INSTITUTE OF GAS TECHNOLOGY HT CENTER CHICAGO, ILLINOIS 60616

PREPARATION OF A COAL CONVERSION SYSTEMS TECHNICAL DATA BOOK

OCR Contract No. 14-32-0001-1730 Report No. 2 December 1974

Project 8964 Status Report for OFFICE OF COAL RESEARCH

INSTITUTE OF GAS TECHNOLOGY . !IT CENTER . CHICAGO 60616

Project Status Report ...For

OFFICE OF COAL RESEARCH

Report For December 1974 OCR Report No. 2

Project Title: Preparation of a Coal Conversion Systems Technical Data Book OCR Centract No. 14-32-0001-1730

I. Project Objective

The objective of this work is to provide a single, comprehensive source of data on coal conversion systems. This compilation shall be entitled The Coal Conversion Systems Technical Data Book and shall provide up-to-date data and information for the research, development, design, engineering, and construction of coal conversion processes and/or plants. Other concurrent objectives are to identify those areas where data are required and to suggest research programs that will provide the required data.

II. Summary

The scope of work, the general plan of action, and the kind of information to be collected were determined for the various topics assigned high priority in last month's report. These determinations are by no means final and are intended only as a preliminary starting point. The high-priority topics are—

- Liquefaction
- Gasification
- Fluidization
- Combustion
- Coal, char, and oil shale properties.

A tentative data book index has been prepared. This divides the data book into nine volumes, covering specific applicable categories.

A reference file system for the data collected is being set up, and a list of reference sources for the library search has been prepared.

Notice to Readers of Open File

Any comments about the material presented in this report or suggestions about the format and the content of the data book as well as the priorities of the needed data are most welcome. Please direct any communications to Mr. Bipin Almaula of the Office of Coal Research (202/634-6643) or to Dr. Al Taiwalkar of the Institute of Gas Technology (312/225-9600, extension 869).

III. Work Accomplished

A. LIQUEFACTION

Scope of Work

We will cover coal liquefaction in the liquid phase at this time. Gasphase generation of oil by pyrolysis will be covered later.

General Plan

Only data for specific liquefaction processing steps will be considered at this point. Areas of mutual interest to both coal gasification and coal liquefaction, such as coal handling, preparation, and gas cleanup, will be set aside temporarily.

Our overall plan is to provide useful data and not simply a design hand-book for particular liquefaction processes. Of course, this general data framework must be built with the data available from the various liquefaction processes now under development or those developed in the past, such as the German work during the 1930's and 1940's. Over the next 2 months, we plan to familiarize ourselves with the scope of liquefaction developments, with the intent of mapping out the type and range of data we should like to include in the liquefaction section of the data book. When this initial "homework" is accomplished, we plan to visit the organizations that have been active in coal liquefaction to discuss data at first hand. This would be done by prior arrangement with the Office of Coal Research (OCR) as would our liaison with the overall coal liquefaction monitor for OCR, the Ralph M. Parsons Co.

A literature search will be carried out concurrently with the above firsthand discussions. Much of the older data may have to be covered by the literature search alone.

At present, we have identified four main liquefaction processing areas in which we will seek data; these are 1) coal dissolution, 2) hydrogenation, 3) solid-liquid separation, and 4) catalysis. A brief outline of the kind of information we anticipate including in each of these areas is given below.

1. Coal Dissolution

- a. Physical and chemical properties of solvents and coal liquids. (These may be included in the properties section.)
- b. Rates of dissolution of various coals in various solvents and solvent combinations as functions of temperature and hydrogen partial pressure. Particle size will also be considered.
- c. Heating of coal-solvent slurries. This requires information on permissible flux and temperature profiles in tubular heaters as well as velocity-erosion data. Viscosity, density, and specific heat and thermal conductivity as functions of temperature and pressure would be required.
- d. Pumping of slurries. The viscosity of slurries entering and leaving the dissolving vessel must be known.

