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Figure 37
Reduction of Raney Catalysts at 648 K
Hydrogen Atmosphere
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Catalyst Screening Test

A series of preliminary experiments were conducted for the
catalyst screening test. First, the relative response factors of
the components in the product from the hydrogenation of carbon
monoxide were determined with a gas chromatograph to make a quantita-
tive analysis of the product and the results are contained in
Appendix E.

Secondly, the flowrate of the reactant gas mixture (HZ/CO =
2.0) was calibrated at the reaction condition (pressure = 1465 KPa)
with a mass flowmeter controller to find a proper flowrate of the
reactant gas for a desired space velocity from a calibration chart
(Appendix F). A series of exploratory fixed-bed experiments were
carried out to find a proper range of process variables for the
catalyst screening test such as temperature, pressure, and space
velocity. The hydrogen-to-carbon monoxide ratio of the reactant gas
was fixed at 2.0, under which condition the deposition of carbon was
expected to be negligible. The range of process variables was
determined to achieve a differential reaction condition, that is, the
conversion of carbon monoxide was Tow enough to ensure a nearly iso-
thermal condition, to minimize the product inhibition effect on the
reaction, and to prevent catalyst deactivation. The results of the
exploratory fixed-bed experiments are contained in Appendix F.

Based on the above tests the following reaction conditions

were chosen as standard conditions for the catalyst screening investi-

gation:
H2/C0: 2.0

Reaction temperature: 423 to 473 K
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Reactor pressure: 1465 KPa (200 psig)
Space velocity: 3.0 cm3g'1s'3. |
A11 the Raney catalysts (iron and iron-manganese) were reduced at
648 K for § hours and the precipitated catalysts (iron and iron-
manganese) were reduced at 673 K for 5 hours in flowing hydrogen. The
reduction conditfon for each type of catalyst was chosen based on the
tnermogravimetric reduction study. The initial induction time, during
which the catalyst activity and’seiectivity were stabilized, was found
to be dependent on the catalyst type. Therefore, each cataiyst
tested was pretreated in the carbon monoxide and hydrogen mixture

gas at the reaction condition (temperature = 423 K)'unti1 it showed a

stable activity and selectivity prior to each activity test.

Screening Test with the Raney
iron Catalysts

Catalyst activity. .A series of catalyst activity screening

tests has been carried out with the Raney iron catalysts at the
standard reaction condition.

The catalyst activities, in terms of carbon monoxide
conversion, and prﬁduct‘seiectivities are listed in Table 11. The~
variation of carbon monoxide conversion with temperature for Bgﬁgy
iron catalysts prepared by the alloy addition and by the caﬂsfic
addition method are presented in Figures 38 and 39, respectively. - The
Raney iron catalyst prepared at 363 K (R-Fe-A90) exhibited the highest
activity, in terms of carbon monoxide conversion, in the témperature
range of 423 to 443 K, whereas at 453 K the Ransy iron catalyst
prepared at 323 K exhibited higher activity than the R-Fe-A90

catalyst. This change in the order of catalytic activity with



Fixed-Bed Evaluation of Iron Catalysts

Table 11

Pressure = 1465 KPa (200 psig); Ho/CO = 2.0;

Space Velocity = 3.0 cm

3

a

1

ol
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0,
4.8
6.4

9.3
17.2

5.0
7.9
12.8
25.6

4.1
6.5
9.4
16.7

3.7
7.2
10.1
16.5
4.3

3.5
5.6

Conver- Product Carbon Atom Selectivity (%)

ca%;;ZSt T?ﬁ?‘ ") ¢ Colqy  Cgt  powd

R-Fe-A25 423 1.1 33.5 46.7 13.9 1.0
433 2.4 35.3 43.5 12.2 2.7

443 4.5 30.1 41.8 15.6 3.3

453 9.8 26.5 39.1 14.7 2.5

R-Fe-A50 423 1.2 45.5 36.5 12.1 1.0
433 2.3 31.1 44.3 13.9 2.3

443 5.1 28.9 41.1 14.3 3.1

453 14.2 20.2 37.9 15.0 1.3

R-Fe-A90 423 1.3 34.2 40.3 17.5 3.9
433 3.3 35.9 39.2 16.0 2.4

443 5.4 31.4 39.7 15.9 3.6

453 11.5 26.2 37.6 16.2 3.2

R-Fe-A90b 423 1.7 25.9 40.5 14.7 15.2
433 3.5 29.2 42.5 18.7 2.3

443 6.6 26.3 41.4 14.6 8.2

453 10.2 25.1 41.8 14.9 1.7

ppt Fe 423 1.0 45.7 33.6 10.0 6.4
433 2.0 39.4 37.5 14.3 5.3

443 3.7 36.8 38.6 15.1 3.8

453 7.4 34.9 37.3 15.3 3.5

9.1
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Table 11 - Continued

catal . Conver- Product Carbon Atom Selectivity (%)

atalyst emp. sion ' a

Type (K) (%) C-i ) CZ-C4 C5+ ROH C02

R-Fe-C25 423 1.3 31.9  44.6 14.9 4.9 3.7
433 2.9 31.0 4z2.4 16.7 4.4 5.4
443 5.8 28.0 40.1 15.2 7.3. 8.3

453 10.6 26.3 38.4  16.4 5.6 13.3

R-Fe-C50 423 1.3 32.9  44.4  14.3 4.4 4.0
433 3.4 30.6 41.6  18.2 3.6 6.0
443 6.3 29.9 41,1 15.0 4.7 9.2

R-Fe-C90 423 1.5 37.4 38.2  15.4 '3.8 5.2
433 2.5 31.3 43.2  17.8 0.7 7.0
443 7.4 27.9 40.6 15.9 2.0  13.6

" R-Fe-CS0

(10%) 423 0.8 53.6 34.9  18.3 0. 2.3
433 1.4 35.6 4.6 14.6 - 0.8 4.5
443 3.3 31.2  42.5 16.3 2.6 7.4
453 5.1 30.5 425 15.4 1.4 10.2
@nlcohols.

bA1loy from Alpha Products.



Figure 38

Activity of Raney Iron Catalyst for
Carbon Monoxide Conversion

Catalyst: Prepared by Alloy Addition Technique

Pressure = 1465 KPa; H2/CO = 2.0;

Space Velocity = 3.0 cm3g'1s'r
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Figure 39

Activity of Raney Iron Catalyst for
Carbon Monoxide Conversion

Catalyst: Prepared by Caustic Addition Technique

Pressure = 1465 KPa; HZ/CO = 2.03

3 -1.-1

Space Velocity = 3.0 em”g s
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reaction temperature was also observed with the Raney iron catalysts
prepared by caustic addition (Figure 39).

