )iquefaction, namely cosl preparation, coal gasificatien and
raw gas cleaning. shift conversion and acid gas removal, and synthesis of
the desired fuel product. Auxiliary processes required to support these
production oparations are those required for steam and power generation,
oxygen production, raw water treatment, und process cooting.

The dry ash Lurgl processis a2 comrercially viable process which has been
widely used ocutside the U.5. to produce industrial fuel gas and synthesis
gas from ¢coal. To date. the Lurgi gasifier has peen used primarily to gasify
low rank coals. The technology has cemonstrated the capshility to handle
highly caking cosls such as those used during the trials of American coals
at Westfield, Scotland (1) and at SASOL, where a Kentucky No. 9 cosl was
gasified (2). Companien technoiosizs have also been developed for gas
cooling/heat recovery, gas liquor treatmant, acid gas removal, and by-
product (tar, oil, naphtha, phenol, and ammonia) recovery. Of the commer-
cial facilitdes in operation, only those cpersted by the South African
Coal, 04}, and Gas Corp., Ltd. (SASOL) are representative of the completely
integrated facilities (i.e., coal gasification and product synthesis)
addressed in this report. The SASOL facilities produce a wide range of

" erude and refined 11quid products utilizing Fisher-Tropsch technoiogy as
the primary product synthesis step.

A wide variety of domestic coals are potential feedstocks for Lurgi
based synthetic fuels facilities. Ealh coal will have associated with 1ts
use a specific set of process and waste stream characteristics. The most
advanced Lurgi based synfuels project in the U.S. is the Great Plains Gasl-
fication Associates' project in Morth Dakota which will be using a lignite
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TABLE 2-1. CHARACTERISTICS OF DUNN LIGNITE SELECTED FOR USE IN INDIRECT
LIQUEFACTION BASE PLANT (4.5)

As Revised Basis [we 1) Dry Bases {(wi %)

Moisturs 38.8
¥olatiie Matter 27.0
Fized Carbon 7.6
Ash 6.8 1.
c 3®.1 E3.8
H 2.7 4.4
0 11.8 18.5
$ 0.8 7.3
| 0.4 0.6
Heating Value

Mi/kg 15.0 24,5

Major ang Minge Elements in Coad

(5, on misture=-Tres whole coal besls)

Al 0.67 Hg D.50
Cz 1.6 Na D.24
01 0.00% 51 2.2
fa - 0.72 T n.a3 .
K 0.005

Trace Elements

{ppm, on moisture-free whole coal basis)

As _ 16 Hg 0.3
B 100 Mo 15
B G.50 Mn 400
Br 2.8 N{ 19
td 0.34 F 213
Co [} -] 88
(o] 100 % 4.50
Lu 37 Se 1.4
F. "} In 18
=] 0.98
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fead coal (3). Thus, a North Dakota lignite {Duna County) was chasen for
examination to provide a basis for sizing and characterizing base plant pro-
cesc and waste streams and evaluating waste stream control options. Charac-
terization data for the Dunn Tignite are presented in Table 2-1.

In developing the base plant material fiow estimates, a fixed coal feed
rate of 27,216 Mg per day (as received basis) to gasification was used. In
addition to the gasifier coal requirements, most Lurgi based synfuels facis
1ities are expacted to include on-site coa’ fired auxiliary boilers. The
size, and hence fuel regquirements, of these boilers will dspend on & variety
of factors, including whether electric power is purchased or generated ongite,
the sfficiency of on-site energy recovery, and whether Lurg® by-products and
high energy content waste gases are used as hoiler fuel. Althoush no attempt
has been made to estimate auxiliary boiler duties, boiler energy requirsments
are expected to be about 30 percent of the coal energy input to the casifier
(6,7,8). ’

A typical upgraded prodwct slate for the Lurgl based synfuels plant
sxamined in this study is summarized in Table 2-2. It should be noted that
large quantities of methane are preseni §n Lurgi synthesis gas. It i
assu med tﬁat this methane wauld be recocvered as a coproduct SNG rather than
reformed to produce additional synthesis gas.

TABLE 2-2, ESTIMATED PRODUCT/BY-PRODUCT SLATE FOR LURGT BASED F-T SYNFUEL

FACILITY*

Product/By-Product Mg/day TJ/day
Gasnline 1240 2.5
Diesel 01 en 11.4
Fuel O 79.6 2.5
LPG 10 8.50
SNG 3700 186
Alcohols 2% B.5
TOTAL 5720 280

*Coal fesd rate %o gasification is 27,216 Mg/day (as received basis}. In
addition to the tabulated products and by-products. tars, oils, naphthis and
phenols are also produced and consumed onsite.
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2.1 BASED PLANT DESCRIPTION

Based plant process operatians consist of coal prepsration, coal gasifi-
catfon, gas purification dnd upgrading, crude product synthesis and separa-
tien, and product upgrading. 1In addition, the auxiliary processes required
to support a fully integrated, self-sufficient, 11quid fuels production
facility would include raw water treatment, steam and power generation, and
oxygen productfon. Pollution control process zpplicable to the base plant
are described and discussed subseguently 1n Section 2,2, Processes comprising
the hase plant and their associated waste streams are described briefly in
this section. Simplified process flow diagrams are presentad in Figures 2-1,
2-2, 2=3, and 2-4,

2.1.1 Loal Preparation

The coal preparation operation in a Lurgi based synfuels facility will
be similar to those found in ather coal based plants such as coal fired
power plants. Equipment is provided to receive, trausport, and store coal
and to prepare a sized coal fead for the Lurgi gasifiers and a pulverized
coal faed for on-site coal fired steam boilers.

Run-of-mine coal received by conveyor, unit train, barge, or truck is
diverted to either an active or inactive (emergency) storage pile as neces-
sary. Coal from storage is transported by a belt conveyor to the preparation
plant where it is screened and crushed to a 3.8 ¢m top size. A 3.8 ¢m x
0.64 cm coal fraction is separated and cony:yed ' . he gasifier feed storage
silos. (Depending on the properties of the coal, a sized <o2l within the
range of 0.3 ¢u to 7.5 ¢m can be gasified; the 3.B cm x Q.84 ¢m range shown
is merely a reprosenisiive exanpie.) The undersize ccal is stored in separate
fine co2} storage sflos. As required to meet the auxiliary steam bofler fuel
requirements, coal s removed from the fine coal storage silos and pulverized
to nominally 70 percent through 200 mesh. Excess undersized coai may or may
not be produced, depending on t : feed coal characteristics, If excess
undersized coal 1s produced, 1t could be used to gensrate export power, gasi-
fisd in a reacteor capable of handling ccal fines to produce additional syn-
thesis gas, sold as a by-product, or disposed of as a solid waste., A poten-
tial, but currently undemnistrated, aiternative 1s to pelletize the under-
size coal %o a nowimal 1.8 cm size for use as Lurgl gasifier fasd.
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The major weste streams asscciated with the coal preparation operatfon
are coal storage pile runoff {Stream 201), fugitive dust émissions from pre-
pered coal storage and transport (Stream 200), and dust from coal crushing
and screening {Stream 202). Runoff from coal storage tends to contain high
Jevels of suspended and dissolved solids and can be guite acidic in the case
of Midwestern or Eastern coals. Dust frew coal preparation consists of
natural soil and overburden material as well as coal.