2. Hydrogenation

- a. The degree of hydrogenation achievable with various temperatures and hydrogen partial pressures for various coals
- b. Kinetics of hydrogenation
- c. Effect of hydrogen donor solvent on the above
- d. Hydrogenation of solvents
- e. Control of temperature in the hydrogenator
- f. The effect of residence time on hydrogenation
- g. Heat of reaction for various coals and solvents.

3. Solid-Liquid Separation

- a. Filtration. Specific filtration rates for various coals and solvents at particular temperatures, etc.
- b. Centrifuging. Rates for a particular process and its conditions
- c. Hydroclones. As above
- d. Settling times. Temperature, residence time, and particle size would be considered.
- e. Flotation. Temperature, time, particle size, and wetting agents would be considered.

4. Catalysis

- a. Hydrogenation catalyst life studies and the effect of sulfur, nitrogen, and metal contaminants will be considered.
- b. Regeneration data would be obtained also.

B. GASIFICATION

Scope of Work

We will initially consider reactions of char with various gases. Coal reactions, including devolatilization and initial rapid-rate reactions, will be covered at a later date.

General Plan

The kinetic equations, developed from the thermobalance data at IGT, will be used in conjunction with suitable assumptions for the fluidized-bed contacting system to describe the various gasification reactors. The integrated solutions, which will be presented in graphical form, will demonstrate the effect of operating variables on the product variables.

Figure 1 is given as an example of the charts that will be developed. It indicates the carbon conversion that can be obtained in a steam-oxygen gasifier as a function of solids residence time for various amounts of steam and oxygen in the feed gas. This model is based on the assumption of plug flow of solids and back-mixed gas flow. Figure 1 gives the results for four reactor temperatures at 70 atm pressure while Figure 2 gives the same data at 15 atmospheres.

 $O\bar{z}$ course, much additional information is needed to completely describe the system. We are preparing it and will present it next month,

C. FLUIDIZATION

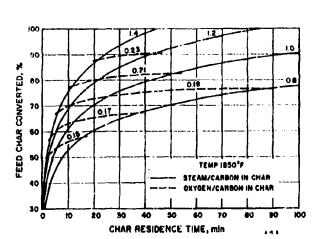
Scope of Work

In this section, the correlations relevant to fixed-bed and fluidizedbed operation as well as those pertaining to solids-transport will be covered.

General Plan

Data applicable to fluidization of materials involved in coal conversion systems will be collected. Specific emphasis will be for materials such as

90


70

60 60

10 20 30 40

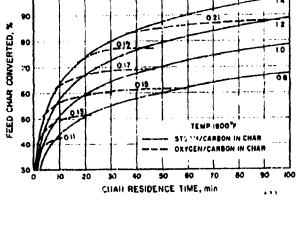
FEED CHAR CONVERTED,

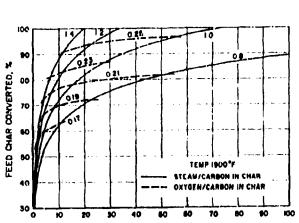
Figure 1. STEAM-OXYGEN GASIFICATION OF DEVOLATILIZED IRELAND MINE CHAR AT VARIOUS TEMPERATURES AND AT 70-atm PRESSURE

50

CHAR RESIDENCE TIME, min

017


TEMP 1780°F


STEAM/CARBON IN CHAR OXYGEN/CARBON IN CHAR

90

100 mad

FOR REVIEW CALLY

CHAR RESIDENCE TIME, min

...

