APPENDIX AHAZOP SUMMARY AND WORKSHEETS ``` HAZOP SUMMARY Nodes 1 Global 1 -- Nitrogen System 2 Retort/Gasifier 3 Coarse coal feed to retort Fine coal feed to retort 5 Gasifier Booster Heater to Retort (Center) 6 Gasifier Booster Heater to Retort (Grid) Inlet to Tar Quench Condenser 9 C-304 Bypass Line 10 Manual Tar Recirculation Line 11 Condenser C-304 to Tar Separator 12 Tar Quench Cooler Bypass 13 Quench Cooler to Condenser Nozzle 13 Quench Cooler to Condenser Nozzle 14 Tar Separator C-301 15 Suction to G-301 from C-301 16 Pump G-301 Tar Quench Pump 17 Pump Discharge to Tar Quench Cooler 18 Relief / Minimum Flow Path 19 Tar Quench Heat Exchanger E-301 20 C-301 to Relief Header 21 Product gas from C-301 to middle oil 22 Tar product to storage tank 23 Nat Gas Supply to Preheater 24 Recycle Gas from Preheater to Boosters 25 Air from Preheater to Boosters 26 Recycle Gas Inlet to Preheater 27 Air inlet to Preheater 28 Recycle gas inlet to Booster A 29 Air inlet to Booster A 30 Nat Gas inlet to Booster A 31 Booster Heater A 32 Recycle gas inlet to Booster B 33 Air inlet to Booster B 34 Nat Gas inlet to Booster B 35 Booster Heater B 36 Vent gases to Thermal oxidizer 37 Sour water to Thermal Oxidizer 38 Weigh Hopper for Coarse Coal attached tote bag unloader 39 Fill line from Weigh hopper to Lock hopper 40 Coarse coal lock hopper 41 Fill line from Lock hopper to Feed hopper 42 Coarse coal feed hopper 43 LT-0601,04,10,21,24 and 30 44 Rupture disc discharge lines 45 N2 feed to Hoppers 46 N2 Vent from Hoppers 47 Baghouse system 48 Coarse Char Surge Vessel C-703 49 Fill line from Coarse Char Surge Vessel to Blowcase 50 Coarse Char Blowcase C-704 51 Coarse char pneumatic conveyence to Storage Hopper D-702 52 Coarse char Storage Hopper D-702 53 Fill line from D-702 to Supersac 54 Char Storage Baghouse 54 Char Storage Bagnouse 55 Char Fines Surge Vessel C-701 56 Fill line from Char Fines Surge Vessel to Blowcase 57 Char Fines Blowcase C-702 58 Char Fines pneumatic conveyence to Storage Hopper D-701 59 Char Fines Storage Hopper D-701 60 Fill line from D-701 to Supersac 61 Weigh Hopper for Coal Fines and attached tota bag unload 61 Weigh Hopper for Coal Fines and attached tote bag unloader 62 Fill line from Weigh Hopper to Lockhopper (fines) 63 Coal Fines Lockhopper 64 Fill Line from Lockhopper to Feed Vessel (Fines) 65 Coal Fines Feed Vessel 66 Flare 67 Bypass around T.O to K.O. pot 68 Emergency Shutdown 69 Tar Separator to middle oil separator (see node 21) 70 Middle oil separator 71 Middle oil separator to run tank 72 Run tank 73 Middle oil separator to the light oil separator 74 Recycle gas to return to the middle oil separator (HOLD) 75 Light oil separator 76 Light oil separator to run tank 77 Light oil separator sour water to incinerator 78 Low pressure depressurization line 79 High pressure depressurization line (DELETED FROM DESIGN) 80 Recycle gas to the T.O. 81 Recycle gas to preheater (See node 26) 82 Coarse char from retort to coarse char surge vessel 83 Fine char from cyclone to fine char surge vessel 84 Primary Cyclone 85 Secondary Cyclone ``` 86 Glycol Cooling System A-2 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-13-95 Node: 1 Global 1 -- Nitrogen System Parameter: Flow Intention: Provide adequate flow to support all I/C and process operations Primatech Inc. Node: 1 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|-------------------------------------|--------------------|--|---|---------|----|----------| | No/less
Flow | 1) Plugging | supply to specific | C1.1) Downstream flow ind. FIT-0904 and FAL-0904(S) C1.2) Local PI's | Ensure control
room pressure
ind. and alarm on
N2 vendor package | | В | | | | 2) Regulator
failure | 2.1) same as above | C2.1) same as C1.*) | | | | | | | 3) Excessive user | 3.1) Same as above | C3.1) FIT-0902, FIT-0903
and Hi/LO(S) on FIT-
0902,3 and 4. | | | | | | | | | C3.2) FIT-0733 and
Hi/LO(S) course char
cooler | | | | | | | 4) Valve left or fails closed | 4.1) Same as above | C4.1) Oper. Proc. | | | | | | | 5) Line break,
flange leak, etc. | | C5.1) same as above | | | | | Node: 1 Global 1 -- Nitrogen System Parameter: Composition Intention: Pure N2 in the lines at all times | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|--|--|--|---|---------|--------|----------| | | 1) Failure to
purge after
outage or at
start-up | 1.1) Undesired combustion in the coal transfer lines, hoppers, and other blanketed storage vessels for liquids | C1.1) Operating procedures to include vent and purge C1.2) Pressure indication at various critical locations | Ensure inclusion in op. proc. | | I
B | | | | 2) Loss of N2
source | 2.1) same as 1.1 2.2) loss of I/C | instrumentation C2.2) Oper proc. to ensure sufficient N2 to support run | Verify low liq. level alarm is provided Verify the need for emerg. S/D on lost of N2. Review need for N2 back-up source | | RS I B | | HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-13-95 Dwg#: 9417-1006-C Node: 1 Global 1 -- Nitrogen System Parameter: Composition Intention: Pure N2 in the lines at all times Primatech Inc. Node: 1 Page: 2 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | ву | COMMENTS | |-----------|--------|--|------------|-----------------|---------|----|----------| | | | 2.3) loss
transport of
material (coal and
char) | | | | | | Session: 1 02-13-95 Revision: 0 02-13-95 Dwg#: 9417-1006-C Node: 1 Global 1 -- Nitrogen System Parameter: Level Intention: Contain the N2 as either liquid or gas as appropriate | DEV | IATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----|--------|--------|--------------|------------|-----------------|---------|----|----------| | | | | | | | | | | Session: 1 02-13-95 Revision: 0 02-13-95 Dwg#: 9417-1006-C Node: 1 Global 1 -- Nitrogen System Parameter: Safety Intention: To ensure operator and maintenance personnel safety | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | вұ | COMMENTS | |-----------|---------------------------------------|--------------|------------------|---|---------|----|----------| | No Safety | 1) Inappropriate confined space entry | | entry procedures | Review current
procedures to
ensure they are
adequate for this
facility | | I | | Worksheet HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 2 Retort/Gasifier Parameter: Pressure Revision: 0 02-13-95 Dwg#: 9417-1006-C Intention: Operate 35 psia | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|--|--------------|------------|-----------------------------|---------|----|----------| | 1 | 1) Blocked/
restricted nozzle
to cyclone | | | Add overpressure protection | | RS | | Primatech Inc. Node: 2 Page: 1 Primatech Inc. Node: 3 Page: 1 is. HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-13-95 Dwg#: 9417-1006-C Node: 3 Coarse coal feed to retort Parameter: Flow Intention: Provide coarse coal at a rate of 1600 #/hr | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|---|---|---|---|---------|--------------|---| | No/less
Flow | 2) Driver failure 3) Pluggage or blockage in line 4) Slow speed on conveyor 5) Pluggage or blockage in conveyor | 1.1) Inadequate supply to retort 1.2) Overheating of coal 1.3) Retort temp rise 1.4) Product gas make reduced 1.5) Bed level reduction 1.6) Exit oil temp rise 1.7) Plugging of line and conveyor 2.1) same as 1.*) 3.1) same as 1.*) 4.1) same as 1.*) 4.1) same as 1.*) 1.1) Imbalance in gasifier control | C1.1) speed indication SI-0641 c1.2.1) Oil temp limit 600F c1.3.1) TE-0729B indicate initial rise and control c1.3.2) TE-0710/27 indicate rise c2.1.1) Same as 1.*) C3.1) Pressure ind. PI-0640 will rise C3.2) If blockage upstream of N2 conn. then TE-0644 will indicate low c5.1.1) Same as 1.2.*) thru 1.3.*) C1.1) Oper training | Review need for
alarm on SI-0641
???? | REMARKS | BY
I
B | PI-06-40 will move
to downstream of N2
connect. No impact | | | | temp | C1.2) Specific
calibration by coal type C1.3) Temp decrease at TE-0710/27 C1.4) Level via pressure dP at PDIT-0703 | | | | | Primatech Inc. Node: 3 Page: 2 Intention: Provide coarse coal at a rate of 1600 #/hr HAZOP-PC 2.12 Workshee Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-13-95 Dwg#: 9417-1006-C Node: 3 Coarse coal feed to retort Parameter: Flow Intention: Provide coarse coal at a rate DEVIATION CAUSES CONSEQUENCES SAFEGUARDS RECOMMENDATIONS REMARKS BY COMMENTS Reverse Flow 1.1) TI-0644 reads C1.1) N2 Control system see global node 1 1) Loss of N2 Add alarm(S) on RS 1.2) Disrupt bed C1.2) TI-0644 Hi control 2) Failure of pressure boundary(lock hopper, seals, etc.) 2.1) Same as 1.*) C2.1) Maintenance and oper. procedures Review the need for auto S/D of line on Hi temp C2.2) same as C1.2 2.2) Release of haz. material 2.3) Damage instrumentation due to hi temp 2.4) Damage to screw conveyor Revision: 0 02-13-95 Dwg#: 9417-1006-C Session: 1 02-13-95 Revision: 0 02-13-95 Dwg#: 947 Node: 3 Coarse coal feed to retort Parameter: Temperature Intention: Supply coal at 500F | Session: 1 0 | berts & Schafer
2-13-95
se coal feed to r | etort | Worksheet
3-95 Dwg#: 9417-1006-C
ply coal at 500F | | | | Primatech Inc.
Node: 3
Page: 3 | |--------------|---|---|---|-----------------|---------|----|--------------------------------------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | | 0615 | | C2.2) same as c1.*) | | | | | | | 3) SE-0641 too
fast | 3.1) see Flow-
High
3.2) same as 1.*) | 3.1) see Flow- High c3.2) same as c1.*) | | | | | | | 4) Fouling of screw | 4.1) same as 1.*) | c4.1) same as c1.*) | | | | | | | 5) Loss of N2 | 5.1) same as 1.*) | c5.1) same as c1.*) | | | | | Session: 1 02-13-95 Revision: 0 02-13-95 Dwg#: 9417-1006-C Node: 3 Coarse coal feed to retort Parameter: Composition Intention: No contamination from heating oil | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|--------|---|---|--|---------|----|----------| | | | blockage 1.2) No impact in gasifier 1.3) Recycle gas/liq product composition change (no impact) | cl.1) same as Flow-No/less Cl.1) Low level at LIT-0801 and 06 and alarm(S) at L and LL. Cl.2) LALL-0801&06 causes S/D cl.6.1) same as Cl.1 and Cl.2 | Review level
control interlock
with heater
control and
pump contol | | RS | | Revision: 0 02-13-95 Dwg#: 9417-1006-C HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 4 Fine coal feed to retort Parameter: Flow Intention: Provide flow at rate of xxx DEVIATION CAUSES CONSEQUENCES SAFEGUARDS RECOMMENDATIONS REMARKS BY COMMENTS No/less Flow Conveyor failure 1.1) Inadequate supply to retort C1.1) speed indication SI-0642 Review need for alarm on SI-0642 ???? c1.2.1) Oil temp limit 600F 1.2) Overheating of coal c1.3.1) TE-0729B indicate initial rise and control 1.3) Retort temp rise c1.3.2) TE-0710/27 indicate rise 1.4) Product gas make reduced 1.5) Bed level reduction 1.6) Exit oil temp rise 1.7) Plugging of line and conveyor 2) Driver failure 2.1) same as 1.*) c2.1.1) Same as 1.*) 3) Pluggage or blockage in line C3.1) Pressure ind. PI-0643 will rise PI-06-40 willmove to downstream of N2 connect. No impact 3.1) same as 1.*) C3.2) If blockage upstream of N2 conn. then TE-0645 will indicate low 4) Slow speed on 4.1) same as 1.*) a slower rate conveyor 5) Pluggage or blockage in conveyor 5.1) same as 1.*) c5.1.1) Same as 1.2.*) thru 1.3.*) More Flow 1) Improper speed control setting 1.1) Imbalance in gasifier control point level and temp C1.1) Oper training C1.2) Specific calibration by coal type C1.3) Temp decrease at TE-0710/27 C1.4) Level via pressure dP at PDIT-0703 A-9 Primatech Inc. Node: 4 Page: 1 Primatech Inc. Node: 4 Page: 2 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 4 Fine coal feed to retort Parameter: Flow Revision: 0 02-13-95 Dwg#: 9417-1006-C Intention: Provide flow at rate of xxx | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|---|---|--|---|---------|----|----------| | Reverse
Flow | 1) Loss of N2 | HI | C1.1) N2 Control system
see global node 1
C1.2) TI-0645 Hi | Add alarm(S) on
hi | | R | | | | 2) Failure of pressure boundary(lock hopper, seals, etc.) | 2.1) Same as 1.+) 2.2) Release of haz. material 2.3) Damage instrumentation due to hi temp 2.4) Damage to screw conveyor | C2.1) Maintenance and oper. procedures C2.2) same as C1.2 | Review the need
for auto S/D of
line on Hi temp | | В | | Revision: 0 02-13-95 Dwg#: 9417-1006-C Session: 1 02-13-95 Node: 4 Fine coal feed to retort Parameter: Temperature Intention: To supply fine coal at ***F | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------------|---------------------------|---|--|-----------------|---------|----|----------| | Higher
Temperature | open | high | cl.1) Temp limited too
oil temp of 600F
Cl.1) oper proc. and
calibr.