2.).2 Lurgi Coal Gasification

The dry ash Lurgi gasifier is a medium pressure (2.1 to 3.2 MPa), moving
bed gasifier operating below the cpal ash fusion temperature. Essentially
211 tynes of coals with moisture contents below about 40 percent can be
gasified, although strongly caking coals require the use of a coal distributor
equipped with a stirrer, The gas{fier unit consists of a coal lcckhopper,
a water-jacketed pressurized gasifier vessel, an ash lockhopper, and an ash
quench system.

Sized coal is stored in » coal hopper directly above the gasifier and is
fed tc the gasifier via a coal lockhopper. Cooled or raw Lurgi gas or an -
‘inert gas such as CDz or N2 can be used as the Tockhapper pressurant gas.

As tha coal descemnds through the gasifier countercurrent to gis flow, it
passes through “zones® of progressively higher temperatures which provide

for drying, devolatilization, gasification, and corbustion. A revolving
grate at the bottom of the gasifier supports the asi/coal bed, provides for

a uniform flow or ash to the ash lockhopper, and distributes steam and high
purity oxygen uniformly across the bottom of the downward moving coal bed.
The ash lockhopper allows for discharge of the ash into the ash quench system.
Quenched ash is transported as a wet solid or water slurry to a clarifica-
tion and soiids handling system,

The hot crude gas leaving the gasifier is composed primarily of hydro-
gen, carbon monoxide, carbon dioxide, methane, and unreacted steam. Also
present are high molecular weight organics (e.g., tars, ofls, phenols),
reduced sulfur and nitrogen compounds {e.g., H,S, COS, mercaptans, NH,, HCR) ,
1ow molecular weight hydrocarbons {e.g., Czs-css. benzene, toluene}, and
entrained coal dust. Waste stresms generated by the gasification operation

2-9



include coal lockhopper vent gases {Streams 204 and 205), ash Tockhopper
vent gases {Stream 206), gasifier ash [Stream 203), and transient waste gases
(Stream 208). ) '

The composition of the coal 1ockhopper vent gases reflects the character-
istics of both the raw Lurgi gas and the lock pressurant ge=. When Lurgi
qases arg used for lJock pressurization, the jock vent gases are similar in
compogition to the Lurgi gases and contain organics and volatile sulfur- and
nitrogen-containing compounds. Coal lockhopper vent gases may also contain
entrained particulates consisting of coal particlas and tarry hydrecarbon
matarials. When CO or N2 is used for lock pressurization, z flow of pres-

surizing gas into and through the Tockhopper is maintained in order to mini-
mize. or possibly eliminate, the backflow of raw gas. As 3 result, the Tock-

happer gases will copsist largely of the pressurization gas, e.g., N, or co,

but will alse contain raw gasifier gases and particulate. Transient gases
generated during gasifier startup, shutdown, and upset conditions contain the
- same types of substances as coal lockhopper gases do when Lurgi gases are
used as the lockhopper pressurant.

Ash from the Lurgi gasifier is similar to ash from coal combustion in
_that it consists almost entirely of mingral matier originaily prasent in the
.coal. However, gasifier ash will have somewhat higher Tevels of residual
carbon. Ash lockhopper vent gases consist primarily of steam with some
entrained particulate matter {ash fines) and raw gas!fier gases.

2.1.3 Gas Purification and Unqrating

The gas purification and upgrading operation consists of: (1) gas cuvoling
and quenching to reduce the gas temperature for subsequent processing and to
remove condensible organics, moisture, entrained particulates. and water-
soluble inorganics; [2) shift conversion, if nefessary, to obtain the required
ratia of H, to CO for product synthesis; (3) acid gas treatment Jor removal
of Euz and reduced sulfuy compounds; and (4} removal of trace sulfur com-
nounds using “sulfur guards.” '

gas Cooling and Dust/Heavy Organics Removal

Raw Lurgl gas 1s conled in stages with some heat recovery via steam
generatfon. Initial cooling is carried out in a “wash cooler."” Gas from the
wash cooler is further zooled in a waste heat boiler which produces medium
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pressure steam, Moisture and heavy organics such as tars, oils, and phenols
are condensed as the raw gas is cooled, producing & gas Viguor stream which
fs routed to the gas liquer separation unit. The gas Tiquor also contains water
soluble gaseous species such as ammonia, sulfides, cysnides, and carbon
dioxide. In the gas liquor separation unit, dissolved gases, tars, and ofls
are separated from the water in a depressurization vessel followed by phase
separators. The gas washing process also removes essentially all of the dust
entrained in the raw gas, which subsequently becomes admixed with the tar.
The separated oils and $ars are recovered as by-products which can be used

as on=site fuels, s0ld as by-products, gasified n an auxiliary partial oxi-
dation gasifier to produce additional synthesis gas, or upgraded into
materials suitable for blending with other facil{ty products. Dusty tar from
the tar separator can be recycled (to extinction] to the top of the gasifier
(2) or gasified in an auxiliary partisl oxidation gasifier to produce addi-
tional synthesis gas. Gas 1iquor (Stream 210} and depressurization gases
(Stream 209) are the major waste streams leaving the gas 1iquer separation
unit.

Lurgi gas liguor contains appreciable quantities of dissolved/suspended
prganic compounds. Imorganies present are mainly ammonia and bicarbonate,
with smaller amounts of sul fide. sulfite, sulfzte, thiocyanate, and cyanide.
This liquor also contains trace elements which were scrubbed from the raw
gas or leached from the entrained coal particles that were scrubbed from the
gas. In general though, Lurgi gas 1iquor contains low levels of inorganic
suspended and dissolved solids. The quantity of gas Tiquor generated is
detarmined by the moisture content of the raw gas, which in turn {s 3 func-
tion of the coal moisture content and the gasifier feed stream-to-coal ratio.
In general, as the gquantity of gas Tiquor generated (per unit of coal gasi-
fied) increases, the pollutant concentrations in the gas liquor decrease.

Shift Conversion

Gases suitable for feed to F-T synthesis should have slightly greater
than & 2:1 ratio of hydrogern-to~carbon monoxide and no more than a fev: per-
cent carbon dioxide. Depending an the specific coal gasified and/or the
degree of (:02 removal obtained in the downstream acid gas removal step,
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*shifting" of a portion of the Lurgl gas may be required to cbtainm the
necessary ratio.

For application to Lurgi based synfuels facilities, it 1s desirable to
conduct the shift reaction at moderate %o high temperatures (greater than
500K} for reasons of thermal efficiency. Sulfided cobalt molydate based
catalysts, which are active at temperatures above S00K, are not affected by
she presence of gaseous sulfur compounds. Cobalt molybdate based catalysts
are also active for the hydrolysis of carbonyl sulfide. HCN may alsa be
partially hydrogenated to HH3 over the catalyst.

Shift catalysts must be periodically regenerated to remove accumilated
carbon deposits. This is accomplished by controiled oxidation with air to
surn off carbon and reduced sulfur. Am offgas s produced containing large
amounts of oxidized sulfur, After a few regeneration cycles, shift catalysts
lose activity due to physical degradation or accumlation of chemical poi-
sons _and must be veplaced. Thus, spent shift catalyst (Stream 212} and
. catalyst regeneration/decommissioning offgases (Stream 217) are the major
wiste streams from shift conversion.

