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I. Project Objective

The objective of this work is to provide a singie, comprehensive
. source of data on coal conversion systems, This compilation shall be

entitled The Coai Conversion Systems Technical Data Book and shall pro-

vide up-to-date data and information for the research, devélopment, design,
engineering, and construction of coal conversion processes and/or plants.
Other concurrent objectives are to identify those areas where data are re-

quired and to suggest research programs that will provide the required data,

I, Summary
Liquefaction

More experimental coal liquefaction data were examined using the
method described in the Project 8964 March 1975 Status Report, The "cut
end point” for the liquefied residue (vacuum bottoms) of catalytic operations
was determined to be 1200° to 1300°F, For noncatalytic operations, it was
2900° to 3600°F, A procedure is given to estimate yields of all intermediate

cuts, given the total oil yield and hydrocarbon gas yield.

It was also found that coal liquefaction operations, in which less than
50 weight % of MAF coal fed is converted to o0il, do not exhibit normal
product distribution,
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Gasification

Conversion verSus solids residence time charts are presented for a
steam-char gasification system, In this system, the heat is supplied by
some external source, such as electricity, instead of by char-oxygen reac-
tion as in the case of steam-oxygen gasification, which was described in

earlier reports.

All other assumptions for this system are the same as those for the

steam-Oxygen-char system.

Fluidization

A new correlation for estimating the bed-expansion ratio is proposed,
which predicts about 95% of the evaluated data within *12%. Further work
is in progress to express the correlation in pertinent dimensionless groups
to facilitate reliable extrapolation beyond the operating range ¢f the data

considered,

Published correlations to predict transport disengagement height ( TDH),
entrainment, and elutriation are compiled.

Combustion

Low-Temperature (Fluidized-Be dl

The data-correlation approach described in last month's report was
applied tc¢ an earlier set of data developed by Argonne National Laboratory

(1llinois coal and limestone No. 1359 system).

Coal, Char, and Oil Shale Properties

Analytical and other related data on 50 coal deposits, which were re-
ceived from Penn State are presented in a tabular compilation form deemed
suitable for the Data Book,

Notice to Readers of Open File

Any comments about the material presented in this report or sugges-
tions about the format and the content of the Data Book as well as the priori-
ties of the needed data are most welcome. Please direct any communications
to Mr. Bipin Almaula of ERDA (202 /634-6643) or to Dr. Al Talwalkar of
the Institute of Gas Technology (312 /225-9600, Ext. 869).
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III. Work Accomplished

A, LIQUEFACTION

1. Correlation of Coal! Liquefaction Yield Structure

We have examined more experimental coal liquefaction data using the
method described in the Project 8964 March 1975 Status Report. The ''cut
end point" for the liquefied residue (vacuum bottoms) of catalytic operations
was determined to be 1200° to 1300°F. For noncatalytic operations, it was
2900° to 3600°F. By assigning a nominal cut end point temperature for
vacuum bottoms of 1250°F for catalytic operations at 3250°F for noncatalytic
operations, the point for total oil yield, which is often the only figure re-
ported, can be plotted on a graph similar to Figure 1 or 2. If, in addition,
one other yield temperature point is available, an estimate is then available

of the complete yield structure for the operation,

We also found that coal liquefaction cperations in which less than 50
wt % of MAF coal fed was converted to oil do not exhibit normal product
distributions.