At the test conditions all the Raney iron catalysts exhibited
higher activity than the precipitated iron catalyst, irrespective of
the preparation method, except for the Raney iron catalyst prepared
with the 10% NaOH solution [(R-Fe-AS0 (10%)1.

The Catalyst activity data for the Raney iron catalysts in

Table 11 have been analyzed using the following general rate

expression:

ro=orgf (P s P ) = Aew(-E/RT) £ ( Py, Pey) (71)

where r is the rate of conversion of carbon monoxide (mol/sec), A is
the pre-exponential factor, E] is activation energy (KJ/mole), PHZ and
PCO are the partial pressure of hydrogen and carbon monoxide,
respectively, ¥ is a function of PHZ and Peo? and rg is A exp(-E]/RT).
Since the catalysts have been tested at the standard test condition,

f (PH2 ’ PCO ) becomes a constant term, especially at low levels of

carbon monoxide conversion. This assumption is justified in the

following d{scussion.

45

Anderson > expressed the function f ( PH2 s Peg ) for the

hydrogenation of carbon monoxide over iron catalysts as follows:

——TT D —5— (72)
1+ b0 expl EZ/RT) PHzo / Pco

f(Py s Pp) =
Hy * "CO

where E, is the activation energy (J/mol), and b, is the pre-

exponential factor. According to Atwood and Bennett,46 bo = 0.164 and
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E2 = 502 J/mol for iron catalysts under the reaction condition similar
to the standard reaction condition used for this study: a reactor
prassure of 2.0 MPa, a H2/CO ratic of 2.0, and a reactor temperature
of 523 - 588 K. Af the highest carbon monoxide conversion achieved
with a Raney iron catalyst, PHZO / PCO was estimated fo be about 0.04.
At the highest carbon monoxide conversion the term, b0 exp(-Ez/RT)
PH20 /'PCO, was about 0.05. Therefore, Equation (72) can be approxi-
mated by Equation (73), which is the same equation obtained by Dry40

for carbon monoxide hydrogenation over iron catalysts:

f (PH2 , PCO) = PH2 . (73)
According to Atwood and Bennett,46 the usage ratio of HZ/CO was quite
constant, 0.75, over a wide range of carbon monoxide conversion, which
was far below the H2/C0 reactant ratio of 2.0. The partial pressure
of hydrogen, PHZ’ would be a constant value in a differential réactor,
which was the case for the screening tests doné with the Raney fron
catalysts. ‘ |

| The constancy of the term was confirmed as follows: Taking
the Togarithm of Equation (71), we obtain

E .
= 1 . '

Activation energies were obtained from the Arrhenius plot, In r vs,

1/7, for all the catalysts. Rearrangement of Equation (71) gives:

rexp (E;/RT) = AT ( Py, s Peg ) - - (78)
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The constancy of the term, f ( PHZ s PCO ), has been confirmed by

comparing values of the left-hand side of this equation for each
catalyst at different reaction temperatures. In the case of R-Fe-AS0
catalyst, which showed the highest activity at 453 K, the left-hand
term, r exp(E]/RT), was quite constant, 2.1 (+ 0.3) x 10]4, in the
temperature range investigated.

The apparent activation energies for carbon monoxide conver-
sion and the 1n (Af) values were obtained from the Arrhenius plots by
linear regression. Typical arrhenius plots are presented for iron
catalysts in Figure 40. The reaction rates of carbon monoxide con-

version were obtained in the following manner:

reg = (Ng)(sv)(3600 s h™1) (x) (76)

where reo is the reaction rate of carbon monoxide conversion (mol 9'1
hr'l), Ngo is the concentration of carbon monoxide in the reactant
mixture gas (mo1/cm3), x is the conversion of carbon monoxide, and sv
is the space velocity (cm3g'1s']). The number of moles of carbon
monoxide in the reactant gas was calculated using ideal gas law,
which is valid for mixtures of carbon monoxide and hydrogen below

pressures of about 4 MPa.44

The activation energies and the In (Af) values for the Raney
iron catalysts are listed in Table 12. The activation energy ranged
from 96 to 139 KJ/mol, which was in the same range of values cbtained
by previous workers for iron catalysts [Anderson (44), Bennet (46);
84 KJ/mol, Vannice (47); 113 KJ/mo1]. The relative activities of the

Raney iron catalysts are listed in Table 12. The normalized rates of
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Figure 40

Arrhenius Plots for Carbon Monoxide Conversion
over Iron Catalysts
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carbon monoxide conversion over Raney iron catalysts were calculated
relating to ihe rate over the precipitated iron catalyst at each
reaction temperature. Some of the relative activity values were
obtained by extrapolation of the Arrhenius plots. The numbers in
parentheses are the relative activity values of the precipitated iron
catalyst obtained by taking the reaction rate at 423 K as 1.0.

The relative activity of the precipitated iron increased
about two times for each 10 K increase in reaction temperature, which
is the case for a typical homogeneous reaction. This fact, combined
with the knowledge that the activation energy values lie within a
reasonable range, indicated that the carbon monoxide conversion
reaction was free of any significant intraparticle transport limita-
tions at the standard reaction condition. If this were not the case,
the activation energy would be much lower than 84 KJ/mol since the
apparent activation energy is half of the sum of the true activation
energy and the activation energy for diffusion, usually much lower
than 40 KJ/mol, in a situation where the intraparticle mass transport
limitation prevails.]so The absence of any interphase and intra-
particle transport limitations is discussed in detail in Appendix G.

The relative activity of a Raney iron catalyst increased with
temperature, when the activation energy over the Raney iron catalyst
was higher tﬁan that over the precipitated iron catalyst, 105 KJ/mol,
and vice versa. The most noticeable increase was observed with the
R-Fe~-AS0 catalyst, for which the activation energy was highest among
the Raney iron catalysts tested.