Acid Sas Removal

] Removal of HZS and other sulfur compounds from guenched Lurgi gas is
necessary to prevent catalyst poisoning in subsequent synthesis cperations.
The removal of most of the CDZ is necessary to cbtain a gas composition meet~

ing the stofchiometric requirements for synthesis feed gas.

Most existing Lurgi gasification plants overseas as well as proposed
Lurgl plants forthe U.5. feature the non-selective Rectisol process for acid
gas removal (AGR). This process is based upon the physical absorption of COE.
st. £0S, and high molecular weight organic compounds in cold methano]l . With
non~selective operation, CDZ and sulfur species are removed together and 2
single acid gas stream is produced when the methanol is regenerated. Kaphtha
recovered by Rectisol processing can be used as an on-site fuel, sold as a
by-product, or upgraded for blending with cther faciiity products.

Waste streams gensrated by the Recti!sol process are st-‘[nn actd gas
(Stream 213) and methanol/water still botioms (Stream 216). The acid gas
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strean 1z sxpected to contain about 1.3% st and 1400 ppmv COS plus mercape
tans, Water condenssd from the quenched Lurgi gases entering the Rectisol

unit and water added to enhance recovary of the by-product naphtha leave the
Rectisol unit as methanol/water still bottoms. This stream will contain smail
amounts of cyanides, sulfides, ammonia, chlorides, methanel, and other orgenics.

Trace Sulfur Removal

To protect synthesis catalysts from sulfur poisoning, zinc oxide guard
beds may be used following the Rectisol process to remove residual traces of
sulfur compounds. Ordinarily, the Rectisol process can attain lavels down t0
0.1 ppmv total sulfur species n the synthesis feed gas, but Zn0 beds would
provide insurance against sulfur species being present in the synthesis feed
gas during periods of Rectisol process upsets. Periodically, sulfur guard
material nust be decommissioned and replaced. Thus, 1f sul fur guards are
used, @ solid wasts consisting of spent Zn0/InS is generated {Stream 217).

2.1.4 Product Synthesis

Hydrecarbon production via Fischer-Tropsch synthesis can be represented
by the following reactions:

nco + {(Zn + 0.5x) “z = Collonay ¥ nHzO + heat

where n ranges from 1 to about 20 and is determined by process operating con-
ditions, x & 2 for peraffins and x = O for olefins. Synthesis gas usuaily
containg some cnz in addition to €O and HZ' Because synthesis catelysts are
also active for the hydrogenztion of coz. the presence of CO2 does not create
problems as Jong as the synthesis gas contains the proper ratio of HZI{CD *
cuz). F-T synthesis proceeds over iron based cataiysts at 600K and 2.3 MPa
(fluidized bed reactors} or 500K and 2.7 MPa (fixed bed reactors){6).

The crude Jiguid fuel products will require uparading (probably onsite)
to yleld final products which are marketable as substitutes for petrcleum
derived products. This {s particularly true for motor gascl ines where crude
gasoling fractions would not meet octane requirements for the retajl market
in the U.S. F-T products could be upyraded by HF alkylation of the C3-C4
" fraction to yield gasoline blend hydrocarbons and commercial grade LPG, by
hydrotreating for destruction of olefins and oxyganated organics, by catalytic
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reforming to produce more cyelic and branched chain hydrocarbons, by Cs/ls
{somerization to fncrease the anti-knock guality of pentanes and hexanes, and
by catalytic polymerization to convert propene/butene fractions inte higher
molecular weight gasoline blending compounds. All of these upgrading processes
are expected to use currently available petroleum refinery technology, and
have been included in the base plant. It should be noted, however, that the
specific upgrading processes employed will depend largely on the desired pro-
duct characterictics. _

Synthetic 1iquid fuels synthesis generates a purge gas containing large
amounts of methane and unreacted L0, and H,. Several options are available
to handle the purge gas inciuding use as an on-site fuel, reforming to gener-
ate additional synthesis gas, or conversion of the residual hydrogen and
carbon oxides into adaitional methane to produce SNG. Because Lurgi derived
synthesis gases initially contair large amounts of methane ard because SNG
has considarable market value, the methanation option was selected for
analysis purposes. In actual practice, the decisfon regarding the disposi-
tion of synthesis purge gases involves site- and design-specific considers«
ticns which are outside the scope of this document.

Product synthesis and upgrading generatas a varlsty of waste streams.
Gasacus waste streams include CD offgas from SNG purification (Stream 231},
SNG dehydration offgases (Streau '236) and flue gases from process heaters
[Streams 502 to 507). The principal squeous waste stream is the F-T waste-
water (Straam 219), althaugh smaller amounts of organic-containing waste-
water (Stream 508} are generated by product upgrading. Synthesis and upgrad-
fng catalysts pericdically require replacement and, in scme cases, raquire '
disposal, Since HF alkylation has been included in the base plant, a small
volume aTkylation sludge {Stream 503} will be ganerated. :

2.1.5 Auxiliaries

The major auxiliaries required to support Lusgi based synfuels facilittes
are: (1) steam/powsr boilers; (2) makeup water treatment; (1) process cooling
water; (4) liquid product/by-product storage; and (5) oxygen production,
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The most significant source of waste streams from the auxiliary processes
is the steam/power boiler. The boiler flue gases (Strezm 302) are particu-
larly important because the boilers will generally be coal fired and because
of the potential for using the boilers to combust a wide range of gaseous,
liguid, and solid wastas. Energy-rich streams which ae candidates for use
as bofler fuels irclude coal fines; by-preduct tars, oils, phensis, and
naphtha; and hydrocarbon rich acid gases. in addition to fiue gases, waste
streams resulting from bofler operations inciude boiler blowdown condensates
{5tream 303) and bottom ashes {Stream 304).

The major waste streams from makeup water treatment are sedimentation
pond sludges and 1ime/soda softener siudgas {Stream 300), and demineralizer
regeneration wastewaters from the boiler feedwater treatment unit (Stream
301). Evaparation volatiles and drift {Stream 306} and cuoling tower blow-
down (Stream 307) are the major waste streams from the cooling water system.

Storage of synthesis products and Lurg! by-products is accompanied by
evaporative emissions (Stresms 309, 310, 311, N3, 314, 315, 316, and 317).
These vapors consist primarily of 1ow molecular weight organic compounds and,

in the case of gasolines and Lurgi by-products, aromatic compounds such as
benzene and toluene.

The exygen plant itself is not a2 major source of waste streams. How-
ever, as a major consumer of energy, 1t impacts the magnituds of the waste
streams produced in other units, particularly in the steamibouer generation
unit and the cooling water system.