cl.3) Gasifier controls | | | | | | Lower | slow
1) TV-0635 too | 2.1) see Flow
No/Less
1.1) Lower bed | <pre>c2.1) same as No/Less Flow c1.1) Gasifier controls</pre> | | | | | | Temperature | | temp in gasifier
1.2) Coal
discharge temp low | c1.2) Operating proc. | | | | | | | 2) Failure of TE-
0635 | 2.1) same as above | C2.1) deleted | | | | | Primatech Inc. Node: 4 Page: 3 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 4 Fine coal feed to retort Parameter: Temperature Revision: 0 02-13-95 Dwg#: 9417-1006-C Intention: To supply fine coal at ***F | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|------------------------|------------------------|---------------------|-----------------|---------|----|----------| | | | | C2.2) same as c1.*) | | | | | | | 3) SE-0642 too
fast | 3.1) see Flow-
High | 3.1) see Flow- High | | | | | | | | | c3.2) same as c1.*) | | | | | | | 4) Fouling of screw | 4.1) same as 1.*) | c4.1) same as c1.*) | | | | | | | 5) Loss of N2 | 5.1) same as 1.*) | c5.1) same as c1.*) | | | | | Worksheet Session: 1 02-13-95 Node: 4 Fine coal feed to retort Parameter: Composition Revision: 0 02-13-95 Dwg#: 9417-1006-C Intention: No contamination from heating oil | DEVIATION (| CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |---|---------------------------|---|--|-----------------|---------|----|----------| | Other Than 1) Leacomposition oil siside | akage from
ide to coal | 1.1) Pluggage/
blockage
1.2) No impact in
gasifier
1.3) Recycle
gas/liq product
composition
change (no impact) | SAFEGUARDS C1.1) same as Flow-No/less C1.1) Low level at LIT-0801 and 06 and alarm(S) at L and LL. C1.2) LALL-0801&06 causes 5/D c1.6.1) same as C1.1 and C1.2 | | REMARKS | RS | COMMENTS | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-13-95 Node: 5 Gasifier Booster Heater to Retort (Center) Parameter: Flow Note: 1 02-13-95 Revision: 0 02 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |---|---|---|---|---|---------|---------|----------| | Less Flow 1) Restriction of air compressor flow | heater temperature
output low | C1.1) Flow ind. at FIT-0736 and alarm (S)L c1.1) Low temp at TE-0729A and (S)L and LL c1.3.1) Low temp at TE-0710/27 and alarm (S) L and LL c1.4.1) At on-line GC (long response time) C2.2) Trouble alarm at compressor | Verify that
vendor package
has alarm | | RS | | | | | | 1.7 Booster heater
may respond | | Review the
control strategy
for ind. of
secondary booster
needed and manual
permissive
(remove as needed
TY-0729A, etc.) | | RS
C | | | | 2) Restriction
of recycle
compressor flow | 2.1) Booster heater discharge temp increases 2.2) same as 1.2) thru 1.5) 2.3 TV-0729B&C throttle back | C2.1) Flow ind. low at FE-0738 and alarm (S)L c2.1) Hi temp at TE-0729A and (S)H and HH C2.2) Trouble
alarm at compressor | Verify vendor
package has
trouble alarm | | RS | | | | 3) Restriction | 3.1) Same as 1.*) | c2.2.1) Low temp at TE- | | | | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 5 Gasifier Booster Heater to Retort (Center) Parameter: Flow Node: 5 Gasifier to fluidize bed and maintain fluidization Primatech Inc. Node: 5 Page: 2 DEVIATION CAUSES CONSEQUENCES SAFEGUARDS RECOMMENDATIONS REMARKS BY COMMENTS 0710/27 and alarm (S) L and LL of nat gas flow 3.2) Possibility for excess 02 resulting in lower booster temp, hi local temp. and product slate differences c2.2.2) At on-line GC (long response time) c3.1.1) same as air compr c3.2.1) Product testing at end of run Review whether or not PS's provide adequate/ recommended Leakage or line breakage 4.1) Release of haz mat c4.1.1) Approved fire protection program В C.4.1) Oper. training protection Review burner С management I/C program (w/Callidus) 4.2) release of VERY hot air 4.3) Personnel inj 4.4) Potential for fire/explosion 5) Firing of Booster Heater B RS 5.1) Changes Review addition balance of recycle gas flow of control valves in the in the individual recycle feed lines and remove the control valve upstream of the fired heater 1.1) Higher More Flow 1) Operator error or miscalib 1.2) Higher temp at TE-0710/27 due to hot fines 1.3) Higher duty HAZOP-PC 2.12 Worksheet Pri Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-13-95 Dwg#: 9417-1006-C Node: 5 Gasifier Booster Heater to Retort (Center) Parameter: Flow Intention: Provide process heat input to gasifier to fluidize bed and maintain fluidization Primatech Inc. Node: 5 Page: 3 | | | | · · · · · · · · · · · · · · · · · · · | | | | | |-----------|--------|---|---------------------------------------|-----------------|---------|----|----------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | | | on liq recovery | | | | | | | | | 1.4) Offspec
operation-no
hazards | | | | | | Session: 1 02-13-95 Revision: 0 02-13-95 Dwg#: 9417-1006-C Node: 5 Gasifier Booster Heater to Retort (Center) Parameter: Temperature Intention: Provide flow at 1771F to 1887F Dwg#: 9417-1006-C | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------------|---------------------------------|--|--|---|-----------------------------------|---------|----------| | Higher
Temperature | 1) More Nat Gas
and air flow | 1.1) Higher bed
temp | c1.1.1) TE-0710/27 read
hi, alarm (S)H and HH | | | | | | | | higher bed
velocity | c1.1.2) TE-0729A reads Hi and alarm (S)H and HH c1.5.1) 150F margin in gasifier and that less 100F in the coarse char cooler | Review the
Control strategy
for ind. of
secondary booster | | RS
C | | | | | | | needed and manual
permissive
(remove as needed
TY-0729A, etc.) | | | | | | 2) Excess air | 2.1) same as 1.*) | c2.1.1) same as 1.1 | | | | | | | | 2.2) excess O2
see Flow- Less
item 3.2 | | | | | | | | 3) Preheater too
hot | 3.1) Excess temp
to gasifier | c3.2.1) same as 1.1 c3.2.2) preheater design | | Verify preheater
design margin | В | | | | | 3.2) same as 1.*) | | Review temp loop | | С | | | Session; 1 0 | berts & Schafer
2-13-95
fier Booster Heate | r to Retort (Center) | Worksheet Revision: 0 02-13-95 Dwg#: 9417-1006-C to Retort (Center) Intention: Provide flow at 1771F to 1887F | | | | | |----------------------|--|--|---|--|---------|----|----------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | Lower
Temperature | | temp 1.2) Slightly lower bed velocity 1.3) Product slate | c3.1.3) Temp control at preheater c1.1.1) TE-0710/27 read low, alarm (S)L and LL c1.1.2) TE-0729A reads low and alarm (S)L and LL c1.1.3) Temp control at preheater | including TS and alarm with Callidus Review temp loop with Callidus | | С | | | | 2) Low nat gas
flow | 2.1) Same as 1.*) | | | | | | | | 3) Insufficient air | 3.1) same as 1.*) | | | | | | Primatech Inc. Node: 6 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-13-95 Node: 6 Gasifier Booster Heater to Retort (Grid) Parameter: Flow Rockshee Workshee Workshee Workshee Facility: Roberts & Schafer Revision: 0 02-13-95 Revision: 0 02-13-95 Dwg#: 9417-1006-C | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|---|--|---|---|---------|---------|----------| | Less Flow | flow | output low 1.2) Bed velocity fluidization reduced | C1.1) Flow ind. at FIT-0741 and alarm (S)L c1.1) Low temp at TE-0729B and (S)L and LL c1.3.1) Low temp at TE-0710/27 and alarm (S) L and LL c1.4.1) At on-line GC (long response time) C2.2) Trouble alarm at compressor | Verify that
vendor package
has alarm | | RS | | | | 2) Restriction
of recycle
compressor flow | stoic.
2.1) Booster | FE-0743 and alarm (S)L
c2.1) Hi temp at TE-0729B
and (S)H and HH | Move TE-0729B to
secondary booster
heater exit line.