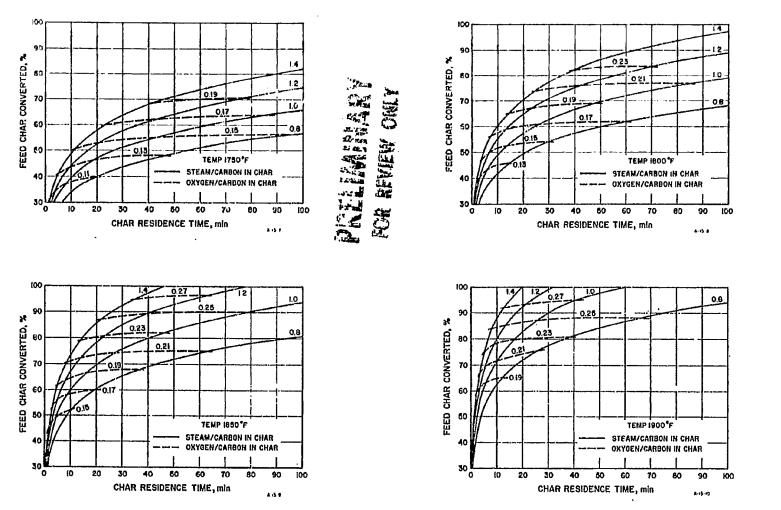


Figure 2, STEAM-OXYGEN GASIFICATION OF DEVOLATILIZED IRELAND MINE CHAR AT VARIOUS TEMPERATURES AND AT 15-atm PRESSURE

coal, char, and solid residues or similar materials. Then applicability of available generalized correlations to accurately describe such data will be determined, and, where necessary, new or modified correlations will be prepared if sufficient data exist. The kind of information that will be collected in the various areas of fluidization is outlined below.

1. Fixed-Bed Operations

Theoretical and experimental correlations to estimate -

- a. Pressure drop
- b. Heat-transfer coefficient
- c. Diffusion and mass transfer coefficients in isothermal and nonisothermal systems.

2. Fluidized-Bed Operations

Theoretical and experimental correlations to estimate -

- a. Minimum fluidization velocity
- b. Fluidized-bed densities
- c. Bubble properties
- d. Gas and solids mixing characteristics
- e. Terminal velocity, entrainment, and transport disengagement height
- f. Heat-transfer coefficients between particles and gas and between fluidized beds and surfaces
- g. Selection and design of distributors
- h. Selection and design of fluidized-bed internals.

3. Dilute-Phase Systems

 Correlations to estimate the physical properties of cocurrent and countercurrent gas-solid systems.

4. Spouting Beds

Theoretical and experimental correlations to estimate -

- a. Minimum spouting velocity
- b. Spoutable bed depth and average bed density
- c. Gas- and solids-mixing characteristics
- d. Heat-transfer coefficients between particles and gas and between spouting beds and surfaces

5. Gas-Solids Transport Systems

- a. Theoretical and experimental correlations to estimate gas-solid transport characteristics in horizontal, inclined, and vertical pipelines
- b. Design and performance of mechanical and nonmechanical dilute and dense-phase flow control devices.

6. Gas-Solids Separation Systems

- a. Design and performance of cyclones
- b. Design and performance of cyclic filters.

D. COMBUSTION

Low-Temperature (Fluidized-Bed) Combustion

Scope of Work

Data on fluidized-bed combustion (from the literature and OCR reports) will be compiled in this section.

General Plan

The search has been started on available heat-transfer correlations.

The fluidization properties needed for necessary calculations will be coordinated with the fluidization section.

Heat Transfer in Fluidized Beds

For possible use in the presentation of heat-transfer estimation procedures, proposed correlations are being evaluated. Particular emphasis is on the adequacy of these for the large particle sizes (>400µm) encountered in fluidized-bed coal-combustion systems. The work and correlations developed by investigations in the U.S.S.R. have been summarized by Gelperin and Einstein. This work is currently being evaluated.

The heat transfer from a fluidized bed to a submerged surface depends on the degree of bed expansion that, in general, is measured at the same time as the heat-transfer rate. For estimation purposes, therefore, bed

Gelperin, N. I. and Einstein, V. G., "Heat Transfer in Fluidized Beds," in Davidson, J. F. and Harrison, D., Eds., Fluidization, Chapter 10, 471-540. New York: Academic Press, 1971.

densities as functions of gas velocities must, in general, also be estimated. However, the Soviet workers imply that the maximum heat-transfer coefficient to a given surface is a function only of gas and particle properties. Therefore, estimation of the maximum coefficient will be the first goal; then, estimation at other flow rates will follow when estimation procedures for bed densities are established.