When comparing the activities of different Raney iron

catalysts prepared at different leaching temperatures, the



activities of Raney iron catalysts prepared at a Tow temperature |
(298 K) were lower than those of Raﬁey iron catalysts prepared é;
higher temperatures (323 and 363 K), irrespective of the preparation
"mode, that is, alloy or caustic addition. The catalyst preparéd'with
the 10% NaOH solution exhibited Iower-actjvity-than that pfepareé
with the 20% NaOH solution ét the same leaching temperature as can _
be seen from the data of R-Fe-C90 and R-Fe-C90 (10%) in Table 12. At
thevsame 1eachiﬁg temperature the caustic addition method yielded'a"
Raney iroq catalyst with slightly higher activity than the ohe pre-
pared by the alloy addition method. | e
No correlation could be found between the BET surface area and
the relative activities of the Raney iron cata]&sts. A Setter corre-
lation could have been made by determining thé'number‘of active sites
for the reaction on each catalyst from a study of selective chemi-
sorption of carbon monoxide and hydrogen which was out of the.séope of
this study. It needs to be pointed out that a criterion for.se1écting
& catalyst depends on the specific purpose of the use of the catalyst.
As has been discussed by Butt, et a].,lﬁ? there ére several criééria
when a standard activity test is carried out to select a most desirable
catalyst for a given reaction:
i) temperature required for a given conversien
ii) temperature for a given product quality
iii) space velocity reguired for a given conversion
iv) conversion achieved
v} reaction rate
vi) rate constants and parameters extracted from_kiﬁétic.

studies.
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Among the above the second, for example, obviously has more to do with
selectivity, while those criteria based on conversion may be quite
misleading under certain circumstances. The last two measures of
activity seem to be most appropriate for this study. The others,
which compare the catalyst activity at a single parameter such as
temperature, conversion, and space velocity, will mislead the results
as evidenced by the fact that the order of catalyst activity changes
depending on the reaction temperature as shown in Figure 38 and
Figure 39.

The reaction rate data for carbon monoxide conversion have
also been analyzed by a first-order kinetic equation which also
correlated the rate data reasonably well. The activation energy for
carbon monoxide conversion over each Raney iron catalyst obtained
from the Arrhenius plot was found to agree within + 4 Kd/mol with the
values listed in Table 12.

The reaction rate of each product formed (c1-c4 hydrocarbons
and COZ) has been analyzed in the same manner as was done for the
carbon monoxide conversion rate. The rate of formation of each
product was obtained by multiplying the rate of carbon monoxide
conversion (mol g'1hr']) to each product selectivity (carbon atom
mole %) and divided by the number of carbon atoms in each molecule.

The Arrhenius plots for hydrocarbon synthesis from carbon
monoxide hydrogenation over a Raney iron (R-Fe-A90) and a precipitated
iron catalyst are presented in Figure 41. The reaction rate for
hydrocarbon formation decreased in the fof]owing order: CHy > CoHe >
CHy > C3H5 >1C4H8 > C3H8 v Cflyg- The activation energy and the

In (Af) value obtained from the Arrhenius plot for each product from



Figure 41
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Arrhenius Plots for Hydrocarbon Formation
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carbon monoxide hydrogenation is listed in Table 13. The actfvation'
energies for each product formed over Raney iron catalysts were in the
following ranges: CH4 = 73~ 116 KJ/mal, C2H4 =.61= 98 Kd/mel, CZHS =
115- 157 Kd/mol, CgHe = 100 - 131 Kd/mol, CqHg = 97 - 140 Kd/mol,
Cyflg = 94- 123 KI/mol, Cyhyg = 100- 144 Ki/mol, and CO, = 149 - 217 K/
mol. ' \

It is noteworthy that the range of activation energy for
ethylene formation was low relative to the range of activation
; energies for other hydrocarbons and the range of activation energy for

‘1 carbon dioxide formation was much higher than those for all the hydro-

carbons.

Product selectivity. The product selectivity for the Raﬁay
iron catalyst depended on the preparation Eonditions as well as on the
reaction temperatures as indicated in Tabie 11. The methane |
selectivities of the Raney iron catalysts prepared by the alloy
addition and by the caustic additién technique are presented in
Figures 42 and 43, respectively. |

The methane sé]ectivity decreaséd with increasing temperature
for a given catalyst. The precipitated iron catalyst showed higherj
methane selectivity than any of the Raney iren catalysts. At 453 K
the methane selectivity of the precipitated iron was 35%, while thé.
methane selectivity of the Raney {dron cata1y§ts ranged from 20 to 30%.

The 02-C4 hydrocarbon seiectiyities are presented in Figure |
44. At the Towest reaction temperature, 423 K, the C,-C, selectivity
was quite different for the different catalysts. It réngéd from 33 to.

48% (product carbon atom moie%). However, the C,-C, selectivity
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Figure 42
Methane Selectivity of Raney Iron Catalyst
Catalyst: Prepared by Alloy Addition Technique
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Figure 43
1Methane Selectivity of Raney Iron Catalyst
Catalyst: Prepared by Caustic Addition Technique



CARBON ATOM MOLE %

SELECTIVITY,

METHANE

50

48

40

3%

30

s

141

® ppt Fe
A FR-Fe-CSO
O R-Fe-C50
- C FR-Fe-C25
& R-Fe-CS0(10%)

l | l I
223 433 443 453
REACTION TEMPERATURE (K)




142

Figure 44
C2-C4 Hydrocarbon Selectivity of Raney Iron Catalyst
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converged to a narrow range of values, 37 to 43%, at 453 K, irrespec-
tive of the different catalyst type or preparation conditions.

The Cg+ selectivities of the Raney iron catalysts at
different temperatures are presented in Figure 45. The C5+ selecti-
vity exhibited a wide variation in the low reaction temperature
range, but it converged to about 15% at 453 K, irrespective of the
catalyst type or catalyst preparation conditions.

The cérbon dioxide selectivities of the Raney iron catalysts
prepared by alioy addition and by caustic addition technique are
presented in Figures 46 and 47, respectively. The carbon dioxide
selectivity increased with increasing temperature for any given
catalyst. The precipitated iron catalyst was the least selective for
carbon dioxide. The relatively high carbon dioxide selectivity of the
Raney iron catalyst compared to the precipitated iron catalyst may be
related to the higher level of carbon monoxide conversion achieved at
a given temperature with the Raney iron catalyst. It was observed that
a8 high level of carbon monoxide conversion gave a product slate with
high carbon dijoxide selectivity. Although the catalysts were-tested at
nearly isothermal conditions, which is true especially at a low level
of carbon monoxide conversion, there is a possibility of developing a
hot spot at the catalyst surface at the high level of carbon monoxide
conversion achieved with a very active catalyst. This is an inherent
problem associated with a fixed-bed reactor, especially when a very
exothermic reaction, such as carbon monoxide hydrogenation, is taking
place in the reactor. The hot spots promote the water-gas-shift
reaction, which is favored at high temperatures compared to the

hydrocarbon synthesis reaction, resulting in a high carbon dioxide
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» Figure 45
C5+ Hydrocarbon Selectivity of Raney Iron Catalyst
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Figure 46
~ Carbon Dioxide Selectivity of Raney Irén Cataiyst