Review alarms and
setpts. Also
revise TIC-0729A
logic to get bed
input from TE-
0710/27. | | RS
C | | | | | 2.2) same as 1.2) thru 1.4) 2.3) Reduced cyclone performance, secondary cyclone duty increase, fines in heavy liq recovery 2.3) TV-0729D&E throttle back 2.4) Blockage of | | Verify vendor
package has
trouble alarm | | RS | | | | | grid
3.1) Same as 1.*) | c2.2.1) Low temp at TE- | | | | | Worksheet Primatech Inc. Node: 6 Page: 2 HAZOP-PC 2.12 Workshee Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-13-95 Dwg#: 9417-1006-C Node: 6 Gasifier Booster Heater to Retort (Grid) Parameter: Flow Intention: Provide 1/3 of total flow | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|----------------------------------|--|---|---|---------|----|----------| | | of nat gas flow | 3.2) Possibility
for excess 02
resulting in
lower booster
temp., hi local
temp. and
prod. slate
differences | 0710/27 and alarm (S) L and LL c2.2.2) At on-line GC (long response time) c3.1.1) same as air compr c3.2.1) Product testing at end of run | | | | | | | 4) Leakage or
line breakage | 4.1) Release of
haz mat | c4.1.1) Approved fire protection program C.4.1) Oper. training | Review whether or
not PS's provide
adequate/
recommended
protection | | В | | | | | | | Review burner
management
I/C program
(w/Callidus) | | с | | | | | 4.2) release of
VERY hot air
4.3) Personnel inj | | | | | | | | | 4.4) Potential for fire/explosion | | | | | | | ore Flow | 1) Operator
error or miscalib | | | | | | | | | | 1.2) Higher temp
at TE-0710/27 due
to hot fines | | | | | | | | | 1.3) Higher duty
on liq recovery | | | | | | | | | 1.4) Offspec
operation-no
hazards |
 | | | | | Primatech Inc. Node: 6 Page: 3 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-13-95 Dwg#: 9417-1006-C Node: 6 Gasifier Booster Heater to Retort (Grid) Parameter: Temperature Intention: Provide flow at 1100F to 1500F | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------------|--------------------------------------|---|---|-----------------------------------|-----------------------------------|----|----------| | Higher
Temperature | 1) More Nat Gas
and air flow | 1.1) Higher bed
temp | c1.1.1) TE-0710/27 read
hi, alarm (S)H and HH | | | | | | | | 1.2) Slightly
higher bed
velocity | c1.1.2) TE-0729B reads Hi
and alarm (S)H and HH | | | | | | | | 1.3) Product slate | c1.5.1) 150F margin in
gasifier and that less
100F in the coarse char
cooler | | | | | | | | 1.4) Approaching materials limits | 666767 | | | | | | | 2) Excess air | 2.1) same as 1.*) | c2.1.1) same as 1.1 | | | | | | | | 2.2) excess O2
see Flow 3.2 | | | | | | | | 3) Preheater too | to gasifier | c3.2.1) same as 1.1 | | Verify preheater
design margin | В | | | | | | c3.2.2) preheater design
margin XXXX | Review temp loop including TS and | | С | | | | | | c3.1.3) Temp control at preheater | alarm with
Callidus | | | | |
Lower
Temperature | 1) Pre heater too
cold | | cl.1.1) TE-0710/27 read
low, alarm (S)L and LL | | | | | | | | | c1.1.2) TE-0729B reads
low and alarm (S)L and LL | | | | | | | | | c1.1.3) Temp control at preheater | Review temp loop
with Callidus | | С | | | | 2) Low nat gas
flow | 2.1) Same as 1.*) | | | | | | | | Insufficient air | 3.1) same as 1.*) | | | | | | HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-14-95 Dwg#: 9417-1006-C Node: 7 Inlet to Tar Quench Condenser Parameter: Flow Intention: Provide flow to C-304 at a rate of 5744 #/hr (max 5800) at 1050F. | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|--|---|--|---|--|----|----------| | No/Less
Flow | 1) Valve XV-1101 fails closed due loss of N2 2) Valve XV-1101 fails closed | 1.1) No flow to C-
304 1.2) XV-1001 opens 1.3) Flow diverted to relief system. 1.4) Gasifier upset 1.5) Stoppage of liq's recovery | , , | Review need for
XV-1101 | To be reviewed at S/D philosophy session | В | | | | (mechanical
failure) 3) Valve XV-1001
fails open
(mechanical
failure or
operator error) 4) XV-1001 fails
open on loss of
N2 | relief system 3.2) Minimum liq's recovery 3.3) Gasifier upset | c3.2.1) TE-1104 decreases slowly c3.2.2) PIT-1109 decreases c3.2.3) PIT-0709 decreases C4.1) see Global Node 1 | Review need for
XV-1001 as part
of SD session | | | | A-19 Primatech Inc. Node: 7 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-14-95 Node: 8 Tar Quench Condenser C-304 Parameter: Phase Workshee Workshee Odd: 9 417-1006-C Node: 8 Tar Quench Condenser C-304 Parameter: Phase Intention: Heavy Vapor to Liquid Primatech Inc. Node: 8 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------------------------|---|--------------|---|--|---------|--------|----------| | Less Phase
(less tar
produced) | 1) Less recirc. liquid flow 2) Higher recirc. liquid temp 3) Higher product gas temp | producted | C1.1) TE-1104 and (S)HH at 473F C1.2) FIT-1121 lower C1.3) FIT-1120A higher | Review increase HH setpt to say 500F. Watch for middle oil air cooler fouling Review removal/ relocation of PV20 Review removal of PIT-1120A loop completely | | RS I B | | HAZOP-PC 2,12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Parameter: Flow Revision: 0 02-14-95 $\,$ Dwg#: 9417-1006-C e: 9 C-304 Bypass Line Intention: No flow unless required by high pressure condition Primatech Inc. Node: 9 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | вч | COMMENTS | |-------------------------|---|-----------------------------------|--|---|---------|---------|----------| | More Flow | 1) PV-1103 open
or leaking | 1.1) Less flow to
spray nozzle | C1.1) PIT-1102 lower if valve full open | Review
alternative
methods for
determining PV-
1103 is open | | B
RS | | | No Flow | | | | | | | | | (when required to open) | to open
mechanical or
control loop
failure | | cl.1.2) Alarms at PIT-
1102 (S)H and HH | | | | | HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-14-95 Dwg#: 9417-1006-C Node: 10 Manual Tar Recirculation Line Parameter: Flow Intention: No flow under normal op's, recirc flow during S/D Primatech Inc. Node: 10 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |------------------------------------|---|--|--|-----------------|---------|----|----------| | More Flow
(during
operation) | 1) Manual valve
open or leaking | cooling | c1.1.1) FIT-1121 lower
c1.1.2) TIC-1104 higher
C1.1) Operator training
and procedures | | | | | | | 1) Manual valve
closed
(mechanical
failure or
operator error) | 1.1) Fouling of
tar quench cooler
1.2) Reduced
heat transfer in
cooler and
pluggage | cl.1.1) TIC-1104 lower Cl.1) Operator training and procedures | | | | | | | 2) Blockage | 2.1) Same as 1.*) | c2.1.1 Same as c1.1.1) | | | | | | | | | C2.1) Electric heat
tracing | | | | | HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-14-95 Dwg#: 9417-1006-C Node: 11 Condenser C-304 to Tar Separator Farameter: Flow Intention: Provide flow from C-304 to C-301 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|----------|--------------|---|-----------------|---------|----|----------| | No/Less
Flow | plugging | to C-301 | C1.1) Large line size C1.2) Electric heat trace C1.3) Sloped line | | | | | Primatech Inc. Node: 11 Page: 1 Worksheet HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 12 Tar Quench Cooler Bypass Parameter: Flow Morkshee Workshee Wor Intention: Provide bypass flow around E-301 as required by TIC-1104 logic Primatech Inc. Node: 12 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|--|---------------------------------|---|--|---------|----|----------| | Less Flow | 1) TV-1104
doesn't open
enough | | c1.1.1) TIC-1104 slightly
lower
c1.1.2) Cooling loop will
self-adjust | Change fail
position of TV-
1104 to FC | | RS | | | | 2) Manual valve
left closed | 2.1) Same as 1.*) | | | | | | | | 3) Malfunction of
TIC-1104 logic
and devices | 3.1) Same as 1.*) | | | | | | | | 4) Pluggage | 4.1) Same as 1.*) | | | | | | | | 5) Loss of N2 | 5.1) Same as 1.* | | | | | | | More Flow | doesn't close | undercooling of
recirc fluid | c1.1.1) Cooling loop will
self-adjust
c1.1.2) TIC-1104 slightly
higher | | | | | | | 2) Malfunction of
TIC-1104 logic
and devices | 2.1) Same as 1.*) | | | | | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-14-95 Dwg#: 9417-1006-C Node: 13 Quench Cooler to Condenser Nozzle Parameter: Flow Intention: Provide flow from Cooler to Condenser | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | вұ | COMMENTS | |-----------------|-------------------------------|--|---|-----------------|---------|----|----------| | No/Less
Flow | blockage in line
or nozzle | performance of condenser 1.2) Higher temperature at | C1.1) Electric heat trace
c1.2.1) Temperature alarm
at TIC-1104 (S)H and HH
c.1.3.1) Pressure alarm
at PIT-1102 (S)H and HH | İ | | | | Primatech Inc. Node: 13 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 14 Tar Separator C-301 Parameter: Level Revision: 0 02-14-95 Dwg#: 9417-1006-C Primatech Inc. Node: 14 Page: 1 Intention: To maintain level between ?? and ?? DEVIATION CAUSES CONSEQUENCES SAFEGUARDS RECOMMENDATIONS REMARKS BY COMMENTS Lower Level 1) Failure of LIC-1108 logic or devices 1.1) Pump runs dry C1.1) Alarms at LIC-1108 Review addition of independent LS for low level (S) L and LL c1.1.1) Low flow alarm at alarm FIT-1121 (S)L and LL 1.2) Reduced or no spray c1.1.3) High temp alarm at TIC-1104 (S)H and HH 1.3) Poor condenser c1.5.1) LIT-1404 wil not rise aspected performance 1.4) Heavy oils to middle oils 1.5) Low flow to heavy product storage 2.1) Same as 1.*) 2) Low product c2.1.1) Same as 1.*) input 3) System leak 3.1) Same as 1.*) c3.1.1) Same as 1.*) 3.2) Toxic and flammable product release to local area. c3.2.1) Area slab drain drains to storage tank and pretreat prior to discharge c3.2.2) Approved fire protection program c3.2.3) Oper. training c3.2.4) IEPA approved constr. plan c3.2.5) NEPA approved siting Review addition of independent LS for high level alarm Higher Level 1) Failure of 1.1) Heavy oil to LIC-1108 logic or middle oil due to C1.1) Alarms at LIC-1108 (S)H and HH poor separation in C-301 devices 1.2) Spill over to middle oil A-26 Worksheet Primatech Inc. Node: 14 Page: 2 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 14 Tar Separator C-301 Parameter; Level Revision: 0 02-14-95 Dwg#: 9417-1006-C Intention: To maintain level between ?? and ?? | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS |
REMARKS | BY | COMMENTS | |-----------|---------------------------------------|--------------|---|-----------------|---------|----|----------| | | 2) Line pluggage
or LV-1108 closed | | c2.1.1) Same as C1.1) C2.1) No change in FQIT- 1401. C2.2) Heat tracing to reduce probability of pluggage | | | | | | P | a | r | a | m | e | t | e | r: | F | 1 | ٥ | w | | |---|---|---|---|---|---|---|---|----|---|---|---|---|--| | HAZOP-PC 2.12
Company: IGT
Facility: Roberts & Schafer
Session: 1 02-13-95
Node: 15 Suction to G-301 fro
Parameter: Flow | | C-301 | Worksheet Revision: 0 02-14-95 Dwg#: 9417-1006-C 2-301 Intention: To provide fluid to pump G-301 | | | | | |---|--------|--|---|---|---------|----|----------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | ВУ | COMMENTS | | No/Less
Flow | | 1.1) See Level-
Node 14 2.1) See Level-
Node 14 3.1) See Level-
Node 14 | 1.1) Electric heat trace
to reduce probability of
plugging | | | | | | No/Less
Flow
(pressure
relief
path) | | | | Review moving
block valve
upstream of PSE
tie-in | | RS | | HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-14-95 Dwg#: 9417-1006-C Node: 16 Pump G-301 Tar Quench Pump Parameter: Flow Intention: Provide flow to Tar Quench Condenser and Cooler Primatech Inc. Node: 16 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|-----------------------|----------------------------------|--|-----------------|---------|----|----------| | No/Less
Flow | | | c1.2.1) Low flow alarm at FIT-1121 (S)L and LL | | | | | | | | | c1.3.1) ES alarm at ES-
1118 | | | | | | | | · - | cl.4.1) Low pressure
alarm at PIT-1102 (S)L
and LL | | | | | | | 2) Electrical failure | 2.1) Same as 1.*)
except 1.3) | c2.1) Same as 1.*) | | | | | | | 3) Operator error | | c3.1) Same as 1.*) except c1.3.1) | | | | | | | 4) Vent left open | 4.1) See Low
Level- Node 14 | | | | | | | | | 5.1) See Low
Level- Node 14 | | | | | | Primatech Inc. Node: 17 Page: 1 storage HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-14-95 Dwg#: 9417-1006-C Node: 17 Pump Discharge to Tar Quench Cooler Parameter: Flow Intention: Provide flow from Pump G-301 to Cooler E-301 DEVIATION CONSEQUENCES SAFEGUARDS COMMENTS CAUSES RECOMMENDATIONS REMARKS BY 1) Manual valve closed or not open enough No/Less 1.1) See Level ---Node 14 Note PV-1120 and associated logic will be removed Flow Note manual valves have been added to mainline up and down stream of tee to Tar Storage Tank 2) Blockage or plugging c2.1.1) Heat trace to reduce probability of plugging 2.1) Same as 1.*) 3) Drain valve left open 3.1) Same as 1.*) c3.1.1) Valve and cap 4) Leak or 4.1) Same as 1.*) rupture 1) New upstream valve left close, leaving path for hot vapor to tar 1.1) Only possible during start-up. Rapid detection results in system shutdown Reverse Flow To be reviewed in S/D session | ession; 1 0 | berts & Schafer
2-13-95
ief / Minimum Flov | v Path | Worksheet
4-95 Dwg#: 9417-1006-C
ide flow path for overpres | | on. | | Primatech I
Node: 1
Page: | |---|--|-------------------------------------|---|---|---------|--------|---------------------------------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | No/Less
Flow
(after
rupture
burst) | 1) Blockage or plugging | 1.1) System overpressure | 1.1) Electric heat trace | Review piping
design to
minimize plugging
potential | | RS | | | More Flow
(after
rupture
disc
bursts) | 1) Undetected
rupture disc
burst | 1.1) Similar to
Low flow Node 17 | c1.1.1) Reduced flow at FIT-1121 c1.1.2) Low pressure at PIT-1102 | Review use of
orifice plate
flow meter in
this service
(considering
plugging and
erosion) | | RS | | | | | | | Review method for detecting rupture disc burst | | I
B | | HAZOP-PC 2.12 Workshee Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-14-95 Dwg#: 9417-1006-C Node: 19 Tar Quench Heat Exchanger E-301 Parameter: Flow Intention: Flowpath for recirc fluid only | Parameter: F | flow | Intention: Flowpat | h for recirc fluid | only | | | | |--------------|-------------------------|--|--------------------|---|---------|--------|----------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | More Flow | 1) Tube leak or rupture | 1.1) Gylcol in recirc side | | Review necessity
for leak
detection | | I
B | | | | | 1.2) Low gylcol
level at gage LG-
1113 (sight gage) | | | | | | | | | 1.3) Contaminate
tar system.