2.1.6 Fugitive and Miscellaneous Wastes

In addition to the waste streams assoniated with specific processes,
there are wastes which ere of non-specific origins such as fugitive organic
enissfons {Stream 233}, There are many potential sources of fugitive organic
emissions in an indirect cpal ifquefaction plant. These inciude pumps, com-
pressors, valves, flanges, and prassure ralief devices.
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2.2 POLLUTION CONTROL

At-the present time, there are no Lurgi based indirect coal 1iquefaction
plants in commercial operation in the United States. In addition, very
Timited information is available which relates to pollution conmtrel processes
used by the only significant Lurgi based indirect 1iquafaction plant in come
mercia] operation outside of the U.5. (i.e., the SASOL facilities). The
emphasis on pollution contrel which has been incorporated into designs for
most Lurgd basad facilities abroad 15 generaily Jess than that which is anti-
cipated for U.S. plants. Therefore, directly appiicable performance data for
most pollution control technsiogies are quite limited. The potential appli=-
cation of most pollution control technologies to waste streams jdentified 1n
Section 2.1 has, therefore, been extrapolated from their use in similar appli-
cations in industries such as petroleum refining, coke production, natural
gas processing, coal cleaning, and electrical ugilities. This section identi-
figs the pallution control technologies selscted for evaluation. These tech-
nologies reflect the typss of alternatives which are under cens{deration for
faciitties in the U.S. 1t should be noted, however, that a variety of control
technolagies with similar performance charscteristics are potentiaily appli-
cable to most waste streams fdent{ified 1n Sectian 2.1.

2.2.1 Air Pollution Control

Pollution control technologies considered for gaseous waste sireams pre-
santed n Section 2.1 are summarized in Tahle 2-3 aiong with the secondary
waste streams geneérated by the control techmelogies. Alse included in the
table are the pollution control technologies considered for gaseous secon-
dary waste streams. A majority of the gasesous waste sireams are analogous
to streams encountersd In other industries (e.g., fugitive dust and parti-
culate, fugitive erganic emissions, and evaporative emissions) and analogous
approaches to contruliing these streams have been considered. Control of
sther gaseous waste streams ganeraliy invoives Stratford sulfur recovery
and/or thermal incineration, dependinﬁ upon their magnitude and compositiens.

2.2.2 Wastewater Trestment

Pollution control technologies considered for wastewater streams are
presented in Table 2-4. Streams of major importance are the Lurgi gas liquor
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Stream 210) and F-T wastewater {Stream 219) which are combined with the Rec-
tisel condensate/still bottoms [Stream 216) and upgrading wastewater {Stream
508} for common treatment. Two treatment alternatives were considered for
these strezams: (1) phenv) extraction, ammonia recovery, activated sludge,
chemical precipitation, and activated carbon adsorption followed by discharge
to surface waters; and (2) phenol extraction, amnonia recovery, forced eva-
poratfon and surface {mpoundment. Block flow diagrams of these treatment
schemes are presented in Figure 2-4. Blowdown from the Stretford Unit
{Stream 416} fs treated by reductive incineration; liberated HyS (Stream 817)
is retycled to the Stratfard inlet and residual salts are recycled as makeup
chemfcals, Other wastewater streams are essentially identical to wastes
generated by coal-fired power plants or refineries, and are treated accordingly.

2.2.3 So0lid Waste Management

Based upon solid waste management practices currently applied in the
synfuels and other industries, and those being considered for proposed syn-
fuels plants, many of the solid wastes will be landfilled. As indicated
in Tabie 2-5, the only material }ikely to have reclamation value {s the spent
methanation catalyst. This mickel-based catalyst will probabiy be recycied
to the vendor for metals recovery or reprocessing and reuse. A11 acher solid
wastee arg expectad to be landfilled.

2.3 SOURCE TERM ESTIMATES FOR WASTE STREAMS

This section presents source term estimates for Risk Analysis Units
{RAUs) in both uncontrolled waste streams and discharge streams afier waste
treatment, The RAU categories considered have been previously listed in
Section 1. Data sources for characterizing uncontrolled wasie streams from
the Lurg! based F-T synfuels facility and for estimating cuntrol technology
performance ara briefly described in Section 2.3.1. 3Source term estimates
for gasecus waste streams, aqueous waste streams, and soiid waste streams
are prasented in Section 2.3.2, 2.3.3 and 2.3.4, respectively. Where data
are available, source term estimstes sre presented in ranges. For the major-
ity of waste streams, only & single number is presented for each RAU repre-
senting a spacific set of design/operating condftions, A single number does
not imply a high accuracy for source term estimates but, rather, reflects
the absence of data for estimating the influence of varying design/operating

2-19



IHIEIEIAT ADICMIISOM 4D) WeJbRLp MOLS ¥0018 “5-2 3InBLY
SHILVMIISYM

SISIHANAS
HOSIUML
IOUMISOIE  MINISIA SWOL1OF
— TmS
, Jos1LD3H
SIONIHS
LNYHOVI1 te¥ SiZ ) 8L GIYIANDI3IY
I90NTS
VIINGNNOL NOILVMOdVAI ] _ I wouovinxz
Jovauns |4 a3ovos [ ow.i:_nh«—A _ MIVEOHS INIANOS Alﬂ
h h @ : HONDIN
NOLLYUOJAL HALYM 5v3
QIHIADIIY
Y3LYMIISYM
OHIOV HDN
VINGYWYY SIEVD
. oy
SUALVMILSVM £ NOLLJO TORLNOD
ﬁm._._u_a:mm SISTHINAS
NOLLY LEIDT B4 HOSA0H L
WHAIHI ADEHIHE y3anD6iy sMNOLLOE
1S
1051193
S10N3HY
£os e siL 03VINCTIY
CHALYM NOILAHQASaV _ F90MS h .
NOLYAIRD3Y . NOUIVELXS
IIVIGAS DL 4—)  Novdvd 4 {e—] a3tvniaov |e MPVEOH 4] e
IOWVHOSIA OILVAILIV TVHAIHS Hiv IN3ATO0S
HONDIT
(o) (sr) 5o
HILVMILSYM
ONIGYEDIN
ViNgrw ISV 1 NO1LJO TOHINGD

oy



'!

Ay Bsimanias Jeads

Sudy ueyjeur i 13410V R0 ¥is

[ 1] SopImmE 0B FIApRARY BY644D 3o E3RD 2OpIRZLMNN0SL IWAdS [
Loy uny 3TNl JIAERIED 8315440 yeAyesy: Bupyrsineap iy quadg P41
puoy uopyez{sad 15A1NI®D 91i%130 1Ay unpyruaboapdy juadt 18
pyeyarey L 00U uCiier prons (5 Judds L1
2RI Ag panopjo} :u-utgw"w“ﬁ alipns s (S 605

sabipuys Judwira)

SETEL Y f41apun] ] INUIEEES SRESUR{3I% K ok
NI Likspung £q paAc 4y weQIRR)y of pa s JaqqnaDs &) as ENPOS 555
[Fl =1 1LHJpue] £q Fa0) 0] UDIMN} 4 Buj 00403 duajLiey | maty aliphys god 144
SAma Lis Py e L1 Jn|p0g 1.4
nmw L1 3p9e abpais uei 1M )dpasd mje; 0y
B3N S48T 111 e AGpRiE paIEAY 1Y dy
aInINa L' geuy ISE Jai)| 505 payouany toy
NP L1V apue] NSP w0330 ¥l 0q WE
IR Lit jpue) SIEPNLT TVMILST SBTNe B 4
Sy ELIRL T RTL D T LS LRI TR FY 35110 wojyrUeg e Juslg &2z
YWD L5 Bpue) ISAIRIED ) TAGINAE -4 Weads -] 14
LELDE L Litspuey patnb anyins Juady e
oy WOINGR |33 FANIRY 33530 FSALRINT LA NN 22
PAANUE) SuRaAlS paiapgsuo) Ibojondni |Gajuo) WOpId IS WYy gy
35y Laepunaag wtaazt