Catalyst:‘ Prepared by Alioy Addition Technique
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~ Figure 47
Carbon Dioxide Selectivity of Raney Iron Catalyst

Catalyst: Prepared by Caustic Addition Technique
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seiectivity Thus it may be more meahingfu] to compare product :
se]ect1v1t1es between d1fferent cata]ysts at a g1ven convers1on rather
than at a fixed temperature. | |
| - The,product carbon atom selectivities for C2, C3, and C4-
hydrocarbons, as well as the total C2~C4 o1efin selectivity at
different temperatures are 11sted in Tab1e 14. The total CZ-C4 olef1n
se]ect1v1ty decreased wzth 1ncreas1ng temperature for ali the catalysts
and ranged from 18 to 26% for the temperature range tested There were
no s1gn1f1cant d1fferences in Com Cy. select1v1ty between the d1fferent
1ron catalysts. . The ethy?ene seiect1v1ty decreased marked1y W1th
1ncreas1ng temperature for all the cata1ysts, wh11e the select1v1t1es
for other hydrocarbons (oief1ns or- paraff1ns) were qu1te 1nsens1t1ve to_
temperature change as 1nd1cated in Table 14. ‘ ,

" The o1ef1n-to-paraff1n rat1os of C2= C3, and C4 hydrdcarbons
are tabulted in Tab]e 15 as we11 as. the oief1n—to-paraff1n rat1o of
the totai C2--C4 hydrocarbons The o1ef1n-to-paraff1n rat1d of the CZ
hydrocarbcn (ethy]ene/ethane) decreased marked?y w1th 1ncreas1ng
temperature for alil the cataiyst whtie the clef1n-to-paraff1n rat1o of
' the s (propy]ene/propane) and C4 (butehe/butane) hydrocarbcns "
remained near1y constant or decreased s11ght]y w1th 1ncrea51ng temper-
ature The decrease in the o]efan-to-paraff1n rat1o of C2 hydrocarbon
with increasing temperature is related to the decreas1ng ethylene
selectivity w1th 1ncreasing temperature Therefore, the CZ-C4 hydre--
carbon oieftn-te paraff1n rat1o decreased w1th 1ncreas1ng temperature,
due mainly tc the decrease in the Cz hydrocarbon o1ef1n—tc-paraff1n
ratic. The vartatwn of Cgs C3, C4, and CZ'C4 o1ef1h- o-paraff'm |

ratios with temperature is showh for a Raney iron cataiyst (R-Fe-AQG)
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Table 15

Olefin-to-Paraffin Ratios for Raney Iron Catalystis

156

Catalyst

gl rem. () C2(0/P)  C3(0/P) G4 (0/P) Cp-Cy (O/P)
R-Fe-A25 423 0.7 2.00 1.38 1.27
433 0.48 2.05 1.37 1.13
443 0.37 2.08 1.34 1.06
453 0.29 2.09 1.32 1.01
R-Fe-A50 423 0.70 1.98 1.38 1.25
433 0.45 2.00 1.32 1.07
443 0.31 1.95 1.26 0.97
453 0.28 1.66 1.10 0.91
R-Fe-A90 423 0.96 2.07 1.42 1.44
433 0.55 2.14 1.46 1.23
843 0.37 2.08 1.36 1.08
453 0.29 2.06 1.29 1.02
R-Fe-A90° 423 1.03 2.28 1.64 1.58
433 0.70 2.31 1.58 1.39
843 0.42 2.33 1.55 1.20
453 0.40 2.41 1.58 1.21
ppt Fe 423 1.00 2.22 1.57 1.54
433 0.62 2.28 1.53 1.32
443 0.45 2.27 1.50 1.19
453 0.34 2.23 1.42 1.10



Tab1e 15 6'Continuéd‘h
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Gt e, (0 (0P C5l0R)  Cl(0/P)  CpeCy (O/P)

R-Fe-C25 423 0.86  2.06 .82 1.38
433 0.56  2.14 .43 1.22

443 0.41 2.18 1.42 1.12

853 0.33 2.23 0.71 1.08

R-Fe-C50 123 0.73 2.02 1.39 1.29
433 0.8 2.08 140 113

443 0.35 2.11 1.38 1.05

R-Fe-C90 423 1.03 2.18 1.54 1.53
’ 433 0.67 2.24 1.59 1.36
443 0.38 2.06  1.47 1.14

R-Fe-C90 (10%) 423 1.40 2.36 1.65 - 1.78
433 0.8 282 1.69 1.5

443 0.54 2.46  1.65 1.32

453 2.6  1.62 1.24

0.43

aA]ioy from Alpha Products.
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as a typical example in Figure 48. The variation of CZ-C4 hydrocarbon
olefin-to-paraffin ratio with‘temperatUre is presented in Figure 49.
A1l catalysts exhibited a narrow range of C2-C4 olefin-to-paraffin
ratio from 0.9 to 1.2 at 453 K. The C2-C4 hydrocarbon olefin-to-
paraffin ratio decreased with increasing temperature for all

catalysts.

Screening Test with the Raney
Iron-Manganese Catalyst

Catalyst activity. The Raney iron-manganese and a coprecipi-

tated iron-manganese (Fe/Mn atomic ratio = 100/5) catalyst have been
evaluated in a fixed-bed reactor at the same standard reaction
condition as the Raney iron catalysts.

The carbon monoxide conversion and the product selectivity
for each of the iron-manganese catalysts are listed in Table 16 at
different temperatures. The carbon monoxide conversion at different
temperatures for the Raney iron-manganese catalysts prepared by alloy
addition and by caustic addition are presented in Figure 50 and 51,
respectively. A1l the Raney iron-manganese catalysts exhibited
higher activity, in terms of carbon monoxide conversion, than the co-
precipitated catalyst as indicated in Figure 50 and 51. It can be
seen that the order of activity changes depending on the temperature,
which was also observed with the Raney iron catalysts (see Figure 50
and Figure 51).