Significant clean-
up required | | | | | | Primatech Inc. Node: 19 Page: 1 Session: 1 02-13-95 Revision: 0 02-14-95 Dwg#: 9417-1006-C Node: 19 Tar Quench Heat Exchanger E-301 Parameter: Temperature Intention: Reduce inlet temperature from 450F to 415F (Approx.) | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|-------------------------------------|---|--|------------------------------------|---------|--------|----------| | | 1) Undercooling on secondary side | 1.1) C-304
performance
reduced (See Node
XX) | Cl.1) Glycol system
temperature control
cl.1.1) TIC-1104 reads
high and alarms (S)H and
HH | | | | | | | | 2.1) Same as 1.1) 2.2) High diffential pressure across cooler | C2.1) TIC-1104 reads
high and alarms (S)H and
HH
C2.2) Periodic
maintenance | | | | | | | 1) Overcooling
on secondary side | 2.3) Pump motor
runs hotter
1.1) C-304
performance
increased (See
Node XX) | C1.1) Glycol system
temperature control
c1.2.1) TIC-1104 opens
up TV-1104 and alarms at | Review need for
cooler local dP | | I
B | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 20 C-301 to Relief Header Parameter: Flow Revision: 0 02-14-95 Dwg#: 9417-1006-C Primatech Inc. Node: 20 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-------------------------------------|--|--|--|-----------------|---------|----|----------| | No/Less
Flow (when
relieving) | None | | | | | | | | | 1) Leaking or
burst rupture
disc | 1.1) Unwanted release to relief system | C1.1) Double disc
protection PSE-1105 and
PSE-1107 | | | | | | | | | C1.2) Peaking pressure
gage PI-1106 | | | | | Worksheet Primatech Inc. Node: 21 Page: 1 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-14-95 Dwg#: 9417-1006-C Node: 21 Product gas from C-301 to middle oil Parameter: Flow Intention: Provide product flow from C-301 to middle oil | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|--------|--------------|------------|---------------------------|---------|----|----------| | No/Less
Flow | None | | | Remove PV and PY-
1109 | | RS | | Primatech Inc. Node: 22 Page: 1 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-14-95 Dwg#: 9417-1006-C Node: 22 Tar product to storage tank Parameter: Flow Intention: Provide flow to tar storage tank | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|--------------------------------|--|---|--|---------|----|----------| | No/Less
Flow | 1) Plugging or
blockage | tar separator 1.2) Low flow to tank D-503 | c1.1.1) High level
and alarm at LIT-1108
(S)H and HH
c1.2.1) Low flow at FIT-
1401
C2.1) Operator training
and procedures | Review line
sizing and
considering
salting velocity | | RS | | | | 2) Manual valve
left closed | 2.1) Same as 1.*) | | | | | | | | 3) Failure of LV-
1108 | 3.1) Same as 1.*) | C3.1) LV-1108 is FO | | | | | | | | 1.1) Low level in
C-301 | c1.2.1) Hi flow at
FIT-1401 | | | | | | | | 1.2) Higher flow
to tank D-503 | | | | | | Primatech Inc. Node: 23 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-15-95 Dwg#: 9417-1006-C Node: 23 Nat Gas Supply to Preheater Parameter: Pressure Intention: Provide Nat Gas to preheater at 6" to 250psig | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS |
|--------------------|--------------|---|--|---|---------|---------|----------| | Higher
Pressure | 1) Any cause | 1.1) Over pressure of regulator body 1.2) Shutdown of preheater 1.3) Recycle gas and air temp drops 1.4) Bed temp drops | downstream of reg.trips unit c.1.2.2) Loss of flame at tip will be seen by scanner and unit is tripped. cl.3.1) Low temp alarm TIC-0729A/B (S)L and LL cl.4.1) Low temp alarm TE-0710/27 (S)L and LL | Verify max nat gas supply pressure Common shutdown alarm will be provided via PLC interface Operating procedures to address reduced coal feed rate operations for this event | | C
RS | | | Lower
Pressure | 1) Any cause | 1.1) Shutdown of
preheater
1.2) Recycle gas
and air temp drops
1.3) Bed temp
drops | cl.1.1) Low pressure switch downstream of reg.trips unit c.1.1.2) Loss of flame at tip will be seen by scanner and unit is tripped. cl.2.1) same as Higher pressure cl.3.1) same as Higher pressure | | | | | Primatech Inc. Node: 24 Page: 1 · 1000 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-15-95 Dwg#: 9417-1006-C Node: 24 Recycle Gas from Preheater to Boosters Parameter: Temperature Intention: Provide recycle gas at 1100F nominal | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------------|------------------------|---|--|---|---------|---------|----------| | Higher
Temperature | 1) Instrument error | 1) Recycle gas to
booster has higher
temp | 1.1) Booster heater
controls response
2.1) Stack temp Hi | Determine
maximum temp for
materials | | B
C | | | | | | shutdown | Add indep. TESHH
on recycle and
air lines to
shutdown heater | | С | | | | | | | Add TS(S)H
alarm to existing
TE | | RS | | | | | | | Review stress
analysis and
support design
for piping | | RS | | | | | | | Review line
sizing/materials | | B
RS | | | | | 2) Stack temp
increases | | | | | | | Lower
Temperature | 1) Instrument
error | | 1.1) Booster controls respond | Operating
procedures to
address reduced
operations mode | | I | | | | | 2) Stack temp
decreases | | | | | | | HAZOP-PC 2.1:
Company: IGT
Facility: Rol
Session: 1 0:
Node: 25 Air
Parameter: Te | | Primatech Inc
Node: 25
Page: 1 | | | | | | |--|------------------------|--------------------------------------|--|--|---------|---------|----------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | Higher
Temperature | 1) Instrument error | 1) Air to booster
has higher temp | 1.1) Booster heater controls response 2.1) Stack temp Hi | Determine
maximum temp for
materials | | ВС | | | | | | shutdown | Add indep. TESHH
(1200F) on
recycle and air
lines to shutdown
heater | | С | | | | | | | Add TS(S)H
alarm to existing
TE (1150F) | | RS | | | | | | | Review stress
analysis and
support design
for piping | | RS | | | | | | | Review line
sizing/materials | | B
RS | | | | | 2) Stack temp
increases | | | | | | | Lower
Temperature | 1) Instrument
error | 1) Air to booster
has lower temp | 1.1) Booster controls respond | Operating
procedures to
address reduced
operations mode | | I | | | | | 2) Stack temp
decreases | | | | | | Primatech Inc. Node: 26 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 26 Recycle Gas Inlet to Preheater Parameter: Flow Revision: 0 02-15-95 Preheater | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|--------------------------------|---|---|--|---------|--------|-----------------------------------| | No/Less
Flow | 1) Manual valve
left closed | 1.1) Low flow to
preheater
1.2) Low flow at
FE-0901, and FE-
0738 and FE-0743 | c1.2.1) Low flow alarms
on FE-0901,-0738,and -
0743 (S)L and LL
c1.2.2) FE-0901 (S)LL
results in shutdown | Review need for additional shutdown potection switch for feeds to boosters A&B. | | I
B | Note: FV-0901 has
been removed | | | | 1.3) Higher
preheater exit
temp
1.4) Lower bed | | | | | | | | 2) Any other | velocity 1.5) Higher tube wall temp 2.1) Same as 1.*) | | | | | | | | cause | 2.1) Same as 1) | | | | | | | More Flow | 1) Tube rupture | 1.1) Stack temp
may increase | cl.l.l) High stack temp
alarm and S/D | | | | | | | | 1.2) deleted | cl.3.1) High flow alarm
at FE-0901 (S)H
cl.4.1) Low flow alarm at
FE-0738 and 0743 (S)L | Review need for
flow balance and
associated
operating
procedures. Also
consider envir.
impact. | | I | | | | | 1.3) Higher flow
at FE-0901 | | | | | | | | | 1.4) Lower flow at FE-0738 and FE-0743 | | | | | | | | | 1.5) Bed velocity
flow decreases | | | | | | | | | 1.6) Release to
environment | | | | | | | | 2) Any other | 1.1) Exit temp | c1.1.1) TE-0729A and B | | 1 | İ | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-15-95 Node: 26 Recycle Gas Inlet to Preheater Parameter: Flow Revision: 0 02-15-95 Revi | DEVIATIO | N CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |----------|----------|-----------------------------|---|-----------------|---------|----|----------| | | cause | | alarm (S)H
c1.2.1) High flow alarm
on FE-0901,-0738, and
0743 (S)H | | | | | | | | 1.3) Bed velocity increases | | | | | | Primatech Inc. Node: 26 Page: 2 Primatech Inc. Node: 27 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 27 Air inlet to Preheater Parameter: Flow Revision: 0 02-15-95 Dwg#: 9417-1006-C Intention: Provide air to the preheater at 670#/hr or 1350#/hr for both boosters | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|---------------------------------|---|---|---|---------|--------|--| | No/Less
Flow | 1) Air
compressor
failure | 1.1) Low flow to
preheater
1.2) Low flow at
FE-09**, and FE-
0736 and FE-0741 | c1.2.1) Low flow alarms
on FE-09**,-0736,and -
0741 (S)L and LL
c1.2.2) FE-09** (S)LL
results in shutdown | Review need for additional shutdown potection switch for feeds to boosters A&B. | | IB | Note: Butterfly
valve has been
removed | | | | | | Add start-up
block valve in
air line to allow
for start-up N2 | | I
B | | | | | 1.3) Higher
preheater exit
temp | | | | | | | | | 1.4) Lower bed velocity | | | | | | | | | 1.5) Higher tube
wall temp | | | | | | | | 2) Any other
cause | 2.1) Same as 1.*) | | | | | | | More Flow | 1) Tube rupture | 1.1) Stack temp
decrease | c1.3.1) High flow alarm
at FE-09** (S)H | | | | | | | | 1.2) deleted | cl.4.1) Low flow alarm at
FE-0736 and 0741 (S)L | Review need for
flow balance and
associated
operating
procedures. | | I | | | | | 1.3) Higher flow
at FE-09** | | | | | | | | | 1.4) Lower flow at FE-0736 and FE-0741 | | | | | | | | | 1.5) Bed velocity
flow decreases | | | | | | | | 2) Any other | 1.1) Exit temp | cl.1.1) TE-0729A and B | | | | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 27 Air inlet to Preheater Farameter; Flow Worksheet Revision: 0 02-15-95 Dwg#: 9417-1006-C Intention: Provide air to the preheater at 670#/hr or 1350#/hr for both boosters Primatech Inc. Node: 27 Page: 2 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|---|---------------------------------------|---|--|---------|--------|----------| | | cause | 1.2) Higher flow
at FE-09**, -0736 | alarm (S)H
c1.2.1) High flow alarm
on FE-09**,-0736, and
0741 (S)H | | | | | | | 3) Increase
flow demand for
loss of preheater | 3.1) Unknown | | Review off-normal
flow conditions
and changed flow
conditions | | I
B | | Primatech Inc. Node: 28 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-15-95 Dwg#: 9417-1006-C Node; 28 Recycle gas inlet to Booster A
Parameter: Flow Intention: Provide recycle gas to Booster A a rate of 2550#/hr | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|---|--|--|---|---------|---------|---| | No/Less
Flow | 1) Valve failure
FV-0738 | 1.1) Low flow at FIT-0738 | C1.1) Valve fails open
c1.1.2) Low flow alarm at
FIT-0738 (S)L | Review need for
mechanical
percent closed
limit | | | Note: Control valve
will be added to
line | | | | temperature in
Booster A | c1.4.1) High temp alarm
at TE-0729A (5)H and
TSHH-07** resulting in
S/D | TSHH07** and
resulting S/D
logic will be
added | | С | | | | | to vessel and refractory | | | | В | | | | | 1.3) Low bed | nat gas valves modulate
down to as low as low
fire | | | | | | | | 1.4) High outlet
temp from Booster
A | | | | | | | | | 1.5) High bed temp 1.6) Bed upset/ coal feed interuption | | | | | | | More Flow | 1) Valve fails
open mechanical
or logic problem | temperature goes | cl.1.1) Low temp alarm TE-0729A (S)L cl.2.1) Low temp indication at TE-0710/27 | Review max. flow
rate thru valve
to assist in
upset evaluation | | C
RS | | | | | 1.2) Bed temp
decreases slowly
1.3) High flow at
FIT-0738 | cl.3.1) High flow alarm
FIT-0738 (S)H | | | | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 29 Air inlet to Booster A Parameter: Flow Revision: 0 02-15-95 Dwg#: 9417-1006-C Intention: Provide air at a rate of 670 #/hr Primatech Inc. Node: 29 Page: 1 - · · · Charles & | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|---|---|---|---|---------|----|---| | Less Flow | 1) Valve failure