High-Temperature (MHD) Combustion

OCR has initiated work on compilation and evaluation of certain phases of MHD data at the Argonne National Laboratories. The data developed under this effort will be evaluated and coordinated by IGT for inclusion into <u>The</u>

Coal Conversion Systems Technical Data Book.

E. COAL, CHAR, AND OIL SHALE PROPERTIES

Data on coal properties were surveyed, and a tentative list for consideration was prepared (Table 1). Three methods of presenting data are being considered:

- 1. A compilation of basic data on samples from important coal seams that are relevant to conversion processes. Proximate and ultimate analyses, calorific value, and petrographic properties would be included. The Penn State Coal Data Base has tentatively been selected as the main source of such data. The Coal Research Section of the College of Earth and Mineral Sciences, Pennsylvania State University, under contract with OCR, has collected samples of about 250 coals and has obtained (or is obtaining) extensive data on each of them. This can be supplemented by data from other sources. A format with properties tentatively selected for inclusion in the compilation is shown in Table 2.
- Tabular or other data covering a single property or groups of properties. The amount of data available for a given property varies greatly. For example, tables from the <u>Bureau of Mines Bulletin</u> No. 610, on "Plastic, Agglutinating, and Free-Swelling Properties of American Coals," might be included in toto; for other properties (such as dielectric constant and permeability), only a few data from individual investigators may be available.
- 3. Correlations, expressed as formulas and graphs. Examples include the Dulong formula for calorific value and variation of true density with carbon and hydrogen content.

Table 1. LIST OF COAL PROPERTIES

```
Proximate Analysis
   Moisture
   Ash
   Volatile Matter
   Fixed Carbon
Ultimate Analysis
   Carbon
   Hydrogen
 Nitrogen
   Sulfur
   Ash
   Oxygen
Petrographic Properties
   Maceral Analysis
      Vitrinite
      Exinite
      Resinite
      Micrinite
      Semifusinite
      Fusinite
   Vitrinite Reflectance
Calorific Value
Forms of Sulfur
   Pyritic
   Sulfate
   Organic
Chlorine Content
Rank Classification
   Rank
   Fixed Carbon, dry, mm-free
   Equilibrium Moisture
   Calorific Value, moist, mm-free
Structure
   Porosity
   Pore-Size Distribution
   Surface Area
   True Density
Mineral Matter Characteristics
   Elemental Composition
     Si Oz
      Al_2O_3
      Fe<sub>2</sub>O<sub>3</sub>, etc.
  Mineralogical Properties
      Composition
        Kaolinite
        Quartz, etc.
```

Size and Shape of Grains

Table 1, Cont. LIST OF COAL PROPERTIES

Ash-Softening Points Trace Elements

Grinding and Handling Characteristics
Abrasiveness
Angle of Repose
Bulk Density
Apparent (Particle) Density
Flow Properties
Friability
Hardgrove Grindability Index
Microhardness
Slacking
Rate of Oxidation (Spontaneous Combustion)

Miscellaneous Properties

Compressibility
Dielectric Constant
Elasticity
Electrical Resistivity
Heat Capacity
Permeability
Thermal Conductivity
Thermal Diffusivity
Thermal Expansion

Free-Swelling Index Agglomeration Index

Caking and Carbonization Properties

Gray-King Assay
Low-Temperature Carbonization Assay (BM) Yield:
Char
Tar
Light Oil
Gas

Water

Gieseler Plastometer Test
Initial Softening Temperature
Fusion Temperature
Temperature of Maximum Fluidity
Solidification Temperature

Audibert-Arnu Dilatometer Test

Liquefaction Properties
Yield by Batch Autoclave Test

Gasification Properties
Johnson Reactivity Factor

PRELIMINARY FOR REVIEW ONLY

Table 2. FORMAT FOR COMPILATIO

	Proxi		lysis. wt	<u> </u>		Ultimate Analysis, wt %							For	ns of Sul
State Seam Mine County AL Pratt Concord Jeff-roon	Noleture 26	Matter D	Pasis Paris Paris 71.18	4.58	85, 29	uaBospAH 55	29 BOJ JN	O. OO	Sulfur 0.96	4,58	Oxygen 7 (Difference)	Celorate Value	0.32	Sulfate