The rates of carbon monoxide conversion over the Raney iron-
manganese catalysts have been analyzed in the same way as was done
for the Raney iron catalysts. The Arrhenius plots for the Raney iron-

manganese catalysts and a coprecipitated catalyst are presented in
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Figure 48
Low Molecular Weight Hydrocafbon Selectivity

Catalyst: R-Fe-A90



OLEFIN-TO-PARAFFIN RATIO

2.5

2.0

0.5

423 433 443 453
REACTION TEMPERATURE (K)

160



161

Figure 49

C2-C4.01efin-to-Paraffin‘Ratios }
for Raney Iron Catalysts
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Caustic Addition

20 /A R-Fe-C90 3 R-Fe-C50
O R-Fe-C25 O R-Fe-C90 (10%)
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Table 16
Fixed-Bed Evaluation of Iron-Manganese Catalysts’

Pressure = 1465 KPa (200 psig); H,/CO = 2.0;

Space Velocity = 3.0 cm3¢_:{'.‘§'.l
: : Product Carbon Atom Selectivity (%)
Catalyst Temp. Conver- —=
Type (k) sion(z) Y G4 T g 9,
Coppt Fe-Mn 423 0.2 40.8 48.4 4.8 0 5.9
433 0.4 30.6 487 10.9 0.8 8.8
443 1.2 29.6 44.3  17.0 1.2 7.9

453 2.3 22.8 44.8 20.3 2.2 9.9
463 4.4 19.5 44.4 - 20.7 1.3 4.2 -

R-FeMn-A30 423 0.7 444  39.1  10.0 0.7 5.9
| 433 1.4 36.6 387  16.2 0.8 7.7

443 2.8 30.3 20.0 7.2 0.6 11.8

43 4.6 262 397 16.5 0.4 17.2

463 8.6 205 3.6 16.2 1.0 25.7

473 12.9 17.0 33.8 5.2 0.7 33.2

R-FeMn-AS0 423 1.2 31.1 317 29.6. 0 7.6

433 1.6 28.8  38.8 203 0 12.0
443 2.9 227 9.4 181 03 19.5
853 6.1 18.8 347 185 - 0.7 26.3

463  13.0 15.0  31.7 ~ 17.2.  0.5 35.4
473 . 23.6 12.5 29.7 14.4 0.5 42.9



Table 16 - Continued
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Catalyst Temp. Conver- Eroductccfgbon Atom Selecti;itycé%)
Type (K)_ sion (%) 1 274 Cs* ROH 2
R-FeMn-A50 423 0.6 38.4 37.1 14.0 0 10.6
433 1.2 22.1 411 20.2 0 16.6
443 2.7 18.5  36.9 19.7 0.4 24.6
453 5.0 15.4  33.5 17.3 0.2 33.6

R-FeMn-A50 423 0.4 38.0  48.7 0.3 2.9 0
(10%) 433 1.0 31.3 44.4 18.2 1.2 4.9
443 2.2 29.0 42.1 17.6 3.9 7.4
453 4.9 27.1 41.3 16.7 2.9 12.0
R-FeMn-C90 423 0.8 22,2  42.9 26.2 0 8.8
433 2.0 19.4 41.7 25.4 0.1 13.4
443 3.4 18.5  38.6 24,8 0.3 17.8
453 7.4 16.7  34.7 20.8 1.5 26.3
R-FeMn-C50 423 0.9 29.1 48.0 16.4 0.9 5.5
433 1.9 26.3 46.5 19.8 0.7 6.7
443 3.8 20,9 451  19.4 0.5 10.1
453 6.5 22.5 42.7 18.0 2.8 14.0
R-FeMn--CSOb 423 0.7 25.3 51.4 17.7 0.8 4.9
433 1.6 24,0  46.8 21.4 1.1 6.7
443 3.1 23.0 4741 21.2 1.1 10.0
453 6.4 25.2  39.8 17.2 3.7 14.2
2A1cohols. bDup]icate preparation.



Figure 50

Activity of Raney Iron-Manganese Catalyst
for Carbon Monoxide Conversion

Catalyst: Prepared by Alloy Addition Technique
Préssure = 1465 KPa; H2/C0 = 2.0;3.

Space Velocity = 3.0 cm3g'3s"]
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.Figure 51

Activity of Raney Iron-Manganese Catalyst fcr
Carbon Monoxide Conversion

Catalyst: Prepared by Caustic Add1t1on Techmque

Pressure = 1465 KPa; HZ/CG = 2.0;
Space Velacity = 3.0 cm3g Tg-1
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Figure 52. The activation energies and the In (Af) values for carbon
monoxide conversion are listed in Table 17. The activétion energies
ranged from 98 to 133 KJ/mol, which was in the same range as the Raney
iron catalysts. |

The relative activities were obtained in the same. manner as
was done for the Raney ifon catalysts, that is, the reaction rate of
carbon monox1de conversion over a given cata]yst was normalized ‘taking
the reaction rate over the coprec1p1tated Fe—Mn catalyst at each
temperature as 1.0. The relative activity of a given catalyst
increased with increasing temperature, when the activation energy of .
the catalyst was h1gher than that cf the coprecipitated 1ron-manganese
catalyst, 129.7 KJ/moi |

The relative act1vities of the Ranéy iron-manganese cataiysts.
prepared by the alioy addition technique indicated that the catalyst. .
leached at 363 K yielded a catalyst (R-FeMn-A90) with higher actiVitYf
than the catalyst leached at 323‘K (R-FeMn-A50) and at 303 K (R;Feﬁn;‘
A30). The order of activity for}fghe R-FeMn-AS0 and R-FeMn-A30
catalysts changed, ¢epending on tﬁé:iemperature, that is, in the high
temperature range above 443 K, the R—FeHﬁ-ASO cata]yst exhibited
higher activity, while below 443 K the R-FeMn-ABO exhibited higher
activity. '

The Raney 1ron-manganese catalyst prepared by caustic add1t1on
and leached at 363 K (R-FeMn-CQO) exh1b1ted a h1gher act1v1ty than
that of the catalyst Teached at ‘323 K'(R-FeMnC50).

The Raney iron-manganese prepared by alloy addition with a low
concentration of the NaOH solution [(R-FeMn-A50 (10%)1Vexhibited an

activity for carbon monoxide conversion similar to that of the
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Figure 52

Arrhenius Plots for Carbon Monoxide Conversion
over Iron-Manganese Catalysts
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catalyst prepared with a 20% NaOH solution (R-FeMn-AS0) in the reaction
temperature range of 423 to 473 K, even though there was a consider-
abie difference in BET surface areas. No reasonable correlation
could be made between the BET surface area and the order of activity.
The catalytic activity for carbon monoxide conversion converged to |
similar values as the reaction temperature was increased for two

R-FeMn-C50 catalysts, which were duplicate preparations from differeht

_batches of alloy.

The reaction rate data for carbon monoxide conversion could
aiso be corre1ated reasonably well by a first-order kinetic equation

as was done previously for the Raney iron catalyst data. The activa-

© tion energy obtained from the first-order equation agreed to within

-+ 4 K/mol with the activation energies listed in Table 17.

The rate of product (C-"—C4 and C027 formation has been

. analyzed in the same manner as was done for carbon monoxide conversion.