FV-0729B down to
protective stop | 1.1) Low flow at FIT-0736 1.2) Low temperature in Booster A 1.3) Low bed velocity 1.4) Lower outlet temp from Booster A 1.5) Lower bed temp 1.6) Bed upset/coal feed interuption | c1.1.2) Low flow alarm at FIT-0736 (S)L and resulting S/D c1.4.1) Low temp alarm at TE-0729A (S)L and LL c1.5.1) High temp alarms at TE-0710/27 (S)L and LL C1.1) Booster A nat gas valve modulate down C1.2) Auto S/D on loss of flame detector c1.4.1) Operator training and procedures | should be removed | | RS | Note: Control valve
will be added to
linr | | | 2) Booster B
inlet valve too
open | 1.7) Nat gas will
increase due to
temp demand
2.1) Same as above | C2.1) Same as above
C2.2) High flow alarm at
FIT-0741 (S) H and HH | Review how
control logic
will respond | | С | | | More Flow | 1) Valve fails open mechanical or logic problem | temperature goes
up
1.2) Bed temp
up slowly
1.3) High flow at
FIT-0736 | c1.1.1) High temp alarm TE-0729A (S)H c1.1.2) High temp alarm TSHH-07** and resulting S/D c1.2.1) High temp indication at TE-0710/27 c1.3.1) High flow alarm FIT-0736 (S)H | | | | | HAZOP-PC 2.12 Workshee Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-15-95 Dwg#: 9417-1006-C Node: 30 Nat Gas inlet to Booster A Parameter: Flow Intention: Provide nat gas at 81 #/hr Primatech Inc. Node: 30 Page: 1 | DEVIATION | CAUSES | CONCEOUENCES | CAFECUADOS | DEGOLOUPLETATION | DTM (DEC | | | |-----------|---|---|--|---|----------|----|--| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | Less Flow | 1) Valve failure
FV-0729C down to
protective stop | 1.1) Low flow at
FIT-0737 | c1.1.2) Low pressure
alarm at PSL-07** and
resulting S/D
c1.4.1) Low temp alarm at
TE-07** (S)L and LL | TE-07** (S)LL
should be removed | | RS | Note: Control valve
will be added to
line
Note: The design and
control philosophy
is the same as the
burner management | | | | 1.2) Low | c1.5.1) Low temp alarms
at TE-0710/27 (S)L and LL | | | | system for the preheater. | | | | temperature in
Booster A | C1.1) Booster A air
valve modulate down | | | | | | | | 1.3) Low bed
velocity | C1.2) Auto S/D on loss of flame detector | | | | | | | ; | 1.4) Lower outlet
temp from Booster
A | c1.4.1) Operator training and procedures | | | | | | | | 1.5) Lower bed
temp | | | | | | | | | 1.6) Bed upset/
coal feed
interuption | | | | | | | | | 1.7) Air will
decrease following
gas | | Review how
control logic
will respond | | С | | | | 2) Booster B
inlet valve too | 2.1) Same as above | C2.1) Same as above 1.*) | | | | | | | open | | C2.2) High flow alarm at FIT-0742 (S) H and HH | | | | | | | 3) Block valve
fails closed | 3.1) Same as 1.*) | C3.1) Same as above 1.*) except PSL doesn't close block valve | | | | | | | 4) Regulator
failure | 3.1) Same as 1.*) | 4.1) Same as above 1.*) | | | | | | More Flow | open mechanical | | c1.1.1) High temp alarm
TE-07** (S)H | | | | | | | | 1.2) Bed temp | cl.1.2) High temp alarm
TSHH-07** and resulting | İ | | | | | ession: 1 0 | perts & Schafer
2-13-95
Gas inlet to Bo | oster A | 5-95 Dwg#: 9417-1006-C
ide nat gas at 81 #/hr | | | | Node: 1
Page | |-------------|---|--|---|-----------------|---------|----|-----------------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | | | up slowly 1.3) High flow at FIT-0737 1.4) Air will back-off on temp rise | c1.3.1) High pressure
switch PSH-07** alarm and
resulting S/D
c1.3.2) Loss of flame tip
seen by scanner and
resulting S/D
c1.2.1) High temp
indication at TE-0710/27
c1.3.1) High flow alarm
FIT-0737 (S)H | | | | | | | 2) Regulator fails | 2.1) Same as 1.*) | C2.1) Same as 1.*0 C2.2) Flow control valve throttles back | | | | | A-46 Worksheet Primatech Inc. Node: 31 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 31 Booster Heater A Parameter: Pressure Revision: 0 02-15-95 Dwg#: 9417-1006-C Intention: Retain process materials at less than 35 psia | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-------------------|-------------|--|---|-----------------|---------|----|----------| | Lower
Pressure | 1) Any leak | 1.1) Release of hazardous materials 1.2) Lower bed temp 1.3) Bed upset | C1.1.1) Approved fire protection plan C1.1.2) Lower pressure in retort and PIT-0706 (S)L and (S)LL C1.1.3) Lower bed temp at TE-0710/27 | | | | | Session: 1 02-13-95 Node: 31 Booster Heater A Parameter: Safety Revision: 0 02-15-95 Dwg#: 9417-1006-C Intention: Maintain integrity of refractory | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|----------------------------------|--------------|------------|---|---------|----|----------| | | 1) Partial loss
of refractory | | | Review need for
detecting
refractory
failure (eg. heat
sensitive paint) | | I | | Primatech Inc. Node: 32 Page: 1 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-15-95 Dwg#: 9417-1006-C Node: 32 Recycle gas inlet to Booster B Parameter: Flow Intention: Provide recycle gas to Booster B at a rate of xxx#/hr | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|-----------------------------|---|---|---|---------|---------|---| | No/Less
Flow | 1) Valve failure
FV-0743 | 1.1) Low flow at FIT-0743 | C1.1) Valve fails open
c1.1.2) Low flow alarm at
FIT-0743 (S)L | Review need for
mechanical
percent closed
limit | | | Note: Control valve
will be added to
line | | | | 1.2) High
temperature in
Booster B
resulting
in
potential damage
to vessel and
refractory | at TE-07** (S)H and TSHH-
07** resulting in S/D
cl.5.1) High temp alarms
at TE-0710/27 (S)H and HH
Cl.1) Booster B air and
nat gas valves modulate | logic will be
added | | В | | | | | 1.3) Low bed velocity 1.4) High outlet temp from Booster B | down to as low as low
fire | | | | | | | | 1.5) High bed temp
1.6) Bed upset/
coal feed
interuption | | | | | | | More Flow | open mechanical | temperature goes
down
1.2) Bed temp | c1.1.1) Low temp alarm TE-07** (S)L c1.2.1) Low temp indication at TE-0710/27 c1.3.1) High flow alarm FIT-0743 (S)H | Review max. flow
rate thru valve
to assist in
upset evaluation | | C
RS | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 33 Air inlet to Booster B Parameter: Flow Revision: 0 02-15-95 Dwg#: 9417-1006-C Intention: Provide air at a rate of xxx #/hr Primatech Inc. Node: 33 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | ву | COMMENTS | |-----------|---|---|--|---|---------|----|---| | Less Flow | 1) Valve failure
FV-0729D down to
protective stop | 1.1) Low flow at FIT-0741 1.2) Low temperature in Booster B 1.3) Low bed velocity 1.4) Lower outlet temp from Booster B 1.5) Lower bed temp 1.6) Bed upset/coal feed interuption | c1.1.2) Low flow alarm at FIT-0741 (S)L and resulting S/D c1.4.1) Low temp alarm at TE-07** (S)L and LL c1.5.1) High temp alarms at TE-0710/27 (S)L and LL C1.1) Booster B nat gas valve modulate down C1.2) Auto S/D on loss of flame detector c1.4.1) Operator training and procedures | should be removed | | RS | Note: Control valve
will be added to
line | | | 2) Booster A
inlet valve too
open | 1.7) Nat gas will
increase due to
temp demand
2.1) Same as above | C2.1) Same as above
C2.2) High flow alarm at
FIT-0741 (S) H and HH | Review how
control logic
will respond | | С | | | More Flow | 1) Valve fails
open mechanical
or logic problem | temperature goes
up
1.2) Bed temp
up slowly
1.3) High flow at
FIT-0741
1.4) Nat gas will | cl.1.1) High temp alarm TE-07** (S)H cl.1.2) High temp alarm TSHH-07** and resulting S/D cl.2.1) High temp indication at TE-0710/27 cl.3.1) High flow alarm FIT-0741 (S)H | | | , | | Primatech Inc. Node: 34 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-15-95 Dwg#: 9417-1006-C Node: 34 Nat Gas inlet to Booster B Parameter: Flow Intention: Provide nat gas to Booster at a rate of *** #/hr | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | ву | COMMENTS | |-----------|---|--|--|-----------------|---------|----|--| | Less Flow | FV-0729E down to protective stop 2) Booster A inlet valve too open 3) Block valve fails closed 4) Regulator failure 1) Valve fails open mechanical or logic problem | temp from Booster B 1.5) Lower bed temp 1.6) Bed upset/coal feed interuption 1.7) Air will decrease following gas 2.1) Same as above 3.1) Same as 1.*) 3.1) Same as 1.*) | c1.1.2) Low pressure alarm at PSL-07** and resulting S/D c1.4.1) Low temp alarm at TE-07** (S)L and LL c1.5.1) Low temp alarms at TE-0710/27 (S)L and LL C1.1) Booster B air valve modulate down C1.2) Auto S/D on loss of flame detector c1.4.1) Operator training and procedures C2.1) Same as above 1.*) C2.2) High flow alarm at FIT-0742 (S) H and HH C3.1) Same as above 1.*) except PSL doesn't close block valve 4.1) Same as above 1.*) c1.1.1) High temp alarm TE-07** (S)H c1.1.2) High temp alarm TSHH-07** and resulting | | | RS | Note: Control valve will be added to line Note: The design and control philosophy is the same as the burner management system for the preheater. | Primatech Inc. Node: 34 Page: 2 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-15-95 Node: 34 Nat Gas inlet to Booster B Parameter: Flow Intention: Provide nat gas to Booster at a rate of *** #/hr | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|-----------------------|----------------------------|---|-----------------|---------|----|----------| | | | up slowly | S/D | | | | | | | | 1.3) High flow at FIT-0742 | c1.3.1) High pressure
switch PSH-07** alarm and
resulting S/D | | | | | | | | back-off on temp
rise | c1.3.2) Loss of flame tip
seen by scanner and
resulting S/D | | | | | | | | | c1.2.1) High temp
indication at TE-0710/27 | | | | | | | | | c1.3.1) High flow alarm
FIT-0742 (S)H | | | | | | | 2) Regulator
fails | 2.1) Same as 1.*) | C2.1) Same as 1.*0 | | | | | | | | | C2.2) Flow control valve throttles back | | | | | Worksheet Primatech Inc. Node: 35 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 35 Booster Heater B Parameter: Pressure Revision: 0 02-15-95 Dwg#: 9417-1006-C Intention: Retain material at a pressure of 35 psia | | | | at a probate . | | | | | |-------------------|-------------|--|---|-----------------|---------|----|----------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | Lower
Pressure | 1) Any leak | 1.1) Release of hazardous materials 1.2) Lower bed temp 1.3) Bed upset | C1.1.1) Approved fire protection plan C1.1.2) Lower pressure in retort and PIT-0706 (S)L and (S)LL C1.1.3) Lower bed temp at TE-0710/27 | | | | | Session: 1 02-13-95 Node: 35 Booster Heater B Parameter: Safety Revision: 0 02-15-95 Dwg#: 9417-1006-C Intention: Maintain refractory integrity | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|----------------------------------|--------------|------------|---|---------|----|----------| | | 1) Partial loss
of refractory | | | Review need for
detecting
refractory
failure (eg. heat
sensitive paint) | | I | | Primatech Inc. Node: 36 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-15-95 Node: 36 Vent gases to Thermal oxidizer Parameter: Flow Route vents to T/O at a rate of 959 #/hr | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | ву | COMMENTS | |-----------------|---|---|--|--|---------|----|----------| | No/Less
Flow | 1) FV-136 fails
closed | 1.1) Back-up of
the vent system | C1.1) FV-135 interlocked to open | | | | | | | | 1.2) T/O continues
to run consuming
additional fuel
gas | | | | | | | | 2) Upstream
effects (eg.
valve left
closed, plugging,
etc.) | 2.1) Same as 1.*) 2.2) Pressure will build-up in upstream sources | indication at the | | | | | | More Flow | 1) Upstream
sources exceed
expected values | 1.1) Increase
temp in T/O | c1.1.1) Hi temp trip TE-
122 (S)HH | Revise P&ID to
reflect shutdown
via TE-122 loop.