Experimental data for the H-COAL operation,23 the Synthoil Process,!
and the SRC Process® show normal product distribution., Figure 1 shows
experimental data for several H-COAL operztions and for the Synthoil opera-
tion using various types of catalysts, Figure 2 shows autoclave data for the
SRC operation and for a noncatalytic run made in the H-COAL reactor. The
data were plotted as follows:

First, the cumulative yields of products up to but not including

vacuum bottoms were plotted, Then, a line was drawn through

the points and the added yield of vacuum bottoms was plotted on

tkat line. Thus, the ''cut end point" for the residue (vacuum

bottoms ) was determined,

It should be noted that the vacuum bottoms cut end point is not an actual
temperature corrected to atmospheric pressure at which all the vacuum bot-
toms would be distilled off. It is merely a way of adding the residue yield
data to the product distribution curve determined from vields of lighter frac-
ticns. Residue oils for catalytic operations all show ncminal cut end points
©f 1200° to 1300°F. Considering experimental difficulties, this agreement
is quite good. Residue oil for noncatalytic operations generally has a nominal
end point of 2900° to 3600°F, a considerably wider spread, This is probably

due in part to the considerable experimental difficulties associated with quanti-

3
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tative separation of the solvent in batch tests, Data for batch autoclave tests
in which total oil yield (including vacuum bottoms) were less than 50 wt %
of MAF coal fed are not shown because operations with less than 50 wt % total
oil yield do not exhibit normally distributed product slates,

Example*

Correlation of experimental data kas shown that a particular catalytic
process operating on a specific coal gives a yield structure with mean tem-
perature y = 800°F and a spread temperature ¢ = 700°F. Determine the
yield of 1000°F + residue that can be expected.

The nominal cut end point temperature for the residue cut for a catalytic

operation is 1259°F. Therefore,

X, = 2000-—-800 _ , 857
700
x, = 1250-800 _ . (.0
700
N(X,) = N(0.2857) = 0.6124t
N(X;) = N(0.6429) = o0.7399"
N(X;) — N(X;) = 0.1275

The yield of residual oil (vacuum bottoms) boiling above 1000°F would be
approximately 12.75% by weight of the MATF coal fed.

Note that the total oil yieid, about 74 % for this case, is noi equal to
100% minus the percentage of unconverted MAF coal. Some of the coal reacts

to form H;0O andcarbon oxides, which are not included in the oil yield.

2, References Cited

1. Akhtar, S. et al., "The Synthoil Process — Materia! Balance and

Thermal Efficiency.’ Paper No, 35B presented at 67th Annual A.I.Ch.E.
Meeting, December 1-5, 1974, Washington, D.C.

2. Hydrocarbon Research, ''Liquefaction of Kaiporowits Coal,'' EPRI

123-2, Palo Alto, Calif,: Electric Power Research Institute, QOctober
1974,

Nomenclature is as given in tne Project 8964 March 1975 Status Report. .

Values of N correspondirg to X, and X; were determined from a table
of normal distribution.
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3. Hydrocarbon Research, "Project H-COAL Report on Process Develop-
ment, " OCR R& D Rep. No. 26, Washington, D. C. : Office of Coal
Research, n.d.

4, Wright, C, H. et al,, "Development of a Process for Producing an
Ashless, Low-Sulfur Fuel From Coal, ' Vol II, Part 1 — Autoclave
Experiments, OCR R&D Rep. No. 53, Int. Rep. No. 6. Washington,
D. C,: Office of Coal Research, n.d. .

B. GASIFICATION
1., Steam-~Char Gasification in Fluidized Bed

The design charts presented up to now have been for the steam-oxygen-
char gasification system in which the heat requirement for the steam-~char
reaction was supplied within the system by combustion of a part of the feed
char with oxygen. In this monthly report, we begin presenting information
on a different system — the gasification of char with steam only. Since there
is no oxygen feed into this system, all the feed carbor converted is by the
steam-char reaction. To operate at a constant temperature, such a system
requires an external source of heat., The amount of heat required to main-
tain a given temperature is shown by lines of constant heat inputs in Figures
3 to 6.

Besides the exceptions just noted, the assumption and the basis for the
present system are the same as those in the steam-oxygen-char system,
The charts presented here are also for the base case conditions — fluidized-
bed model with both gases and solids in backmixed flow and the base carbon
conversion fraction in the feed char, Xo = 0, Additionzlly, the same cor-
rection charts for adjustments for variations from the base case can be ap-

plied to the present system.