BLANK PAGE

AR! ONLY

MPILATION OF DATA ON COALS

	Fon	mr #1 5m	fur, To		Maceral Analysis, vol %										Rank Classification					
and And Park	'yr III'c	41/210	sr ge nie	irinite.	trinite	uslnite.	mi- sinite	sastve icrinito	ranular Ilerinile	inite	•fnit•	re-r	Arctance of trinite, A	red Carbon,	ullibrium dature	lorific Value, ist, mun-fros nk	rdgrove ndabilliy ex			
Ľ				_ .	. <u>.</u> .		<u> 32</u>	<u> 22</u>	_ <u>ō</u> =		_ <u>=</u>	č	<u>**</u>	<u> </u>	_8≗	5% €	=65			
2	0. 75	0.03	6. e i	75.5	3. 1	9.5	4.4	3.9	3,6	0.0	0.0	0.0	1. 29	75.15			112 9			

E-15-51

F. MISCELLANEOUS

1. Filing System

A central filing system will be established where all the reviewed information will be stored. A card index with cross-references will also be prepared.

2. Library Search

The following sources will be searched for related information:

- a. Chemical Abstracts
- Ъ. Engineering Index
- c. Government Report Index (NTIS)
- d. Superintendent of Documents Annual Index
- e. Bureau of Mines' Index
- ſ. Air Pollution Index
- ACS Fuel Division Reprints g.
- h. Geological Surveys of State

3. Data Book Index

An outline of the contents of the data book has been prepared. It divides the data book into nine volumes. (See the Appendix.)

This is a preliminary outline and subject to change. Subsections of some of the volumes have been identified in detail, although the breakdown of others has not yet been considered. This is only a starting point for the data book index. Eventually, a logical decimal index would be developed that would be uniformly applicable to the whole data book.

IV. Patent Status

The work performed during December is not considered patentable.

V. Future Work

The work will be continued on the selected high-priority topics in preparation for meetings with OCR monitors and contractors active in these areas.

Signed

Process Data

FAZZIMINARY

12/74

FOR REVIEW OBLY

8964

APPENDIX. Data Book Outline

Volume 1. Properties of Raw Materials, Intermediates, and Products

A. Properties of Coals, Coal Chars, and Oil Shales

Proximate Analysis

Moisture

Ash

Volatile Matter

Fixed Carbon

Ultimate Analysis

Carbon

Hydrogen

Nitrogen

Sulfur

Ash

Oxygen

Petrographic Properties

Maceral Analysis

Vitrinite

Exinite

Resinite

Micrinite

Semifusinite

Fusinite

Vitrinite Reflectance

Calorific Value

Forms of Sulfur

Pyritic

Sulfate

Organic

Chlorine Content

Rank Classification

Rank

Fixed Carbon, Dry, mm-Free

Equilibrium Moisture

Calorific Value, Moist, mm-Free

```
Structure
   Porosity
   Pore-Size Distribution
   Surface Area
   True Density
Mineral Matter Characteristics
   Elemental Composition
      SiOz
      Al<sub>2</sub>O<sub>3</sub>
      Fe<sub>2</sub>O<sub>3</sub>, etc.
   Mineralogical Properties
      Composition
         Kaolinite
         Quartz, etc.
      Size and Shape of Grains
   Ash-Softening Points
   Trace Elements
Grinding and Handling Characteristics
   Abrasiveness
   Angle of Repose
   Bulk Density
   Apparent (Particle) Density
   Flow Properties
    Friability
    Hardgrove Grindability Index
    Microhardness
    Slacking
    Rate of Oxidation (Spontaneous Combustion)
Miscellaneous Properties
    Compressibility
    Dielectric Constant
    Elasticity
    Electrical Resistivity
    Heat Capacity
    Permeability
    Thermal Conductivity
```

```
Thermal Diffusivity
       Thermal Expansion
    Caking and Carbonization Properties
       Free-Swelling Index
       Agglomeration Index
       Gray-King Assay
       Low-Temperature Carbonization Assay (BM) Yield:
         Char
         Tar
         Light Oil
         Gas
          Water
    Geiseler Plastometer Test
       Initial Softening Temperature
       Fusion Temperature
       Temperature of Maximum Fluidity
       Solidification Temperature
    Audibert-Arnu Dilatometer Test
    Liquefaction Properties
       Yield by Batch Autoclave Test
    Gasification Properties
       Johnson Reactivity Factor
B. Properties of Conversion Products
```