 The Arrhenius plots for hydrocarbon synthesis reactions over Raney

j

|

7 iron-manganese catalysts and a coprecipitated iron-manganese catalyst

are presented in Eigure 53. As indicated in the Arrhenius plots, the
rate of the hydrocarbon formation decreased in the foi1owiﬂg order:
CHy > CZH4‘> C3H6 > CZHG > C4H8 > C3H8 " C4H]0. The order of the .
reaction rate indicated that ethylene was favored aver ethane with the
Raney iron-manganese catalysts. However, the trend Qas the opposite
with the Raney iron catalysts.

The activation energies and the In (AF) values obtaine& from
the Arrhenius plots for each produ¢t are listed in Table 18. The
activation energy for each product-was in ?he-fo]]owing range: CH4 =

66 - 116 Kd/mol, C2H4 = 82 - 118 Kd/mol, CHe = 98- 148 KJ/mG1, C3H6 =
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Figure 53

Arrhenius Plots for Hydrocarbon Formation
over Iron-Manganese Catalysts

Methane C0: Carbon Monoxide
Ethane C2=: Ethylene
Propane C3=: Propyiene
Butane C4=: Butene
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99 - 130 Kd/mol, C3Hg = 83- 115 KJ/mol, 1-CyHg = 99-122 Kd/mo1,
C4H10 = 82- 122 KJ/mol and C02 = 157 - 205 Kd/mol. The range of acti-
vation energy for carbon dioxide formation was much higher than that
for hydrocarbon formation as was observed with the Raney iron
catalysts.

The activation energy for propylene and butene formation was
always higher than the activation energy for propane and butane
formation, respectively, for each catalyst evaluated. The activation
energy for ethane formation was always higher than that for ethylene

formation.

Product selectivity. The product selectivities of the Raney

jron-manganese catalysts are listed in Table 16. When comparing the
product selectivities of two catalysts prepared at the same condition,
but with different concentrations of NaOH solution [R-FeMn-A50 and
R-FeMn-A50 (10%)], the catalyst leached with a low concentration.

of NaOH solution was more selective for methane, C2-C4 hydrocarbons
and alcohols and was less selective for C5+ hydrocarbons and carbon
dioxide. '

The product selectivities were almost the same for two
duplicaté catalysts (R-FeMn-C50) which were prepared at the same
conditions, but from different batches of alloy.

The methane selectivities of Raney iron-manganese catalysts
prepared by the alloy addition and by the caustic addition method are
presented in Figure 54 and Figure 55, respectively. The methane
selectivity decreased with increasing temperature for each type of

catalyst as was observed with the Raney iron catalysts. The methane
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Figure 54
Methane Selectivity of Raney Iron-Manganese Catalyst

Catalyst: Prepared by Alloy Addition Technique
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Figure 55
Methane Selectivity of Raney Iron-Mangan‘evse' Cata]ys't

Catalyst: Prepared by Caustic Addition Techniqugé
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selectivity of the'Raney iron-manganese catalysts ranged from IS.tp
27% at 453 K, which was lower than that of the Raney iron catalysts at |
the same temperature. '

The 02-54 hydrocarbon selectivities of the Raney iron-
manganese catalysts prepared by alloy addition technique and by tﬁe
caustic addition technique are presented in Figure 56 and 57 _
respect1ve]y The C2 C4 hydrocarbon selectivity generally decreased
with increasing temperature The coprec1p1tated 1ron-manganese and
the R-FeMn-C50 catalyst showed the highest C2-C4 pydrocarben v
selectivity. At 453 K the CZ-C4Ahydrocarbon selectivity ranged from
34 to 45%. This range of c2<c4 hydrocarbon selectivity was quite '
similar to 35 to 45% obtained with the Raney iron catalysts at the
same temperature. The Ce+ hydrocarbon selectivities of the Raney
iron-manganese catalysts prepared by the alloy addition techpique end
by the caustic addition techn1que are presented in Figure 58 and 59
respectively.

The‘C5+ hydrocarbon se]ectiVity generally decreased with .
increasing temperature except for the coprecipifated fron-manganese,
for which the C5+ hydrocarbon selectivity increased with increasing .
temperature. The C5+ hydrocarbon selectivity was quite different ror
d1fferent catalysts in the Tow temperature range, however, it converged
to a narrow range as the reaction temperature increased. At 453 K it
ranged from 16 to 20%

The carbon d1ox1de selectivities of the Raney 1ron-manganese
cataiysts are presented in Figure 60 and 61. The carbon dicxide
selectivity increased with increasing temperature. fhe carbon dioxide

seiectivity of the coprecipitated Fe-Mn was the lowest. A high carbon
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Figure 56

: CZ-C4 Hydrocarbon Selectivity of Raney
Iron-Manganese Catalyst

Catalyst: Prepared by Alloy Addition Technique
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Figure 57

CZ-C4 Hydrocarbon Selectivity of Raney
Iron-Manganese Catalyst

Catalyst: Prepared by Caustic Addition Technique
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Figure 58

C5+ Hydrocarbon Selectivity of Raney
Iron-Manganese Catalyst

Catalyst: Prepared by Alloy Addition
Technique
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Figure 59

C5+ Hydrocarbon Selectivity of Raney
Iron-Manganese Catalyst

Catalyst: Prepared by Caustic Addition Technique
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Figure 60

Carbon Dioxide Selectivity of Raney
Iron-Manganese Catalyst

Catalyst: Prepared by Alloy Addition Technique
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Figure 61

Carbon Dioxide Selectivity of Raney
Iron-Manganese Catalyst

Catalyst: Prepared by Caustic Addition Technique
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dioxide selectivity occurs at a high level of carbon monoxide conver-
sion for the Raney iron-manganese catalysts, which was also the same
case for the Raney iron catalysts.

The selectivity for €y, C3, Cy4 hydrocarbon (olefin and
paraffin) and CZ'C4 olefins of the Raney iron-manganese catalysts are
listed in Table 19. The C2-C4 olefin selectivity decreased slightly
with increasing temperature and it ranged from 22 to 34% between

423 and 453 K. The C2-C4 olefin selectivity of the Raney iron-
manganese catalysts was higher than that of the Raney iron catalysts
in the same temperature range (18- 26%). The selectivity for
ethylene decreased slightly with increasing temperature, while the
selectivity for ethane increased for a given catalyst (Table 19).
The Cs and C4 olefin and paraffin selectivities remained constant or
decreased slightly with increasing temperature.