For a given gasification temperature and 70-atm pressure, Figures
3 to 6 present curves that give the residence time required to achieve a
specified feed carbon conversion at different steam feeds to the gasifier, The
figures also have the constant heat input lines that show the amount of heat
input required by the gasifier in order to maintain the specified operating
temperature. In contrast to the charts for the steam-oxygen-char systern,
the time required to achieve specified feed carbon conversion is relatively
bigher because none of the feed carbon is being combusted with oxygen,

2, Erratum

In the Project 8964 April Status Report, the following correction is to
be noted, Inthe calculation of c, (p.9), the first quantity should be
0. 078 1b ash /ib raw coal instead of 0, 78.

10
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C. FLUIDIZATION
1. Ded Expansion on Fluidhation

During the past month, more data on the expansion of fluidized beds
were collected. A complete list of the published data used to evaluate the

Huidized-bed expansion correlations is shown in Table 1.

An interesting correlation in the literature, developed by Furukawa
and Ohmae, ® assumes the principle of corresponding states and in particular
states that the expansion characteristics of a fluidized bted are analogous to
the thermal expansion of liquids. The relationship between the fluidized-bed

expansion ratio and the s-iperficial gas velocity is given by,

L 1/3
mi
u%s g [1—-( ) ]
Lg

(1)

for low fluidization gas velocities. Furukawa and Ohmae note that Equation 1

is valid only for the linear part of the bed expansion ratio versus the super-

ficial gas velocity piot. Because the published data used in this investigation
cover both the linear and nonlinear parts of the bed expansion plots, the
comparison of these data with the Furukawa-Chmae correlations was not

attempted.

The evaluations of the Lewis gtii;.ls and the Shen-Johnstone!? correla-
tions reported in the Project 8964 April 1975 Status Report were repeated to
check their comparison with the additional data by Tarman et al.?® and
Knowlton.*® These comparisons are shown ir Figure 7 and 8, and it is appar-
ent that more than 90 % of the data falls within +20 % of the calculated values

of bed expansion ratios.

To explore the possibility of verifying whether a modified version of
the Shen-Johnstone correlation will show a greater than 20 % deviation, the

- . — 0.5
published data were plotted in terms of L, /me versus (U Umi)/Dp ’

as shown in Figure 9. The data fall into distinctly different groups, permit-
ting the drawing of a straight line through each set of data points. It is,

therefore, possible to deduce empirical correiations of the form —

L U—u

£

—— =1+ a(—2) @
me Dp.

for each set of data, by determining the slope of the linear plots.

‘ 15
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Table 1, SOURCES OF FLUIDIZED-BED EXPANSION DATA IFOR COALS AND
RELATED MATERIALS (at 70° to 80°T")

Bed Particle Particle Opervating ,
Diameter, Fluidized Diameter, Density, Fluidizing Pressure, RS?Be of l}.‘an/gl‘e' of
Investigators inches Solids inch tb/cu ft  Medium psig mf £ " mf{
Curran and I and 2 Lignite,char, 0,00Z8B- Slac22 N,;, Hz CO; 0 1.20,5 1-2
Gorin? dolomite, 0.0173
periclase
Feldmann et _al.® 2 Char 0, 0052 23 CQO 0 1-.12,0 1-1,53
Tarman et _al, % 2,5 Siderite 0.00269~ 245  Air, freon, 0-1000 1-10,5 1-1,49
5 5 0,0141 N,
11.5
Knowlton'® 11,5 Lignite, 0,0096- 73.0- N, 0-1000 1-2,637 1-1.12
FFMC char, 0.0114 244
Iilinois No, 6
siderite
A75061317
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However, a single correlation is desirable that could adequately
describe the entire data shown in Table 1. To arrive at such a correlation,
a very fundamental approach was followed and the bed expansion ratio was
related to some of the pertinent and varied parameters by the fcllowing
eguation:

Mo e Ut (P (D) (0% (6% (b)) ()
L mf mf p! Y Pg) \Pg _
The constant o¢ and the exponents a through f carn be estimated by convert-
ing Equation 3 to a linear form and into its logarithmic form and by using
linear regression analysis, The linear regression analysis was carried out
assumiﬁg that the relative precision of L_f /L ot is constant, Using the
appropriate weighing factor for the linear form of Equation 3 as deterimined

by propagation of variance to be [(Lf - L ¢ )/.Lf ]z , the regression

analysis of the data shown in Table 1 résulted in the following empirical cor-

relation:
— 0.572 0,080
Lf _ . 0.748 (U Um:f) pg-
—_—— = 1+
I Umfo'033 P, 0,182 DP°°°3° DT 0,405 (4

A comparison of the calculated fluidized-bed expansion ratios, using Equation4,

with the published data is shown in Figure 10.

It is recognized that the regression analysis used above is constrained
because all the parameters in Equation 3 were forcibly fitted to the data used
in this investigation, To circumvent this problem, the linear regression
analysis was expanded to use the t-test with 95% confidence limit to deter-
mine the relative statistical significance of the chosen parameters; as 2

result the following correlation was obtained:

L 0.855 (U—U )o'569 o0t
. - o
0, 619 6,173 ,403
s Uns Ps Dy
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A comparison of the calculated expansion ratios using this corretation
with the published data related to coal gasification is shown in Figure 11,
Figures 10 and 11 appear to predict about 95% of the data within +12% of the
measured values, This is a considerable improvement over the correlations
shown in Figures 7 and 8. Most of the data with the higher expansion ratios
and greater than 12% deviation are seen to be light char materials of particle
sizes less than 0.0042 inch (about 150 mesh) fluidized at U/U_ . values rang-
ing from 16 to 20, Even though Curran and Gorin? did not report any diffi-
culty in measuring bed heigkts, it is conceivable that possible slugging or the
inability to measure bed heights with accuracy at high superficial velocities
could account for the deviations of these data, The difficulty of measuring
precisely the expansion ratios of dense materials at low bed expansions is -
the reason for the calculated values being higher than the experimental data

reporicc by Tarman et al,, Curran and Gorin, and Knowlton,

By comparing Equations 4 and 5, a strong correlation appears to exist
between U:nf and Dp for the data consifiered. Further work is in progress
to modify the correlations given by Equations 4 and 5 to express the fluidized-
bed expansion ratio in terms of physically pertinent dimensionless groups to
facilitate reliable extrapolation beyond the range of operating conditions of
the data shown in Table 1. Fecllowing this effort, the rationale will be de-
veloped for recommending specific correlations to estimate the Auidized-bed

expansion characteristics,

2, Transport Disengagement Height

Fluidized beds are usually operated with a wide size distribution of
solids, containing a substantial portion of fines, More fines are also
created by attrition and by virtue of reacting solids, and the exiting gases
conceivably exceed the terminal velocity of many of these fine particles,
thereby carrying them out of the reactor. In addition to the entrainment
of fines, solids are carried into the freeboard by erupting bubbles, How-
ever, as the particles lose their kinetic emergy while ascending the free-
board space, some particles will return to the bed depending on the particle
size and particle density. As a result, the particle loading in the escap-
ing freeboard gas drops rapidly to a certain point beyond which it attains
2 constant value at which the terminal velocity of the accompanying

particles are equal to or less than the velocity of the exiting gas stream,
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The freeboard height corresponding to the constant entrainment rate is known
as the transport disengagement height (TDH), which determines the optimum

location for gas exit ports in a fluidized bed,

The published correlations and empirical procedures to estimate TDH
are summarized in Table 2. Attempts to evaluate the suitability of these
correlations with the published data will be initiated during the subsequent

months.