General Properties Molecular Weight Melting Point **Boiling Point** Temperature of Transformations Density or Specific Gravity True Buik Thermal Expansion Coefficient Solubilities Surface Tension

Critical Properties

Transport Properties

Heat Capacity

Viscosity

Thermal Conductivity

Diffusivity

 C_p/C_v

Prandtl No.

Diffusion Coefficient

Electrical Conductivity

Emissivity

Absorptivity

Permeability

Thermodynamic Properties

Heat of Formation

Enthalpy

Free Energy of Formation

Equilibrium Constant of Formation

Heat of Fusion

Heat of Vaporization

Heat of Transition

Heat of Combustion

Heat of Solution

Activity Coefficient

Fugacity Coefficient

Heats of Reactions of Selected Reactions

Equilibrium Constants of Selected Reactions

Vapor-Liquid Equilibria

Critical Properties

K-Factor

V/L Equilibrium

PVT and Phase Behavior

Properties of Related Processing Materials

For Example, Catalysts, Reagents, and Treating Agents

8964

12/74

Volume 2. Solids Storage, Preparation, and Pretreatment

Sampling of Coal

Projecting Data From Samples

Coal Characteristics and Their Relationship to Utilization

Raw-Coal Handling

Breaking and Crushing

Screening

Wet Concentration of Coal

Coarse Coal

Dense-Medium Separation

Hydraulic Separation

Fine Coal

Dense-Medium Separation

Hydraulic Concentration

Froth Flotation

Dry Concentration

Mechanical Dewatering

Thermal Dewatering

Coal Storage and Loading

Refuse Removal and Disposal

Coal Pretreatment

Volume 3. Conversion Fundamentals

A. Gasification

Fluid Bed

Steam-O2

Steam-Air

Steam-H₂

Steam-H2-CO-CO2-N2

Dilute Phase

Entrained

Steam-C2

Steam-Air

Texaco-Type

Steam-O2

Steam-Air

```
Fixed Bed
```

Steam-O2

Steam-Air

Molten Bed

Steam-O2

Spouting Bed

B. Liquefaction

Catalytic With H2.

Ebullating Bed

Fixed Bed

Others

Catalytic Without H2

Ebullating Bed

Fixed Bed

Others

Noncatalytic

With H₂

Without H₂

C. Pyrolysis

Low-Temperature

High-Temperature

D. Fluid-Bed Combustion

E. High-Temperature Combustion (MHD)

Coal

Gas

Volume 4. Design Procedures (Unit Operations)

A. Fluidization

Fluid-Bed

Solid Transport

B. Fluid Flow

Single-Phase

Multiphase

C. Heat Transfer

Volume 5. Supporting Processes

- A. Gas Treating
- B. Methanation
- C. Environmental Control

Gas Effluents

Liquid Effluents

Solid Effluents

D. Hydrogen Production

Electrothermal

Steam-Iron

Other

Volume 5. Miscellaneous Products

- A. Methanol
- B. Acetylene
- C. Ammonia

Volume 7. Materials of Construction

A. Refractories

Properties

Corrosion/Abrasion Data

B. Ceramics

Properties

Corrosion/Abrasion Data

C. Metals and Alloys

Properties

Corrosion/Abrasion Data

D. Plastics

Properties

Volume 8. Equipment Specifications

Volume 9. Cost Data and Costing Procedures

IGT-MPR-3

INSTITUTE OF GAS TECHNOLOGY

3424 SOUTH STATE STREET

IIT CENTER

CHICAGO, ILLINOIS 60616

AFFILIATED WITH ILLINOIS INSTITUTE OF TECHNOLOGY