WIS 215¥A 01 W5 Bod SII90M0HIAL WONINGT NOTINT02  “§-Z 39Vl

2-21



conditions. Uncertainties in and limitations of the source term gstimates
»resanted in this section are presented in Section 2.4,

2.3.1 Data Sources for Stream Characterization and Control Performance
Estimates

The major sources of data used to develop base plant/process configura-
+igns and to define the types and characteristics of uncontrnlled synthetic
fuels facility waste streams were: 1) 2 test program of 2 Lurgi-type gasi-
fication factlity in the Kosovo region of Yugoslavia (10); 2) a program
invelving the gasification of American coals in a'Lurgl gasifier zt Westfield,
Scotland {1}; 3) SASOL plant test cata provided to EPA by SASOL (11); 4) a
gasoline-from-coal research study conducted by the Mobil Resesrch and Develop-
ment Corporation (6); and 5) various permit filings and er vironmental impact
statements for propesed U.5. Lurgi based SN& facilities (7,12,33).

Characteristics of treated wsste streams depend largely upon the perfor-
mance of the contral technologies employed. Data sources used to estimate
contrsl performance include published performance datz, contacts with control
technologies in related conventional industries, experimental data reqarding
the performance of controls on Lurgi gasification waste streams, and engi-
neering evaluations. Sinca faw of the control technologies considered have
been routinely empioyed im Lurgi gasificatian or F-T facilities, some extra
polatfon has genarally been required in projecting control performance to 2
Lurgl basad F-T fac'lity.

2.3.2 Source Term Estimates for Gaseous Waste Sireams

Source terh estimates for uncontrolled and controlled gaseous waste
streams are presented jn Tables 2«8 and 2-7, respectively. Uncontroiled fugi-
tive dust {Stream 200) and fugitive particulate (Streams 202 through 20S)
enissions estimatos were based upon published emissions data from other indus-
tries with stmilar coal handling/preparation ¢ierations (14,15,16}. Qust and
particulate were assumed o have the same composition as the parent coal with
resr-ct to ash and trace elements, regardiess of particie sfze. In the case
of uncontrollad fugitive dust, the tabulated range of respirablie particulate
corresponds 5 to 100% of the uncontrolled emission. A fugitive dust control
effi{cioncy of 90X was assumed, In the case of uncontrolled fugitive
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TABLE 2-6. CONTINUED

uyste Stream Generation Rate, kg/nr
428
- 41§ Ammnta X6 £02~507
Stratford Recovery Coaling Fiue Gas From
Dxidizer Overhead  Towwr Evaporition Process
Risk Aralysis inits ¥ _Gages —ind fetfs _Haaters
1 Carbon moroxids . 0 1% N 1.8
2 Sulfur oxides Q o ] 1]
3 Witrogen oxides 0 0 0 N
4 Acid gases 0 2.0 z.6a07* )
5 Alkaiine pases’ 3.9 19 1.3500~% g
§ Hydrocarbon gases |1} 00 0 0.72
7 Formal 0 0 a 0
& vYolatils organcchlorings N 0 0 q
1 Welatils carpaxylic acids 1} 0 4] a
10 Yolatile DS Matarocyclics 0 1] 0 -]
11 Yolatile N-haterocyclics 0 0 2 q
12 Benzens ] ] 0 ¢
13 Aiphatic/al teyclic L] ] 0 s
14 Yono/Dizromatic hydrocarbons 1] e [1} o
{axcluding benzene)
15 Polycyclic aromatic 0 4} g |}
hydracarbons
16 4] {ahatic wxines (excluding o 0 0 ]
Nehaterocyci {es)
17 Aromatic amines {excluding 4] 9 0 B
N-haterocyc] izs)
18 Alkaline nitroger heters- 0 a [+] 0
eyclic ("azarmnes”]
{exc1uwding "volatiles™}
1% faytral N, O, 5 hetsro- 4 9 0 0
eyclicy {axcluding
"“waltiles”) .
20 Carbaxyiic acids 0 8 1 : 0
{axgluding "volatiles"}
21 Phmols 0 o ] 0
2 Aldahydes and ketones a 1] g ¢
[“carbonyls™} axcluding
forme1dehyds)
T Wonhaterocyclic argino 0 120 o 9
w)fur
N Alcomis ¢ o Q g
2 ditroarometics 0 0 0 g
26 Esters o 0 0 ¢
7 Amidan (] 0 ] ¢
28 Nitriies 0 0 0 0
B Tars ] ] 0 9
X Respivable particlus 0 a D 0.4%.1.3
3 Arsmic a A §,0x10°9 ]
D Mercury q ¢ 1. 31073 0
11 Nickel ¢ 0 1.5x104 9
% Cadaium g ) 7.5x10"3 0
35 Land 0 0 2. 510 )
36 Otiwr trace slemwmtl — NOT AYAILASLE q
37 Rpdicactive sateriels 0 a 0 0
B Other remaining matarials 0 Q a 0

_____—_—..._‘._—-——_—_—”"'__——_—_—-

X 73 A 1 Tatk plus m ona urs at 8 s
1lﬂt.o. Thiz 11 the worst case transiant amission amd could occur up to 45 timed par year.
221:3 cn::ﬂ”p:r regeneration/deccmmissioning {s estimated ta occur for & tatal period of

yuEr,
* ssall awncity of mechons and glycal would De presunt iIn this stream although no bazis
exists for mstimuting the smissfon rases. :
s5aall smounts of ather crqanic compounds may be pretant in this itresm, alzhaugh support-
ing data are not available, 2.6



{ponvp19e))

RO
iss

L] -.-...OH“
| 1]

[ §
-
Y

-
1
--

.
COR=NPIOBAIDCSOGODS ¢ ¢ B

||-_a..ﬁnﬂ.lll— WG 0 L%I] LT

LYLIELL R 1L ]

SEHARIUN BA| 1300 PR
‘N st l A i 24 SIS AT S
& =010 €= 01E"T i pray
.M;..._--u - 1K e . )
&

o
oo

"y 0109° | oL S-c 0 (Lt
e M it £inniay
OUTS b UITE L LAY Sy EE Iywanry

wH 5o SR A djarayding

]
SAEADOGEDOVOCOOD

B OEOOO00Q0DoCESse
L]
L]
1
™
-

:

S S840 00000ODDBWLD
-]

Swphy el | [ 5 Svenng)

. reeyey pm seplampiy
bl S|

{osulivion, Bugpmiane)
]

-
- -
-] -1 -]

]
e oz
-] [-T-1
2 ao

i

A RE & ELARKRERsmEXEALA

i

.m..._zq-l. ooy 0}
[.smersere,] s y2l>

-asupny welesyis wiinly M
{2 pMemm-§

a3} {sKasytn -
Segen ) fawor qedily H
voug rasaply
N ymmiy 3 (algey 8
(venzenq Snlpnime)
BNORIPICHNY 3 YV g/owny
ML e Y KD
Suprudg

S AN FAIVEOR UL
33 PRasEye SR) MiTi Ol
spjoe WiAxegita W0
ey 2| oeunvliag BTN |0y
Spigpp]iniay

skl Beasenaply

il muy

] LB d

saprue solartiy

Sh e SRy RS

P NOVEE W)

e

L ]
o a o o

126°¢-€400°D
N el
€23t
g-OI5L™Y g DI

PR
oy S50 0-N2070
(o ] io-re

g-ol ".. k

L 2-1-1-

LB

ocoCeDRbs POBOOSES © B o B
COoBOeODPOGOOOOD ® & B O

CoODOCooORGS
SOCOooDEm NS
o B P o e

i (eSEY BRI WBLTRIpAUSG WaJ) SuRiESIw] gy oy aap iRy

T suagiEgmy NS uebap M)31bey .1 m?