2. Entrainment and FElutriation

By definition, "entrainment' refers to the carry~-over of solids in the
axiting fluid stream from a fluidized bed. The particle-size distribution in
the entrained-gas stream "“hanges with freebcard height and remains con-
stant beyond the TDH The phenomenon o:E separation or classification of
particles, either babed on the1r size or partlcle density, during entrainment

irrespective of the freeboarr height is known as "‘elutriation,

The estimation of entrainment and the extent of accompanied elutriation
are vital to the s:;ttisfacto‘ ry operation of a fluidized-bed reactor. These
quantities will determine the solids inventory in the fluidized bed and the ex-
tent of off-gas cleanup, and will be the basis for the design of dust removal

equipment,

The published correlations to estimate entrainment are listed in Table 3.
The suitability of these correlations to the entrainment and elutriation data
of materials related to coal gasification will be tested and published iun the

future status reports,

4, Nomenclature

= cross-sectional area of fluidized bed, sq ft

=  bed-particle diameter, ft

=  particle diameter of fines, ft

=  maximum diameter of entrained fine particles, ft

=  particle diameter, £

24
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= particle diameter of a sieved fraction, ft

D =  average particle diameter, ft = S -
P T(X/D;)

o
]

tube diameter, ft

E =  total emergy of fluidized system, ft-1b

f = free area of gas distributing grid (fraction of total), sq ft/sq ft
F = total entrainment rate, 1lb/s
F(

= entrzinment rate of particles of diameter d_, lb/s

g =  acceleration of gravity, ft/s®
H =  distance between bed surface and gas outlet. ft

J = rate of solids carried up by wake of bubbles per unit time per
unit surface area of bed, 1b/sq ft-s

. us -
= elutriation rate constant, s

elutriation rate constant, 1b/sq ft=s

tR A
]

t]

=  height of minimum fluidized bed, ft

B

l."
+h
1

height of fluidized bed, ft

r
]

settled bed height, ft

1

= mass of entraining particle, 1b

i)

total number of particles in fluidized system

=  superficial gas velocity, ft/s

¢ ca=z B
11

B,

=  mminimum fluidization velocity, ft/s

=
i

terminal velocity, ft/s

<
il

particle velocity leaving bed surface, ft/s

-t
< 0
i

weight of solids in fluidized bed, 1b

=  weight fraction of sieved particles

ol
1

weight fraction of fines in the fluidized bed at any time, §

=  weight fraction of fines in the fluidized bed at 6 =0

M
)

=  weight fraction of ith size fraction with respect to total weight
of fines

=  density of fluidizing gas, 1t /CF

(%]

particle density of fluidizing solids, Ib/CF

©
tn
fi
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= fluidized-bed density, 1b/CF

=  viscosity of fluidizing gas, 1lb/ft-s
= entrainment rate constant = N/E
= constant coefficient of conductance

= time, s
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COMBUSTION

In the Project 8964 April 1975 Status Report, it was proposed that

sulfur recovery data in BC experiments be organized on the bazis of a

comparatively simple reactor model. The equations presented were applied

to Argonne National Laboratory (ANL) data for a Pittsburgh coal-Tymochtee

Dolomite system, and a completely backmixed reactor model appeareqd to
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give a reasonable characterization of the reported results. Tkerefore. tho
same approach was applied to an earlier but not quite as extensive set of
data developed by ANL,' The system was of lllinois coal-limestone No, 1359
with the material properties and operating conditions shown in Tables 4 and 5.
Unlike the previously analyzed data set, this one does not report directly
measured bed compositions in most runs. Therefore, for this analysis, bed
compositions have been calculated using material balance considerations as
described in the April Report, with the assumption that there was no signi-

ficant preferential elutriation.