Also indicate
open flare
diversion valve | | С | | | | | | | Review PFD
stream 503
instant. flow | | В | | | | 2) Valve not
closed during
maintenance | 2.1) Release hot
gas to
maintenance
operators | c2.1.1) Blind at T/O | | | | | | | 3) Valve fails to
close on signal
from TIC-108 | 3.1) Continued
flow from upstream
sources | c3.1.1) Low temp alarm at TIC-108 (S)L | | | | | | | | 3.2) Possible releases at above permit limits | | | | | | Session: 1 02-13-95 Revision: 0 02-15-95 Dwg#: 9417-1006-C Node: 36 Vent gases to Thermal oxidizer Parameter: Composition Intention: Heating value not to exceed 4 MBtu/hr | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |---------------------|------------|--------------|------------------------------------
-----------------------------------|---------|--------|----------| | More
Composition | 1) Unknown | | c1.1.1) TE-122 (S)HH
causes S/D | Review max heat
value expected | | I
B | | Primatech Inc. Node: 37 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Node: 37 Sour water to Thermal Oxidizer Parameter: Flow Revision: 0 02-15-95 Dwg#: 9417-1006-C Node: 37 Sour water to Thermal Oxidizer Intention: Route sour water to T/O at a rate of 257 #/hr | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|---|---|---|--|---------|--------------|----------| | No/Less
Flow | 1) Valve fails
shut | | c1.1.1) TE-122 (S)HH
results in S/D | | | | | | | | | c1.2.1) High level alarm
at LIC-1310 (S)H and HH | | | | | | | | 1.3) Water into
the middle oil
system | | | | | | | | 2) Manual valve
left closed | 2.1) Same as 1.*) | | | | | | | f | 3) Plugging of tip | 3.1) Same as 1.*) | | | | | | | | 4) Low level in
light oil
separator | 4.1) Same as 1.1 | | Review need for
LIC-1310 (S)L and
LL and addition
of city water
quench | | I
B
RS | | | | | | | Revise design to
address loss of
sour quench water | | | | | More Flow | 1) Upstream
pressure source | 1.1) Lower temp at TIC-108 and TE-122 | | | | С | | Primatech Inc. Node: 38 Page: 1 HAZOP-PC 2.12 Workshee Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-16-95 Dwg#: 9417-1006-C Node: 38 Weigh Hopper for Coarse Coal attached tote bag unloader Parameter: Composition Intention: Moisture control DEVIATION CAUSES CONSEQUENCES SAFEGUARDS RECOMMENDATIONS REMARKS BY COMMENTS Other Than 1) Weather Composition induced moisture Temporary wind protection (such as a wall tarp) will be provided in the field (closed --3/15/95) 1.1) Difficult Review need for weather protection operation and freeze-up Session: 1 02-13-95 Revision: 0 02-16-95 Dwg#: 9417-1006-C Node: 38 Weigh Hopper for Coarse Coal attached tote bag unloader Parameter: Level Intention: Hold and measure coarse coal load | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | OMMENTS | |-----------------|----------------------------|---|---------------|-----------------|-----------------|----|---------| | Higher
Level | 1) Overfill operator error | 1.1) Overfill 1.2) Cleanout and maintain | C1.1) WT-0602 | given run | the decrease in | | | HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-16-95 Dwg#: 9417-1006-C Node: 38 Weigh Hopper for Coarse Coal attached tote bag unloader Parameter: Level Intention: Hold and measure coarse coal load | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|--|--------------------|------------|---|---------|----|----------| | | 2) Failure to
flow out due to
sticking | 2.1) Same as above | | Operating and maintenance procedures will include inspection of the cone lining | | I | | A-56 Primatech Inc. Node: 38 Page: 2 Primatech Inc. Node: 39 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-16-95 Dwg#: 9417-1006-C Node: 39 Fill line from Weigh hopper to Lock hopper Parameter: Flow Intention: Flow control and isolation of transfer from weigh hopper to lock hopper | 1) Poor seal of | | | | | | | |---|---|--|---|--|---|--| | | 1.1) Not able to equalize pressure | | Investigate design change to knife gate or other alternative isolation valve | coarse inlet and
6" for fine
and all other
coarse for
isolation. | | Cost info and stack
height are to be
considered | | | feed coal | weigh hopper does not
decrease | review and revise
PLC program to
include a trouble | be revised
(3/15/95) | R | Note: Reimelt system
is completely
automated, P4ID will
reflect this | | 1) Valve fails to
open | Valve could jam and fail 1.1) No flow to lock hopper 1.2) No flow from the Weigh hopper | C.1.2) Weight and level | | | | | | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2) Instrument Loop failure 1)
Valve fails to Loopen 2) Instrument Loop fails | 2.2) Seal Valve could jam and fail 1) Valve fails to 1.1) No flow to lock hopper 1.2) No flow from the Weigh hopper 2) Instrument loop fails 2.2) Seal Valve could jam and fail 2.1) Same as 1.*) | feed coal 2) Instrument Loop failure 2.1) Same as 1.*) C2.1) Weight and level in weigh hopper does not decrease C2.2) Seal Valve could jam and fail 1) Valve fails to loopen 1.2) No flow to lock hopper 1.2) No flow from the Weigh hopper 2) Instrument Loop fails C2.1) Weight and level in weigh hopper does not decrease C.1.1) Valve position ind. C.1.2) Weight and level in weigh hopper does not decrease | 1.2) Not able to feed coal 2.1) Same as 1.*) C2.1) Weight and level in weigh hopper does not decrease C2.2) Valve position ind. C2.2) Valve position ind. C2.2) Valve position ind. C3.1) Valve fails to lock hopper C3.1) No flow to lock hopper C4.2) No flow from the Weigh hopper C5.1.1) Valve position ind. C6.1.1) Valve position ind. C7.1.2) Weight and level in weigh hopper does not decrease C8.1 Instrument C9.1 Instrument C9.1 Instrument C9.1 Instrument C9.2 Instrument C9.3 Instrument C9.3 Instrument C9.4 Instrument C9.4 Instrument C9.5 Instrument C9.6 Instrument C9.6 Instrument C9.6 Instrument C9.6 Instrument C9.6 Instrument C9.7 Instrument C9.6 Instrument C9.7 Instrument C9.6 Instrument C9.7 Instrument C9.7 Instrument C9.7 Instrument C9.8 Instrument C9.7 Instrument C9.8 | other alternative isolation valve 1.2) Not able to feed coal 2.1) Same as 1.*) 1.2) Not able to feed coal 2.1) Same as 1.*) C2.1) Weight and level in weigh hopper does not decrease C2.2) Valve position ind. C2.2) Valve position ind. C3.1) Valve fails to lock hopper 1.2) No flow from the Weigh hopper 2.1) Same as 1.*) C3.1) Weight and level in review and revise PLC program to include a trouble alarm on weight change rate C3.15/95) C3.13 Weight and level in review and revise PLC program to include a trouble alarm on weight change rate C3.15/95) C3.13 Weight and level in weigh hopper does not decrease C3.15/95) | coarse inlet and correct isolation valve 1.2) Not able to feed coal 1.2) Not able to feed coal 2.1) Same as 1.*) C2.1) Weight and level in weigh hopper does not decrease C2.2) Valve position ind. Reimelt will review and revise PLC program will Review and revise PLC program to include a trouble along fail C2.2) Valve position ind. C3.1) Valve fails to 1.1) No flow to lock hopper 1.2) No flow from the Weigh hopper does not decrease C3.1.1) Valve position ind. C.1.2) Weight and level in weigh hopper does not decrease C3.1.2) Weight and level in weigh hopper does not decrease C3.1.2) Weight and level in weigh hopper does not decrease C3.1.3 Same as 1.*) C.1.1) Valve position ind. C.1.2) Weight and level in weigh hopper does not decrease C3.1.3 Same as 1.*) C.1.3 Same as 1.*) C.1.4 Same as 1.*) C.1.5 Same as 1.*) C.1.5 Same as 1.*) C.1.6 Same as 1.*) C.1.7 Same as 1.*) C.1.8 Same as 1.*) C.1.9 Same as 1.*) C.1.9 Same as 1.*) C.1.1 Same as 1.*) C.1.1 Same as 1.*) C.1.2 Same as 1.*) C.1.3 Same as 1.*) C.1.4 Same as 1.*) C.1.5 Same as 1.*) C.1.6 Same as 1.*) C.1.7 Same as 1.*) C.1.8 Same as 1.*) C.1.8 Same as 1.*) C.1.9 | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 40 Coarse coal lock hopper Parameter: Pressure Primatech Inc. Node: 40 Page: 1 Worksheet Revision: 0 02-16-95 Dwg#: 9417-1006-C Intention: Operate between atmos. and 40 psia | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------|--|---|------------------------------------|--|---|-------------|-------------------------------------| | Higher
Pressure | | 1.1)
Overpressurization
of vessel | C1.1.1) Rupture disc | pressure rating
and pressure
relieving on the | A downstream
line PSV set at
50 psi will be
supplied by
Reimelt.
(3/15/95) | B
I
R | | | | | 1.2) Rupture first
disc | C1.2.1) Peaking PI-0607 | | | | | | Less
Pressure | 1) Instrument
failure | 1.1) Reverse flow | | Investigate
and recommend the
addition of
redundant
pressure loops or
other alternative | failure and probabilty of failure low, no immediate | R | PDI alternative to
be considered | | | | 1.2) System upset | | | | | | | | | 2.1) Can't
pressurize | C2.1.1) Delta Pressure | | | | | | | | 2.2) Can't operate | C.2.1.2) PI-0608A | | | | | | | Leak or
gasket failure | 3.1) Same as 2.*) | C.3.1.1) Maintenance
procedures | | | | | Session: 1 02-13-95 Node: 40 Coarse coal lock hopper Parameter: Level Revision: 0 02-16-95 Dwg#: 9417-1006-C Intention: To hold coarse coal (25 cuft gross) | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|-------------------------------|--------------|----------------------------|----------------------------|--------------|-------------------|----------| | Higher
Level | 1) Instrument
loop failure | | inspection of weigh change | alarm and possible cut-off | using Celtek | I
B
R
RS | | Worksheet Primatech Inc. Node: 40 Page: 2 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 40 Coarse coal lock hopper Parameter: Level Revision: 0 02-16-95 Dwg#: 9417-1006-C Intention: To hold coarse coal (25 cuft gross) | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|--------|----------------------------|------------|-----------------|---|----|----------| | | | | | | provided with
the existing
instrumentation.
DCS will be used
to generate
alarm (3/15/95) | | | | İ | | 1.2) Plugging of feed line | | | | | | HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-16-95 Dwg#: 9417-1006-C Node: 41 Fill line from Lock hopper to Feed hopper Parameter: Flow Intention: Provide coarse coal from lock hopper to feed hopper Primatech Inc. Node: 41 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--|-------------------------------|---|--|--|---|----|--| | Reverse
Flow | block valve | feed line, material and | C1.1) Valve position indication and interlocks to PLC controls | Investigate design change to knife gate or other alternative isolation valve | Design to
reflect use of
8" Macawber dome
valves for
coarse inlet and
6" for fine and
all other coarse
for isolation.