AV
-1 -

2-27



i
1

LYTITEI L W DL TR
HEyHnm ML o
tiwmbly ¥ SN %

Yooosesasvesonsn

N Y T F-1-F-T-X-2-R-F1-R-3-1 4 J
- F-1-L-F-1-F-X-F-R-L R 1 J
YT 7-1-1-X-7-2-2-R-L 1 1 J
—

-
]
a

£
-
o
H
i
H
8

_.-__—nﬂ‘muuuc_-ua.q - OIS 6y 01720 osellee 2y | Kariegee (P

|y
By 2]y, 5] )
o 0 - “ Yy Y w “

_D1¥) G- g O LY DL L-g.0iTh ¥ L] s
L ' s [Sa111eLes, Suypmy e
] o a ] ] e Bl |
{oTitim,
o) P e) 534 10
-aeing £ 0 "R MV 8
(IegiYogom, Sujpuie)
{oSoutanre,] £34)39>
/] -sanw wefiel)is WHNIY A
(321 | oA
v Sugpr|ws) W RIWEIY f1
{31 LA 20w 1IN0
[ sepp me) Swpem Sjvenliie
I yrmet WiMAN RN
E 13 *;
5 LY -AE i A
GBI 9. 0IYN')  FeeRImNpiy mlveenygjoy bt
30190 1=g 013 ¢ sk geirehity 0
i I |
3] 3KImabion- FLEMFIL 11
w3 |k xuehmy SOF BLENEIGL M
i nifeegies LN 8
toupse(puorlan 3 titm ¥
splyepeasn) }
snarl woureply 9
el oimiy §
el MY ¥
sapgee wilSn)IN §
N SN P
Wi ey |

E-L-J

L)
=

UL - b L] 0

[} *n
] o
[ o
o u.n__:m.nnfe.-e.« 9-01%6" by-01°1° ¥
£50°-620° 0 =012 4~ p-04N " & R R0
SORO' 0-1400'0 SEN0° _Tnus.. 500 0~ 9500°2
10°0- %008 180" (- 210078 HO' -508°9

o
OV Q8L

f
genms | yeEIvR,
IVE" ¥y OUEF'E - -y 3
vuu!..n_.e- 0 ' ans-am"!.e
o

L-L-3-1_1-J
cacoGeogusseaa 0 © O %

OO ORDO
osetaebaagD

7 Wheiais L 232 T gkt s ] T X
Hyplvy wory 1o S u) W) [ L )] Wy WS
s i) tuaikeie] Eo TILFLY] mall seei|ey L Rl
'] " payyescdray sajyundes

mpynaoiery sayyeandeny "y e

L 11 $

QINNILNOD ~£-Z 379VL

2-28



CONTINUED

TABLE 2-7.

{13

ation Mat

“Wapte ¥

|

50807

e
Coobing Tewer  Flue Cxy From

m 208
e Trmnsient
Beller Evaporal tou
)

Suift Cataliyst

Evaporat v
tmisalons

Process

Lhs )
T inaraled
* m, i~ 1]

Haste
swad

foast s ent @

fon

t

fram h-:l

Risk Analysis imits

~
]

tL
»nusﬁ..-eoeaoao " o & 8 © & OB =
Eoie.n-aooeaoou - s o5 ®» @ wm e
:gguuﬁn-ﬁetbﬂe ® o 5 o o © @ bo ®
3"50,:00009600 o - o6 e © ©b es o
BEg 3 |
araccaccoooaa = T o0 © ®» e B
eooDOoCoAIOREDT © @ O 9w [ -3 a iﬂ L-J
.
I N O
He b iiim g
H EEE 3“§i %'e*i!ﬁf a3 i} ¢
1 g 10 Bl BT o
st el Boc i
Nl OB R EH R
HitE i
—umemarmes-mnr 2 # % 2 2 8RR B

2-29

syl e

.. -
wsassagesconsve

13 X-1-39-2-3

-----

MY X 2-T-3-BN-I-F A_L_l-1 0}

'YIT NI XY I 2 2 104 J

3
i3
H 234
;i
A 3., B

2 Byt

LR
EHERELRAREEEEREN

dats wrn mol available.

7 buwrs at vhowt Dalf this rate. This In tha worst

o eacept tha tramifint wiste goves {5traem 20R). Tressimmis arw

Intoraitiont gendrst lon,

yenl wowl
ral Wha-‘lnh:: {s sxttsalud ta sccer for & totel puricd of €0 hours per yeer.
e nerated In the ]
ximm dovatfonis } hour ot thls rats plus e additlions]

dup  their

T

Shift catalyit regene

Prac| wind whate
Ystel

Le

.

g
U amistion ™

sSeal) smegnts of slher urqanic compoonds may &4 pretent In this styem, 1tirngh Juppotriting

case Lranttunt mitibon and could occer np to 45 Limes pur yesr.

t



particulate, all particulate was assumed to be respirable. A fugitive parti-
culate control efficiency of 90 tc 97% was assumed,

Compositions of uncontrolled lockhopper vent gases are based upon test
datz from commercial scale Lurgi gasification (10). Low pressure coal lock-
hopper ver . gas {Stream 203) characteristics reflect pressurization with Lurg!
gas rather than an inert gas. Transient waste gases [Stream 208) were
assunec to be simiiar in compasftion to gases from air-blown Lurgt gasifiers,
with fraquency. duration, and volumetric flow rates based upon infoyrmation
in permit applications for a U. S. Lurgi based SNG facility (13). Contrelled
emissions from combustion of low pressure lockhopper vent gas and transjent
waste gases*are based upon emission factors for natural gas-fired utility
boilers {17} and NSPS emission limizations.

Characteristics of the uncontrolied gas Tiguor depressurization gases
{Stream 203) and H,S-lean gases (Stream 213) are based upon test data from
“piiot and commercial scale Lurg! gasificatfon {1,1¢). Control of total sul-
fur gpaciaes in these streams in combination with ammonia recovery overhead
-gases (Stream 428} 1s based upon 100 ppmv residual HZS ang no removal of CG8,
csz, or RSH. Controlled emissions from these waste gases” are hased upon
emission factors for natural gas-fired utflity boflers (17) and NSPS emis-
sion limitations.

Characteristics of uncontrolled ghift catalyst regeneration/decommission-
ing offgases (Stream 211) are based upon information in permit 7-plications
for 2 U.S. Lurgl based SNG facility (13). Controlled emission rate esti-
mates are basad upon an assumed S0, scrubbing efficiency of 9C%.