The olefin-to-paraffin ratios of the Cos Cq, and C, hydro-
carbons as well as the olefin~to-paraffin ratios of the total Co-Cy
hydrocarbons are presented in Table 20. The olefin-to-paraffin ratio
of the C2 hydrocarbon decreased markedly with increasing temperature,
while the olefin-to-paraffin ratios of the 63 and C4 hydrocarbons
increased. This increase in the olefin-to-paraffin ratio of the C3
and C4 hydrocarbons was in contrast to the decrease in the olefin-to-
paraffin ratios of the C3 and C4 hydrocarbons observed with the Raney
iron catalysts. The resultant C2-C4 hydrocarbon olefin-to-paraffin
ratio remained quite constant or increased slightly with increasing

temperature.
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Table 20

Olefin-to-Paraffin Ratios for

- “Raney Iron-Manganese Catalysts

201

1.56

Ca%;;§5t T?Eg' CQ/P)2  C(0/P) €4 (0/P) . Cp=Cy (O/P)
R-FeMn-A30 423 1.47 2.24 1.62 . 1.78
433 1.06 2.38 - 1.75 . 1.68
443 0.83 2.61 1.93 - 1.64
453 0.77 . 2.8 2.09 - 1.69
463 0.81 3.23 2.35 S .87
473 0.96 3.65 . 2.68 2,14
R-FeMn-A50 423 2.11 217 1.55 £ 1.93
433 1.54 - 2.31 1.73 L 1.87 -
443 1.11 2.65 1.92 1.85
453 0.94 2.95 2.14 1.90
R-FeMn-A90 423 3.05 2.40 1.94 2.39
433 2.94 2.64 2.13 2.51
843 2.49 2.94 2.45 2.58
453 1.66 3.25 2.63 2.42
463 1.12 3.38 2.4 . 2.17
473 1.18 4.09 2.90 2.49
Coppt Fe-Mn 423 3.12 2.32 1.61 2.21
‘ 433 2.79 .. 2.46 .82 2.32
443 2.25 '2.68 T 2.04° 2.34
453 1.85 2.94 2.15 2.30
463 1.91 3.38 © 2.46 2.57
R-FeMn-A50 423 1.63 2.32 1.62 1.85
(10%). 433 1.44 2.48 1.78 1.88
, 443 0.94 2.63 - 1.82 1.69
453 0.67 2.76 1.84



Table 20 ~ Continued
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Catalyst

Temp. a
Type (K) (0/P) ¢4 (0/P) Cy (0/P)  Cy-C, (0/P)
R-FeMn-C50 423 1.60 2.24 1.64 1.83
433 1.18 2.41 1.70 1.72
443 0.96 2.60 1.84 1.69
453 0.87 2.86 1.98 1.75
R-FeMn-c50° 423 2.33 2.30 1.7 2.1
433 1.72 2.47 1.78 2.00
443 1.29 2.66 1.91 1.90
453 0.99 2.92 2.03 1.84
R-FeMn-C90 423 3.36 2.13 1.14 1.89
433 2.83 2.38 1.27 1.97
443 2.27 2.54 1.67 2.12
453 1.73 2.91 2.00 2.23

e : Olefin~to=paraffin. ratio.

bDup]icate preparation.
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The variation of the olefipeto;paraf in rat1os of the C2, C3, :

C4 and C2 04 hydrocarbons w1th temperature 1s presented for the Raney
1ron-manganese cata1yst (R-FeMn-CQO) in F1gure 62.

 The dependence of C2-C4 hydrocarbon” plef1n-to-paraff1n rat1o
on the reaction temperature is shown 1n F1gure 63 The CZ'C4 hydro-
carbdn o]ef1n—to-paraff1n rat1o ranged from 1 6 to 2. 6 which was 1n a
h1gher range than that of the Raney 1ron, 1.0 to 1.5. The C2-c4
o1ef1n to- paraff1n ratios for the Raney 1ron-manganese cataiysts
remained constant or 1ncreased s]1ght1y w1th 1ncreas1ng temperature in
'contrast to the marked decrease of CZ-C4 o]ef1n-to-paraff1n ratios

for the Raney 1ron cataTysts as shown in F1gure 48,

Product Distribution _
p The distribution of hydrocarbon products from the Fischer-
Trdpsch synthesis’is often correlated by the Schuiz-F1dry equation:

V2
‘= {I-a)
jn (mp/p) = 1In- 2

+pinae . (36)

where mp is the mass fract1on of a hydrocarbcn (oief1n plus paraff1n)
with a carbon number p and a is the chain propagat1on prpbab111ty.-
Since all the Raney catalysts were tested at a d1fferent1a1 o
condition fcr a re]at1ve1y short per1od of t1me, no s1zab1e amount of
11qu1d and/or so]1d h1gh mo1ecu1ar we1ght hydrocarbons cou1d be
collected for gas chromatograph1c product ana1ys1s. In a11 cases..H.
hydrocarbon products up to c7 have been anaiyzed Equation (36) was
used to determ1ne the chain’ propagat1on probab111ty L
' Anether equat1on (77) deveioped by Ze1n E1 Deen, et a1.,1§2.

was also used to ana1yze the preduct d1str1but1on data and to‘\ j
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Figure 62
Low Molecular Weight Hydrocarbon Selectivity

Catalyst: R-FeMn-C90
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Figure 63

C -C4 Olefin-to-Paraffin Ratios for
ﬁaney Iron-Manganese Catalysts
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determine the o values:

P

where r is the rate of formation of hydrocarbons (paraffin plus olefin)
with_a carbon number P (mol/sec), o is the rate of carbon monoxide
conversion (mol/sec), o is the chain propagation probability, and A is
a constant. This equation was derived based on an assumption that

the carbon chain is built up by the stepwise addition of one carbon
atom to an adsorbed growing chain and that the probability of chain
growth is indépendent of chain length. This assumption is essentially
the same as the one made in the derivation of Equation (36). However,
Equation (77) has a different aspect from Equation (36). Equation (77)
not only correlates the product distribution of hydrocarbons (olefin
plus paraffin), but it also predicts the product carbon atom mole
percent of other carbon products such as carbon dioxide and branched
or oxygenated hydrocarbons. The fraction of total carbon atom in all

hydrocarbons, olefins and paraffins, is obtained from Equation (77) as

follows:

r P=w
P ! P
T S = TP o = J P Aa

o = —L (78)
(In )

where SP is the mole fraction of carbon atom in hydrocarbéns (olefin

plus paraffin) with a carbon number P. The mole fraction of carbon

atoms in carbon dioxide, branched, and oxygenated hydrocarbons is

obtained by difference between 1.0 and the value obtained from

Equation (78).
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The plots of Equation (36) and (77) for a Raney iron-
manganese catalyst (R-FeMn-A9Q) are found in Figure 64. 1t can be
seen that the two plots are essentially the same %ype, yie]ding the
same a value. The methane selectivity was higher and the C2 hydr&-
carbon selectivity was lower than the predicted value by Equation (36).
This trend was as typical and is one often observed in the prdduct
distribution from the Fischer-Tropsch synthesis reaction.so