Table 4. MATERIAL PROPERTIES

Scam: é, Mine 10

Peubody Coai Co. Limestone
Chrietian Co., Ill. No, 1359
wt 7
Analysis
Moisture 10,12 Ca 37.9
Ash 10.85 CO; 42,2
Sulfur 3.72 Ash 56.2
Carbon 61,54
Hydrogen 2,47
Mean Particle Size, mm 490 550-1000

As has been reported in many FBC studies at atmospheric pressure,
the reaction rate appears to go through a maximum at about 1500°F, an
effect not observed at higher (8-atin) pressures. Also, for this limestone,
at these conditions, only a fraction of the CaQ appears to be effective,
Simultaneous allowance for these peculiarities makes data correlation difficult,
Koppel® in his analysis of these (or similar) data implies that only 50% of the
CaO is effective. With this value, the reaction rate constants, ko are plotted

as a function of iemperature., They are calculated from the ANL data and
defined by —

! Jonke, A. A. et al., Reduction of Atrmospheric Pollution by the Application

of Fluidized-Bed Combustion ,Annu21 Report July 1970-June 1971, ANL ES-
CEN-1004. Argonne National Laboratory, U.S. Environmental Protection
Agency, 1971,
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Table 5. OPERATING RANGES®

Temperature, °F 1400-1600
Pressure, atm 1
Dry Flue Gas/Coal, SCF /b 105-130
Bed Diameter, ft . 0.5
Bed Weight, 1b 14-45
Ca /S Mole Ratio 1.0-5.5
Ca Conversion (Estimated) 0. 16-0, 38
Ca Bed Weight Fraction (Estimated) 0.22-0.45
Sulfur Recovery Fraction 0. 38-0,96

-

Not all the ANL tabulated results have been used in this
analysis in view cf the caveat concerning tabulation errors,

Reaction rate (moles of S/min) = k, XSO;_ (x Ca, m ~ XCa) Copeg Wheq

where

XSOZ = mole fraction of SO; in actual flue gas

Ca..‘o e dee q = weight of calcium in the bed, 1b
XCa = fraction of calcium sulfated

(x = maximum possible fraction of calcium sulfated.

Ca )m
Figure 12 shows the results, Each point is shown as a2 range corres-
ponding (quite arbitrarily) to +5% of the fraction of sulfur recovered as the
sulfate. It is seen that the maximum rate near 1500°F is not very repro-
ducible. There are, however, other systems that have indicated this maxi-
mum S0 its existence camnot be rejected. But one can entertain the thought
that operation at this peak condition is unstable and not 2lways achievable.
Because of the uncertainty in the peak value,the curve shown was drawn on
the basis of engineering conservatism., The observed value at 1500°F is
3.7 times the value on the curve, but, if one substitutes the lower value (at
ithe conditions of the run), the fraction of sulfur recovered would be estimated
as 0,81 rather than the 0.92 observed, Other data in this set imply such dis-
crepancies are encountered. A simijar calculation for the high value at 1550°
would result in an estimation of 0,85 rather than the 0,92 sulfur recovery

observed,
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E. COAL, CHAR, AND OIL SHALE PROPERTIES
1. Specific Heat of Coal, Char, and Ash

Work on the specific heat of coals, chears, and related materials was
continued. Comparisons of Kirov's correlation (the Project 8964 March
1975 Status Report) with experimental data at elevated temperatures (300°
and 600°C) were prepared in graphical form, Then we learned that appar-
ent specific heat data on 20 Americar coals have just become available from
P, L. Walker at Pennsylvania State University, via a paper to be presented
at the ACS Fuels Division Meeting at Chicago in August. Next month, if the

paper is received in tirme, we will present correlations incorporating these

data as well as previous data.

2, Penn State Data

Data on 50 coal samples from Penn S’»:até have been tabulated (Table 6).
About one~third of the samples are from deposits too small to be included in
our table of large-size deposits (Table 4, Project 8964 April 1975 Status
Report). However, they are being retained in the data table for the time

being, at least,
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F. MISCELLANEQUS
Advisory Corunittee

Letters were sent out inviting eminent people in various areas of coal
conversion technology to serve on an Advisory Committee for the Data Book
Froject. The purpose of an advisory committee is to obtain reviews and

comments on —

. Organization of the total work (Data Book Index)

o Selection of subjects to be covered in priority schedule
e Scope of work to be covered for selected subjects

° General plan for implementing the work

L Progress reports

L] Final data presentations.