(Valve supply no
longer part of
Reimelt scope)
(3/15/95) | | Cost info and stack
height are to be
considered
Note: Reimelt system
is completely
automated, P&ID will
reflect this | | | | 1.2) Inability to feed coal 1.3) System upset | | | | | | | | | 1.4) Potential baghouse damage | | | | | | | | 2) Instrument
loop failure | 2.1) No
consequence | C2.1) Lock hopper
at same pressure | Reimelt will
review and revise
PLC program to
include a trouble
alarm on weight
change rate | PLC program will
be revised
(3/15/95) | R | | | No Flow
(when
required to
flow) | 1) Valve fails to open | 1.1) No flow to
feed hopper
1.2) No flow from
the lock hopper
1.3) System
shutdown operator
initiated | C.1.1)Valve position ind. C.1.2) Level in lock hopper does not decrease C1.3) Level in feed hopper does not increase | | | | | | | 2) Instrument
loop fails | 2.1) Same as 1.*) | | | | | | | | 3) Plugging | 3.1) Same as 1.*) | | | | | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 42 Coarse coal feed hopper Farameter: Pressure Workshee Workshee Workshee Workshee Workshee Workshee Thetaion: 0 02-16-95 Dwg#: 9417-1006-C Intention: Maintain pressure at 35-40 psia | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------|----------------------------------|---|---|---|--|-------------|----------| | Higher
Pressure | 1) Failure of
instrument loop | 1.1)
Overpressurization
of vessel | C1.1.1) Rupture disc
C1.2.1) Peaking PI-0613 | Investigate
pressure rating
and pressure
relieving on the
N2 feed to Feed
System | Add in N2 header
downstream PSV
set at 50 psi.
PSV now in
Reimelt scope
(same valve
as in node
40 (3/15/95) | B
I
R | | | | | 1.2) Rupture first | C.2.1) Same as C1.*) | Review need for | Add a manual | , | | | | 2) Gasiffer upsec | to feed hopper | C.2.2) Gasifier pressure indication | continous bleed flow N2 to the feed hopper | adjust
rotometer | B | | | | | 1.2) Hot gases
back-up line
1.3) Eventual | | | | | | | | | plugging.
Cleaning required. | | Include in the | Severity of | R | | | Less
Pressure | 1) Instrument failure | 1.1) Reverse flow | | review of the lock hopper pressure protection issue the need to protect the feed hopper | failure and probabilty of failure low, no immediate action required. Note: | | | | | 2) N2 failure | 1.2) System upset 2.1) Can't | C.2.1.1) PI-0608B | | | | | | | 2) NZ Tallure | pressurize | C.2.1.2) Gasifier | | | | | | | | 2.2) Can't operate
2.3) Unit upset | instrumentation | | | | | | | 3) Leak or | 1 | C.3.1.1) Maintenance | | | | | Worksheet Revision: 0 02-16-95 Dwg#: 9417-1006-C HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 42 Coarse coal feed hopper Parameter: Pressure Intention: Maintain pressure at 35-40 psia Primatech Inc. Node: 42 Page: 2 | DEVIAT | ION CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------|-------------------------------|--------------|---------------------------------|-----------------|---------|----|----------| | | gasket failure | | procedures | | | | | | | 4) Rupture leak
or failure | | C4.1) Double disc
protection | | | | | Session: 1 02-13-95 Revision: 0 02-16-95 Dwg#: 9417-1006-C Node: 42 Coarse coal feed hopper Parameter: Level Intention: To hold 45 cuft gross | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-------------------|---|---|---|-----------------|---------|----|----------| | Higher
Level | 1) Instrument
loop failure | 1.1) Overfill 1.2) Plugging of feed line 1.3) Valve may not close and thus indicate so. | C1.1) Manual
inspection of level
change at lock hopper | | | | | | No/Lower
Level | 2) Plugging 1) Instrument loop failure | 1.1) Empty hopper 1.2) No feed to screws 1.3) System interruption | c2.1) LI-0610 and the PLC program control c1.1.1) TE-0615 may decrease c1.1.2) Gasifier temp increase at TE-0710/27 c1.1.3) Hot oil retrun temp will rise | | | | | HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-16-95 Dwg#: 9417-1006-C Node: 43 LT-0601,04,10,21,24 and 30 Parameter: Instrumentation Intention: Common Level Transmitter for all Hoppers Primatech Inc. Node: 43 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------------------------|----------------------------------|-------------------|---|-----------------|--|----|----------| | Other Than
Instrumenta
tion | 1) Any malfunction | level information | C1.1) Failure mode is
total failure. Set to
zero
C1.2) High reliability of | | | | | | | 2) Trouble with
limited depth | | LT | appropriateness | Revise design to
utilize Celtek
probes (3/15/95) | В | | HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-16-95 Dwg#: 9417-1006-C Node: 44 Rupture disc discharge lines Parameter: Flow Intention: Provide safe routing of vessel discharge | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|--------|--|------------|--|----------------------------------|--------|----------| | More Flow | | 1.1) Damage to any
downstream
components | | Review routing of
rupture disc
discharge lines
to flare | Route to T.O.
stack (3/15/95) | I
B | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 45 N2 feed to Hoppers Parameter: Flow Revision: 0 02-16-95 Dwg#: 9417-1006-C Intention: Provide purge and pressurization flow | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|----------------------------------|---|--|------------------------------|---------------------------|--------|----------| | No/Less
Flow | | 1.1) Can't
pressurize | C1.1) Local ind. PI-0619
and PI-0636 | | | | | | | | 1.2) Can't feed 1.3) Unit interruption | C1.2) Coal feed system
PIT's 0608A and 0608B
read low | Add PIT's low
alarms (S)L | | RS | | | | 2) Valve or
regulator failure | 1.4) Potential for
hot gas back-up
at retort entrance | | | | | | | | 3) Leak/rupture | 3.1) Reverse flow
from retort to
break | 3.1.1) Gasifier feed line
temp increases TE-0644 or
0645 | | | | | | | | 3.2) Plugging in
feed line due to
reverse flow | | | | | | | More Flow | 1) Regulator | 1) Higher pressure | | Review need for | Add per node 42 (3/15/95) | I
B | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 46 N2 Vent from Hoppers Parameter: Flow Revision: 0 02-16-95 Dwg#: 9417-1006-C Intention: Provide adequate vent/equalization flow from hoppers | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |---|---|---|---|---|---------|--------|----------| | No Flow
(equalizati
on mode) | | 1.1) System may oper poorly | C1.1) PIT-0608A C1.2) PLC interlock on sequence and alarm | All hopper N2
fill and vent
valves FC | | R | | | No Flow (
the vent
mode) | 1) Valve fails to
open | 1.1) System
interruption | C1.3) Valve position ind. C1.1) Valve position ind. C1.2) PLC interlock on sequence and alarm C1.3) PIT-0608A | | | | | | | 2) Plugging | 2.1) Same as 1.*) | | Review need for
procedure to
"blow" line clean
after venting | | I
B | | | More Flow
thru
vent
valve in
pressurize
mode | 1) Valve fails to
closed | 1.1) Can't
pressurize | C1.1) Valve position ind.
C1.2) Low pressure at
PIT-0608A | | | | | | More Flow
(vent mode) | 1) Equalization
valve leaks or
fails to close | 1.1) Can't hold
pressure in feed
hopper
1.2) Backflow
from retort
1.3) System inop | C1.1) Valve position ind.
C1.2) Low pressure at PI-
0608B
C1.3) High temp at TE-
0615 | | | | | HAZOP-FC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 47 Baghouse system Parameter: Flow Revision: 0 02-16-95 Dwg#: 9417-1006-C Intention: Free flow from weigh hoppers to baghouse BY COMMENTS SAFEGUARDS RECOMMENDATIONS REMARKS CONSEQUENCES DEVIATION CAUSES c1.1.1) Operating procedures require respirator and eye prot. 1.1) Dust at loading area No/Less 1) Blower failure Flow (to the baghouse) 1.2) Settling in lines C1.1) Low reading on bag dP C2.1) High dP at PDIT-0620 and alarm (S)H 2) High dP on bag 2.1) Same as 1.*) C2.2) Maintain bag with bag cleaning system (N2 pulse) Plugging in lines 3.1) Same as 1.1) Review design of recycle of fines and/or disposal 1.1) Build-up of fines baghouse Design to I reflect disposal B of baghouse No/Less 1) Plugging Flow (baghouse to fines fines. Rotary valve located at top by baghouse. Discharge routed to grade for collection. No weigh hopper) recycle. (3/15/95) 1.2) High dP at PDIT-0620 Session: 1 02-13-95 Node: 47 Baghouse system Parameter; Composition 2) Too low pressure in baghouse > Dwg#: 9417-1006-C Revision: 0 02-16-95 Intention: Discharge particle free air | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |---------------------|--------|--------------|---|-----------------|---------|----|----------| | More
Composition | | to stack | 1.1) low dP at PDIT-0620 1.2) Visual insp and maintenance procedures 1.3) Visual plume out of stack | | | | | Worksheet Primatech Inc. Node: 47 Page: 2 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 47 Baghouse system Parameter: Safety Revision: 0 02-16-95 Dwg#: 9417-1006-C Intention: Provide adequate safety | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-------------|--------|--------------|------------|-----------------|---|----|----------| | Less Safety | -, | equipment | | additional | Reimelt to
provide
explosion panel
(3/15/95) | R | | A-68 はなられる 一日 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 48 Coarse Char Surge Vessel C-703 Parameter: Pressure Intention: Maintain pressure at 35 psia (nominal) Primatech Inc. Node: 48 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------|--|--|---|---|----------------
------------------------------------|----------| | Higher
Pressure | 1) block
valve leak or
left open | | C1.1) N2 system has
pressure regulation
C1.2) Rupture disc
protection | | | | | | Lower
Pressure | | screw cooler | C1.1) PIT-15** C1.2) TE-0740 C1.3) TE-0728 (S)H and HH alarms C1.4.1) Cooling by screw cooler | Provide software comparison of bed free-board pressure PIT-0701 and PIT-15** and possible alarm Revise P&ID to move TE-0728 to char inlet line upstream of N2 Review TE-0740 (S) HH shutdown of screw | WIll add FS in | I
B
RS
RS
I
B
RS | | | | | release 1.4) High temperature into vessel | | | | | | Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 48 Coarse Char Surge Vessel C-703 Parameter: Level Intention: Retain up to 25 cuft gross of coarse char | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | OMMENTS | |-----------------|---|---|-------------|---|---|----|---------| | Higher
Level | 1) Failure to
discharge any
cause | 1.1) Overfill
vessel and
backfill fill line | C1.1) LT-** | Revise logic to
reflect alarm
(S)HH trips
screw
Review addition
of back-up LS
stop thru PLC | Not a safety
issue. Not
required.
Sufficient
additional | RS | | | Session: 1 02 | se Char Surge Ve | Worksheet Revision: 0 02-17-95 Dwg#: 9417-1006-C sel C-703 Intention: Retain up to 25 cuft gross of coarse char | | | | Primateci
Node
Pag | | | |---------------|------------------|--|------------|-----------------|--|--------------------------|----------|--| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | ву | COMMENTS | | | | | 1.2) Possibly jam | | | information
available to
assess plant
condition.