The o values for the Raney iron and the Ranay iron-manganese
catalysts obtained from the above two eéuations using linear regres-
sions are Tisted in Table 21. According to Equation (36), « value
can be obtained from either the siope or the intercept of therplot,

n (mp/p) versus p. The two values from the sTope and the intercept
of the plot were in close agreesment (Table 21). The « values'for the
Raney iron catalysts were in a nérrow range of 0.52- 0.55 from
Equation (77) [0.51- 0.54 from Equation (36)], while « values for:the
Raney <iron-manganese cataiysts Wefe in a slightly higher range thén
the o values for the Raney iron, that is, 0.54- 0.62 from Equatioﬁ (77)
[0.53-0.59 from Equation (36)].

~ The mole fraction of carbon atoms in all hydrocarbons, olefin
plus paraffin, was estimated for each catalyst by Equation (77) using
o values obtained from the r'p/rCO versus p plots. The estimated
values were always lower than the actual total mole fraction of carbon
atom in all hydrocarbons determined experimentally. This discrepancy
sesmed to be due to the incompiete collection of oxygenated or higher
molecular weight hydrocarbons, which led to an overestimation for‘the |
total mole fraction of carbon atoms in aliihyérocarbcns (olefin plus

paraffin).



~ Figure 64
Correlation of Hydrocarbon Product Distribution

Catalyst: R-FeMn-A3S0
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Table 21

Chain Propagation Probability at 453 K

Chain Propagation Probability

Catalyst
Type . Equation {(36) Equation (79)
ppt Fe | 0.51 (0.51)°¢ 0.52
R-Fe-A25 0.51 (0.51) 0.53
R~Fe-A50 0.53 (0.53) 0.54
R-Fe-A90 0.51 (0.51) 0.55
R-Fe-A90° 0.54 (0.53) 0.52
R-Fe-C25 \ 0.53 (0.53) 0.54
R-Fe-C50P 0.51 (0.51) 0.52
R-Fe-C90P 0.51 (0.51) 0.52
R-Fe-C90 (10%) 0.52 (0.51) 0.52
Coppt Fe-Mn 0.56 (0.55) 0.57
R-FeMn-A30 | 0.53 (0.53) 0.58
R-FeMn-A50 0.59 (0.58) 0.60
R-FeMn-A90 ‘ 0.58 {0.57) 0.59
R-FeMn-A50 (10%) 0.53 (0.53) 0.54
R-FeMn-C90 0.57 (0.56) 0.62
R-FeMn-C50 0.55 (0.54) 0.56
R-FeMn-C50 0.54 (0.54) 0.55

aA'Hoy from Alpha Products.
bChain propagation probability at 443 K.

€a values obtained from the intercept of the plots.




Conclusions

1. The aluminum-iron (50/50 wt %) alloy consisted of z-Fehl,
and n-FezA'i g Phases, while the aluminum-iron-manganese (59/38/3 wt.%)
alloy contained only a single phase,(Fe,Mn)A13.

2. The extent of aluminum leached from the aluminum-iron
and the aluminum-iron-manganese alloys increased with increasing
leaching temperature in the range of 298 to 363 K and with increasing |
sodium’hydroxide concentration in the range of 2 to 20 wt % for both -
the alloy and the caustic addition method. The extent of Teaching
estimated by hydrogen gas evolution was in reasonable-agreement with
the value obtained by elemental analysis.
_ 3. The BET surface area of Raney iron catalyst ranged from
26 to 54 mz/g. The BET surface area of Raney iron-manganese ranged
from 64 toyils m2/g. At a given 1éaching temperature, Teaching with
a law coacentration of sodium hydroxide solution yie1d§d a catalyst
with Tow surface area. '

4. The major metal phase in all the Rapey cata1ys£s_(iron
and iron-manganese) was o-Fe. Unreacted aluminum alloy phases were.
found from a catalyst leached at a Tow temperature (< 323 K) or with

a dilute NaOH solution (<20 wt %). Magnetite was found from a
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catalyst prepared at a high leaching temperature, 363 K, by caustic
addition method.

5. The crystallite size of a-Fe in the Raney catalysts,
measured by X-ray line broadening, increased with increasing leaching
temperature. There was a linear relationship between the BET surface
area and the reciprocal of the crystallite size of a-~Fe.

6. Optimum catalyst reduction temperature was 673 K for
precipitated and 648 K for Raney-type catalysts, respectively. Both
types of catalysts underwent essentially complete reduction at the
appropriate reduction temperature within 5 hourﬁ.

7. [Interphase and intra-particle heat and mass transfer
limitations were negligible at the standard reaction conditions.

8. The activity of Raney iron and iron-manganese catalysts,
in terms of éarbon monoxide conversion, was higher than the precipi-
tated iron and the coprecipitated iron-manganese catalyst,
respectively.

_ 9. A Raney catalyst, iron and iron-manganese, prepared at
a higher leaching temperature or with higher concentration of sodium
hydroxide solution, was more active for carbon monoxide conversion.

10. The activation energy for carbon monoxide conversion‘
over Raney iron and iron-manganese ranged from 96 to 139 KJd/mol.

11. No significant differences in product selectivity were
observed for the Raney catalysts prepared at different conditions for
both Raney iron and iron-manganese catalysts.

12. Raney iron-manganese catalysts were more selective for

62-64 Tight olefins than the Raney iron. The CZ-C4 hydrocarbon
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olefin-to-paraffin ratio for Raney 1ron-manganese ranged from 1.7 to
2 5, while 1t ranged from 0.9 to 1.3 for Raney iron. -

. 13, The select1v1ty of Raney 1ron-manganese catalysts for
CZ'C4 olef1ns was in the same range as that of the coprec1p1tated iron-
manganese cata?yst The CZ C4 hydrccarbcn olefin-to-paraff1n ratics
for Raney iron-manganese cataiysts ranged from 1 .6 to 2.4 at 453 K,
wh11e 1t was 2. .3 for the coprec1p1tated cata]yst at the same
temperature - ‘
' 14. The hydrocarbon-broduct disfributidn couid be correlated
by the Sbﬁu]z-?lory eqﬁaticn.- The chain propagataon probab111ty for
the Raney catalysts ranged frem 0. 51 to 0. 60.
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