Two routine offgases are associated with the product synthesis section:
1) 502 from SNG purification {Stream 231); and 2] SNG dehydration offgas
(Stream 236). The estimated composition of the Cﬂz from SNG purificatien
was based upon published engingsring estimates for SNG production applica-
tions {6,8). This stream was assumed to be controlled by thermal incinerz-
tion producing an incinerated CO, offgas {Stream 429) containing 50 ppmv CO
and 30 ppmv total hydrocarbaons. Although no character{zation data sre sveii-
able for the dehydration offgas, this stream may centain small quantities of

¥ The combustion of these gas streams is similar to the combustion of fuel gas.
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methane and glycol sorbent. It has been assumed that the dehydration offgas
ts discharged to the atmosphere uithnut cont-ol.

Fugitive organic emisstons from process squipment (Stream 233) have been
estimated based upon published emission factors for pumps, compressors,
valves, flanges and drains {18) and on an equipment count for a conceptual
fndirect coal lfquefaction facility {18). Fugitiva organic emissions from
process equipment in gas or vapor service were all assumed to be hydrocarbon
gases (RAU category 6). Emissions from process esquipment in light 1iquid
service were assumed to be gasoline and mixed 2leoho1s in proportion to the
product slate and published composition data for these products (6,20}, and
is the major cantributor to tabulated emissions for RAU categories 13, 14, 22
and Z4 in this stream. Emissions form process equipment in heavy 1iquid sar-
vice were assumed to nave 2 composition simflar to petroleum diesel oft (21)
znd contribute o tabulated smissions from RAU categories 12, 13, 14, and 15
in this stream. An overall reduction in fugitive organic emissions from pro-
cess equipment uf 72 to 85% was assumed, although higher efficiencies were
assumed for Tight hydrocarbons and lower efficiencies were assumed for heavy
hydrocarbons {22).

Emissions associated with the flue yas from uteam and power gsneration
{Stream 302) were estimated from material balance calculatione and published
enission factors for utility boilers (17,23). Fly ash vas assumed to have
the same composition of the whole coal ash except thai all mercury in the
faed coal is assumed to be volatilized. Approximately 4% of the uncontrolled
particulate was assumed to be respirable (23). Ranges in emission estimates
for traated flue gas reflect rangas in NSPS control requirements for electric
utfilities and industrial steam generation units. Enrichment of arsenic,
nickel, cadmium, and Tead in the contro)led particulate has been assumed, and
approximetely 73% of the controlled partigulate was assumed to be respirsble
(23). Tabulated controlled flue gas emissions include emissions from boiler
combustion of waste gases. Controlled transient waste gases have not been
included due to their intermittent gsneration.

Evaporative emissions from product and by-product storage were based
upon published emission factors from other industries {17). The composition
of evaporative emissions from aicohol storage (Stresm 313), gassiine storage

2-17



(Stream 329), maphtha storage (Stream 316), and phenol storage (Stream 217)
were estimated from published composition data (6,20,24,25), The compesition
of evaporative emissions from diesel oil storage {Stream 310) was estimated
from composition data from petroleum diesel {21). The composition of evapora-
tive emissions from fuel ofl storage (Stream 317) was estimated assuming that
59% of the emissions were saturates {RAU category 13), 40% were aromatics

AU zategory 14) and 1% were polycyclics {(RAU category 15) which is consis-
tent with trends in shale-derived residual fuels and petroleum diessl (21).

In a1l cases, evaporative emissions from product and by-product storage were
assumed to have the same composition as the buik liquids. This is a conser-
vative assumption from the risk assessment standpoint because the heavigr
fractions of the hydrocarbon products, those ysually associated with higher
risks, have lesser tendency to be evaporated due to their low vaper pressures.
tvaporative emissions from Lurgi tar and oil storage {Streams 314 and 31§)

are based upan tar tank vent gas characterization data from a commercial Lurgl
faciiity {10).

Control efficiencies for evaporati;e emissions from product and by-
product storage were assumed to range from 60 to 99% based upon published
emission data from other industries. Tabulated ranges in uncontrolled and
controlled evaporative emission rates refiect average annual values and maxi-
mam values estimated for a facility located in North Uakota.

Uncontrolled Stretford oxidizer vent gas emissions (Stream 415) are
based upon vendor-supplied faformation {26). Controlled emissien astimates
are based upon an assumed Nﬂa thermal destruction efficiency of 98%.

Under normal operating conditinns, negligible quantities cf RAU compon-
ents would be sxpected in the cooliug tower evaperation and drift {Stream
306). However, cooling tower concertration of plant wastewaters {not incor-
porated in the example waslewater t~eatment options) could result in residual
wastewater contaminants befng volatilized and/or entrained as drife.

Prores: Leaser 5izes ware axtahliizned based upon published designs for
£.7 facilities (6). Heaters sre fired with suifur-free fuel gas. Flue gas
charsctaristics are based upon AP-42 emission factors for gas-fired commer-~
clal heaters (17).
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Estimated stack heights, exit velocities and axit temperatures for gase-
ous waste streams discharged through stacks are presentad in Table 2-8. AN
other streams (e.g., fugitive dust and particulate, fugitive organic emissions
and evaporative emissjons) are discharged near ground Jevel at Jow velocities
and arbient temperature.

TABLE Z-B. STACK HEIGHT AND EXIT PROPERTIES OF GASEDUS DISCHARGE STREAMS

stack Exit Exit
Stream . Heig'ht. velocity. Tewperature,
Number Stream Description m m/sect K
211 Shift catalyst 48 20 auh
regeneration offgas
302 Boiler flue gas 76 20 405
429 Incinerated 002 offgas 46 2L 405
502=507 Flue gas from srocess 45 20 478

heaters

*Stack height information obtained from Reference 27,
tNo data on exit velocity are available. Exit velocity was assumed to be
20 m/sec, a typical design velocity for gaseous discharges through stacks.

2.3.3 Source Term Estimates for Aguepus Waste Streams

Source term estimates for uncontrolled and controlled aqueous waste
streams are presented in Tables 2-9 and 2-10, respectivaly. Coal storage
pile runoff {Stream 201) flow rates were based upon rainfall data for North
Dakota. Uncontrolled emission rates for trace elements present in the runoff
were based upon Timited published data (28,32,33). Trace elements in the run-
uff were conservatively assumed not to be removed during neutraiization

Uncontrolled emission rate estimates for Largé gas liquor {Stream 21U)
and methanol /water s¢111 bottoms (Stream 216) were based upon published test
dats (4,11,29). Uncantralled emission rate estimates for F-T wastewater
(Stream 2i3) were based vpon a published design study {6]. Uncontrolled
amission ratas for upgrading wastawater {Stream 508) were based upon published
refinery test data acd design studies (6,35). Thase wastewater streams would

233
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TABLE 2-9.