The list of the people to whon: the letters were sent is given in Table 7.
We have received eight responses so far; seven of them accepting our invita-
tion. One declined because of lack of time to spare for serving on the com-

mittee, although he too was in favor of the idea.

IV, Patent Status

The work performed during May is not considered patentable,

V. Future Work

The data collection and evaluation work will be continued in the selected

areas of coal conversion technology.

Appraved 4/ a ﬁlla- Signed ﬁg‘:ﬁ_ﬁ_ﬁ!‘@

W. W, Bodle, Director A, Talwalkar, Coordinator
Prccess Analysis Process Data
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Table 7. PERSONS INVITED TO

8964

SERVE ON THE DATA BOOK

ADVISORY COMMITTEE

Dr. Richkard Rosa

Aveco Corporation

Everett Research Laboratories
2385 Revere Beach Parkway
Everett, Mass., 02149

Dr, Martin Sherwin
Chem Systems,Inc.

275 Hudeon St.
Hackensack, N.J. 07601

Mr. Shelton Ehrlich

Pope Evans & Robbins, Inc,
320 King St., Suite 503
Alexandria, Va, 22314

Dr, David Archer

Westinghouse Electric Corp.

Research & Development Center

Beulah Road, Churchill Borough
ittsburgh, Pa. 15235

Dr. Jack Jones

FMC Corporation

P. O, Box B
Princeton, N.J. 08540

Mz, Bruce Schmid

Pittsburg & Midway Coal Mining Co.
P, O. Box 199

Du Pont, Wash. 98327

Mr. Henry McGrath
Procon Inc.

30 UOF Flaza

Des Plaines, Ill. 60016

J. D. Stubbs

Bechtel Incorporated

Fifty Beale St,

P, C. Box 3965

San Francisco, Calif. 92119

Mr. J. B. O'Harza, Manager
Energy Department

Ralph M, Parsons Co,

100 West Walnut St,
Pasadena, Calif, 91124

Mr. C. A, Bolez
Gilbert Associates, Inc.
P, O. Box 1498

525 Lancaster Ave,
Reading, Pa. 19602

Mr, E, J. Flavin

Fluor Enginecrs &
Constructors, Inc.

5559 Ferguson Drive

Los Angeles, Calif, 90022
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Mr, Roger Broeker

Foster Wheeler Energy Corporation
116 S. Crange Ave,

Livingston, N.J. 07039

Mr, Pete CGilman

Electric Power Research Institute
3412 Hiliview Ave.

P, O. Box 10412

Palo Alto, Calif, 94304

Dr, George Skaperdas

M. W, Kellogg Co.
P. O. Box 696
Piscataway, N.J. 08854

Mr. George Curran
Conoco Coal Development Co.
Library, Pa. 15129

Mr. Herman Feldman

Battelle Columbus Laboratories
505 King Ave,

Columbus, Ohio 243201

‘Mr., Stan Kasper,

.Chief Process Engineer
‘Synthetic Fuels Department
Dravo Corp.*

Chemical Plans Div,

One Oliver Plaza
Pittsburgh, Pa. 15222

Mr. Joseph J. Williams

Stone & Webster Engineering Corp.
D, G. Box 2325 -

6C Battery March

Boston, Mass, 02107

Dr. Clarence Johnson

Vice President, R&D

Hydrocarbon Research Incorporated
2233 Wisconsin Ave. N, W,
Washington, D.C, 20007

Mr. John Igoe, President
Bituminous Cozal Research, Inc,
350 Hochberg Road
Monroevikle, Pa. 15146

Dr, Irving Wender

U.S5. Energy Research &
Development Admin,

Pittsburgh Energy Research Center ’

4800 Forbes Ave,

Pittsburgh, Pa, 15213

A75061331
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