Say
Upgrading
Nakteualar®

Tt
Siratford
Solwk lon

Dleudavss D] oandown ¢

w7
ool Ing
Toser

Hartouater

Rugmnarat ton

e Dt imarad Dawr
F-T
SEill BavLoEs Ha s bwwa Lar

F40]
Mathans! Matar

ile

Lurgl Sas

L o

HT
Casl
Searngn PYie
et F

Aigh Anslpris Wmils

= A=
cossdcassacgegEo

YT E-T-T-T-7-2-R-0-1- L BN J

"y
euaagnoqueeunu a
L-1 J

2200

YT T-T- 10 g -R-3-1-L- B

-
2 6 RER
P L] 3
..03*060060:§§ [ -
L s -
- ! alc
- e %
-
-e-ﬂi.....tU:.n 2
— L
-
o
29
L]
oﬂgﬁdﬂﬂ.ﬂﬂ.... =
-

e inia
& wcids
Ch
pdraciriens

il ; Hl
il

{ e niing

vt}
Arwsstic maiaes (asctodivg
Vies)
12 Aldalisd Bitrepn

6 Alighitic =

n

-3

L]

#.D052-0.4012

harlarn~

Pn'l

Heelrs) B, 0, 3 Matory-

a1pranan

Smiing “walaki
tes {onchud

latilas*} -
srbenyl b sk

ek iy [
-
{eacinding *wlatiles”}

“yal

[

3

cCooouUAAYROOBs OO

Elun'-“-\

cossnaxSrE8E e

Y Y-1- -1 2-1-2-0-0 0 o i

3-1.7

-T-1-1-T 3-E-F 1 1 B-- -

Rcun .

. 2
= =
:531
adn =

.....

A
:g‘ 2 i“?—! §§!
R HTHITE
LML ELRANIRRARS

i vaariaiei aad (pelm valts of thlowifata, wifate, cavbouaia sed thiscyanatn.

wsmaly abownls B SIRNC oFgaRic Compmiods MMy Be PreseAL 18 this SkreMm, A1Though tupportiag data sre mot svatishie,



TABLE 2-10. SOURCE TERM ESTIMATES FOR CONTROLLED AQUEOUS WASTE STREAMS
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be combined for treatment and two treatment alternatives were evaluated:

1) phencl extraction, smmonia recovery and activated sludge followad by
chemical prenipitatien, activated carbon adsorption and discharge to surface
waters; and 2) phenol extraction, ammonia recovery and activated sludge
followed hy foresd evaporation and surface impoundment. The assumed perfore
mance for the Option 1 control altermative inctuded 35 to 98% remove! of

HyS , HCR and NH5, and 98 to 59.99% removal of organfc compounds. The assumed
performance for the Option 2 control alternativa included about 9B% removal

of H,5 and NH,, 86% ramoval of HCN, 95 to 97% removal of organic acfds, tars
and alcohols, and 99.7% removal of phenols.

The quality of uncontralled demineralizer regeneration wastewater
(Stream 302) and cooling tower blowdown (Stream 307) {in the absence of cool-
ing tower concsniration of wastewater) is largely dependent upon the auatity
of available feed water. Although these streams are Tikely to contain Tow
Jevels of trace elements, emissions of trace elements in these streams are
expected to be small relative to emissions from other sources within tie
facility. Emission estimates for these streams are based upon average con-
centrations in the electric utility industry (33).

Stretford solution blowdown {Stream 416) would contzin vanadates and
sodium salts of thiosul fate, sulfate, carbonate, and thiocyanate. This waste
would be largely recovered by reductive incineration with recycle of saits
to the absorter solution and recycle of gaseous reduced sulfur species to the
absorber fesd gas.

It should be noted that Yeachates from soiid wasta disposal may also he
generated. However, no landfill leachate data reiating tn the landfilled
waste streams are publicly avaflable. The limited jeaching data for quenched
gasifier ash are sunmarized in Table 2-11.

2.3.4 Source Term Estimates for Solid Waste Streams

A summary of uncontrolled solid waste streams and available characterid
zation date ere presented in Table 2-11. Spent shift conversion, methanation,
hydragenation, hydrotreating, isomerization and reforming catalysts (Streams
212,229,511,513 and 514) wauld be recycled to the vendor for metal recovery
or reprocassing and reuse., A1l other solid wastes would be either landfilled
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directly or land¥i11&d foliowing chemical fixation or neutralization. Very
Timited composition data and leaching data are available, and no Tandfill
leachate data for the landfilled waste strigams are publicly avaflable. Hence,
source term sstimates canmot be prepared for either the uncontrolled or cone
trolied solid waste streams.

2.4 DATA UNCERTAINTY AND LIMITATIONS

In the previous section source term estimates for most of the waste
streams generated by a Lurgi based F-T facility, partfcularly waste streams
unique to synfuels technalogies, wers presanted. However, available data
on the risk anaiysis units generally consist of single data sets which may
not include data for all RAUs present in the waste stream. Moreover, source
terms for waste streams from future commercial facilities could 4fffer from

those presented in this report for several reasons. One reason for such
differences would be the uncertainty invoived in astima smission/

effluent compositions at this time. As discussed in Section 2.3, the environ-
mental data are 71imited, the foreign facilifies tested are not entirely ve-
presentative of proposad U.S. facilities, and there 15 necessarily some un-
certainty in makiny engineering estimatas of trace components in discharges
from complex systems.

The major uncertaintfes and data 1imitations associated with source
term estimates for controlled gaseoys and aqueous waste Streams iAre SUNMA-
rized in Tables 2-12 and 2-13, In the case of solid wastas. the composition
of wmcontrolled waste streams 1s of less significance than the composition
of any Jeachate resulting from landfil1ling these wistes. Hence, the majer
uncertainty assoctated with 501{d waste streams relate to leachate character-
fstics (Takle 2-13).

Gf the parameters influencing waste stream characteristics, variations
in the foed coal composition are the most easily evaluated. Variations in
the characteristics of North Dakota lignites are summarized in Table Z-14.
These data provide a basis for svaluating ranges 1n certain waste stream
characteristios. For sxample, the design sulfur level {s about twice the
average sulfur concentratfon for Nerth Dakota lignites. Hence, on the aver~
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Coal Standard of Data
03l znent {4.5) Mean Deviation Points
Sulfur, § (dry basis) 1.3 p.64 p.o8 Not Available
Ash, % {dry basis) 11.1 9.0 2.7 Not Avallable
Trace Elements, ppmv .
basis . .
Ag - 0.049 0.03 10
As 16 5.2 D.50 7
B 100 64.2 32 10
Ba - 501 272 10
Be 0.50 0.3 0.25 10
Cd C.34 0.35 0.48 7
Lr -- 7.52 12 10
Cu 3?7 11.3 0.13 10
F M 21.5 17 7
Hg 0.33 0.094 0.05 7
Ni 19 3.6 3.0 10
Pb BA 2.3 0.06 10
Se 1.4 0.59 D.&3 ?
¥ - 7.23 3.8 10
In 18 3.84 0.84 9

sge, sulfur amissions from the power boilers and FGD sludge production rates
are 1ikely to be propartionately lower, Similarly, since the design trace
elemant concentrations were selected conservatively, average trace element
emission rates in all coal derived gaseous and solid waste streams would
typically bas lower in proportion to the ratioc of the mean-to-des ign ¢oncen-
tration. It should be noted, hewever, that such extrapclations cannot be
made with respact to trace slement concentrations fn leachates or other 1iquid
waste streams. Ash and slag production rates are, on the average, Tikely 1o

be overestimated by 20 to 30% consistent with the mean-to-dasign ash concen-
tration ratio. '
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