(3/15/95) | | | | Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 48 Coarse Char Surge Vessel C-703 Parameter: Sampling Intention: Potential sample point | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-------------|--------------------------------|--------------|------------|--|---------|---------|----------| | No Sampling | 1) Sample point
flanged off | | | When piping defined, review if sampling at this point is appropriate | | I
RS | | Primatech Inc. Node: 49 Page: 1 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 49 Fill line from Coarse Char Surge Vessel to Blowcase Parameter: Flow Intention: Transfer of char from surge vessel to blowcase | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--|------------------------------------|--|---|-----------------|---------|----|----------| | No Flow
(when
required to
flow) | l | node 48 - high
level
1.2) System | C.1.1) Valve position ind. and cycle interrupt C.1.2) Level in surge vessel does not decrease C1.3) Level in blowcase does not increase C1.4) No or less weight increase at blowcase C1.5) Same as node 48 high level | | | | | | | loop fails | 2.1) Same as 1.*) 3.1) Same as 1.*) | | | | | | | More Flow | 1) Valve leaks or
doesn't close | 1.1) Same as node
48 low pressure
1.2) Unwanted
overfill of
blowcase | c1.1.1) Same as node 48 low pressure c1.2.1) High level blowcase WIT-15** c1.2.2) High level blowcase LIT-15** C.1.1) Valve position ind. and cycle interrupt | | | | | Worksheet HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-17-95 Node: 50 Coarse Char Blowcase C-704 Parameter: Pressure Intention: Maintain between atmos. and 35 psia Primatech Inc. Node: 50 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |---|----------------------------|--|--|--|----------------------------------|----|----------| | Lower
Pressure
(below
equalized
pressure) | 1) No equalization line | 1.1) Poor
operation | | Revise design to
reflect
equalization line | revise PFD | R | | | Lower
Pressure
(when
repressuriz
ing) | 1) Leakage | 1.1) Can't return
to service | c1.1.1) PIT-15** | Review PLC
program
permissives for
PIT-15** and
alarming | Within Reimelt
existing scope | R | | | | 2) N2 system
failure | | | | | | | | | 3) Control loop
failure | | | | | | | | Higher
Pressure | 1) Overpressure
by N2 | 1.1) Pressure
surge back to
retort | C1.1) N2
overpressurization
protection | | | | | Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 50 Coarse Char Blowcase C-704 Parameter: Level Intention: Contain coarse char up to a volume 19 cuft gross | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|------------------------|--|------------|---|---------|----|----------| | Higher
Level | discharge any
cause | vessel and
backfill fill line
and surge vessel | | Revise logic to
reflect alarm
(S)HH | | RS | | Worksheet HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 51 Coarse char pneumatic conveyence to Storage Hopper D-702 Parameter: Flow Intention: Convey char to storage vessel Primatech Inc. Node: 51 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--|--|---|---|--|---|--------|----------| | No Flow | 1) Discharge
valve fails to
open | 1.1) Product not conveyed | c.1.1) Rate of discharge
by weight PLC calc and
alarm | | | | | | | | | c1.2) Valve ind. | | | | | | | 2) Plugging | 2.1) Same as 1.1) | c2.1.1) Same as c.1.1) | | | | | | | 3) N2 supply valves failure | 2.1) Same as 1.1) | c.3.1.1) Same as c.1.1) | | | | | | | Varves rarrare | | c.3.1.2) PIT-15** | | | | | | More Flow
(in the
isolation
mode) | 1) Valve leakage
or failure | 1.1) Inability to
pressurize the
blowcase | | design to
increase
reliability (eg.
double valving) | Revise design to
reflect Macawber
valve and a
butterfly valve
on blowcase
discharge.
Between surge
vessel and
blowcase utilize
1 Macawber valve
(3/15/95) | I
B | | | | | | | followed by N2 | | l | | Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 51 Coarse char pneumatic conveyence to Storage Hopper D-702 Parameter: Pressure Intention: Provide sufficient pressure to adequately convey char to storage vessel | | | | | | | | , | | |---|-----------|--------|--------------|------------|-----------------|---------|----|----------| | ſ | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | ŀ | | | | | | | _ | | | Session: 1 0 | berts & Schafer
2-13-95
rse char Storage H | opper D-702 | Worksheet
95 Dwg#: 9417-1006-C
in vessel at near atmos | : | | | Primatech Inc.
Node: 52
Page: 1 | |--------------------|--|--------------|--|---|--|----|---------------------------------------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | Higher
Pressure | 1) During
conveyence | | | Verify over/under
pressure
protection | Adequate
protection
already include
in base design
(3/15/95) | R | | | Lower
Pressure | 1) During
draining | | | | | | | Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 52 Coarse char Storage Hopper D-702 Parameter: Level Intention: Maintain Char level acceptable | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|-------------|--------------|----------------|-----------------|---|---------|----------| | Higher
Level | 1) Overfill | | C1.1) LIT-16** | | Celtek probes
will be provided
RS will add to
DCS logic
(3/15/95) | R
RS | | Worksheet Primatech Inc. Node: 53 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 53 Fill line from D-702 to Supersac Parameter: Flow Workshee Workshee Workshee Workshee Workshee
Workshee Workshee Supersac Revision: 0 02-17-95 Dwg#: 9417-1006-C Nugersac Intention: Provide flow to the supersac | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | |-----------------|----------------------------|-------------------------------|---|-----------------|---------|----|------------------------------------|--| | | | | | | | | Note: rotary valve
no longer VS | | | No/Less
Flow | 1) Rotary valve
failure | 1.1) No flow to
sac | cl.1.1) Visual insp. of bag fill | | | | | | | | | | c1.1.2) No weight gain in fill measuring system | | | | | | | | 2) Plugging | 2.1) Same as 1.1) | | | | ļ | | | | | | 2.2) Maintenance | | | | Ì | | | | | 3) Scale fails | 3.1) Bag overfill and back-up | c.3.1.1) Visual insp. of operation | | | | | | | | | 3.2) May damage rotary valve | | | | | | | Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 53 Fill line from D-702 to Supersac Parameter: Temperature Intention: Temperature not hazardous to operators | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------------|--------------|--------------------------|------------|---|--|----|----------| | Higher
Temperature | 1) Any cause | 1.1) Personnel
safety | | couple bin
cone area and
interlock to | IGT will
incorporate
into operating
procedures
(3/15/95) | R | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 54 Char Storage Baghouse Parameter: Flow Revision: 0 02-17-95 Dwg#: 9417-1006-C Intention: Provide adequate flow to vent supported vessels and systems | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--|-------------------------------|---|--|--|--|-------------|----------| | No/Less
Flow
(to the
baghouse) | 1) Blower failure | 1.1) Possible
settling in lines | C1.1) Low reading on bag dP | | No air
conveying. Non-
issue. (3/15/95) | I
B | | | | | 1.2) Reverse flow
from Thermal
oxidizer | | | | | | | | 2) High dP on bag | 2.1) Same as 1.*) | C2.1) High dP at PDIT-
16** and alarm (S)H | | | | | | | 3) Plugging in
lines | 3.1) Same as 1.1) | C2.2) Maintain bag with
bag cleaning system (N2
pulse) | | i | | | | No/Less
Flow
(baghouse
to
dump
bag) | 1) Failure of
rotary valve | 1.1) Build-up of
fines baghouse | c1.2.1) Alarm on high dP
at PDIT-16** | Review design of
disposal
(assuming
continuous
operation when
conveyence in
operation) | Baghouse routed
to disposal.
Rotary valve
located near
baghouse.
Collect at
grade. (3/15/95) | I
B
R | | | | | 1.2) High dP at
PDIT-16** | | | | | | Revision: 0 02-17-95 Dwg#: 9417-1006-C Session: 1 02-13-95 Node: 54 Char Storage Baghouse Parameter: Composition Intention: Maintain discharge particle free | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |---------------------|--------|---------------------|--|-----------------|---------|----|----------| | More
Composition | -,, | to thermal oxidizer | 1.1) low dP at PDIT-16** 1.2) Visual insp and maintenance procedures 1.3) Caught by scrubber | | | | | Primatech Inc. Node: 55 Page: 1 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 55 Char Fines Surge Vessel C-701 Parameter: Pressure Intention: Maintain pressure at 35 psia (nominal) | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------|--|---|--|--|---------------|--------------|----------| | Higher
Pressure | 1) block
valve leak or
left open | | C1.1) N2 system has
pressure regulation
C1.2) Rupture disc
protection | | | | | | Lower
Pressure | 1) leaks | 1.1) Hot gas thru
screw cooler | C1.1) PIT-15** C1.2) TE-1003 C1.4.1) Cooling by screw cooler | Provide software
comparison of bed
free-board
pressure PIT-0701
and PIT-15** and
possible alarm | | I
B
RS | | | | | 1.2) Local
operator hazard | | Review TE-
1003 (S)HH
shutdown of screw | cooling water | I
B
RS | | | | | 1.3) Environmental release | | ļ | | | | | | | 1.4) High
temperature into
vessel | | | | | | Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 55 Char Fines Surge Vessel C-701 Parameter: Level Intention: Retain up to 25 cuft gross of coarse char | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|---|---|-------------|---|--|----|----------| | Higher
Level | 1) Failure to
discharge any
cause | 1.1) Overfill vessel and backfill fill line | C1.1) LT-** | Revise logic to
reflect alarm
(S)HH trips
screw
Review addition
of back-up LS
stop thru PLC | Not a safety
issue. Not
required.
Sufficient
additional
information
available to
assess plant
condition. | RS | | Worksheet Primatech Inc. Node: 55 Page: 2 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 55 Char Fines Surge Vessel C-701 Parameter: Level Intention: Retain up to 25 cuft gross of coarse char | I di lameteri. | ,,,, | •••• | • | | | | | |----------------|--------|---|------------|-----------------|---------|----|----------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | | | 1.2) Possibly jam
char cooling screw | | | | | | Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 55 Char Fines Surge Vessel C-701 Intention: Potential sample point | Farameter, 5 | rmbrrua | 2 | · · · | | | | | |--------------|-----------------------------|--------------|------------|--|---------|---------|----------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | No Sampling | 1) Sample point flanged off | | | When piping defined, review if sampling at this point is appropriate | | I
RS | | Primatech Inc. Node: 56 Page: 1 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 56 Fill line from Char Fines Surge Vessel to Blowcase Parameter: Flow Intention: Transfer of char from surge vessel to blowcase | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--|-------------------------|--|---|-----------------|---------|----|----------| | No Flow
(when
required to
flow) | | 1.1) Same as
node 55 - high
level
1.2) System
shutdown operator
initiated | C.1.1) Valve position ind. and cycle interrupt C.1.2) Level in surge vessel does not decrease C1.3) Level in blowcase does not increase C1.4) No or less weight increase at blowcase C1.5) Same as node 55 high level | | | | | | More Flow | loop fails 3) Plugging | 2.1) Same as 1.*) 3.1) Same as 1.*) 1.1) Same as node 48 low pressure 1.2) Unwanted overfill of blowcase | cl.1.1) Same as node 48 low pressure cl.2.1) High level blowcase WIT-15** cl.2.2) High level blowcase LIT-15** C.1.1) Valve position ind. and cycle interrupt | | | | | Worksheet Primatech Inc. Node: 57 Page: 1 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 57 Char Fines Blowcase C-702 Parameter: Pressure Intention: Maintain between atmos. and 35 psia | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |---|----------------------------|--|--|--|----------------------------------|----|----------| | Lower
Pressure
(below
equalized
pressure) | 1) No equalization line | 1.1) Poor operation | | Revise design to
reflect
equalization line | revise PFD | R | | | Lower
Pressure
(when
repressuriz
ing) | 1) Leakage | 1.1) Can't return
to service | c1.1.1) PIT-15** | Review PLC
program
permissives for
PIT-15** and
alarming | Within Reimelt
existing scope | R | | | |
2) N2 system
failure | | | | | | | | | 3) Control loop
failure | | | | | | | | Higher
Pressure | 1) Overpressure
by N2 | 1.1) Pressure
surge back to
retort | C1.1) N2
overpressurization
protection | | | | | Session: 1 02-13-95 Parameter: Level Revision: 0 02-17-95 Dwg#: 9417-1006-C e: 57 Char Fines Blowcase C-702 Intention: Contain coarse char up to a volume 19 cuft gross | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|------------------------|--|------------|---|---------|----|----------| | | discharge any
cause | vessel and
backfill fill line
and surge vessel | | Revise logic to
reflect alarm
(S)HH | | RS | | HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 58 Char Fines pneumatic conveyence to Storage Hopper D-701 Parameter: Flow Intention: Convey char to storage vessel | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------------------------|--|--|--|---|---|----|----------| | More Flow (in the isolation mode) | 1) Discharge
valve fails to
open | 1.1) Product not conveyed 2.1) Same as 1.1) | c.1.1) Rate of discharge
by weight PLC calc and
alarm
c1.2) Valve ind.
c2.1.1) Same as c.1.1)
c.3.1.1) Same as c.1.1) | Investigate
design to
increase
reliability (eg. | Revise design to
reflect Macawber
valve and a
butterfly valve | | | | modej | | | | double valving) | on blowcase
discharge.
Between surge
vessel and
blowcase utilize
1 Macawber valve
(3/15/95) | | t
t | | | | | | Investigate price
of utilizing air
for conveyence,
followed by N2
purge of vessel | | | | Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 58 Char Fines pneumatic conveyence to Storage Hopper D-701 Parameter: Pressure Intention: Provide sufficient pressure to adequately convey char to storage vessel | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | ву | COMMENTS | |-----------|--------|--------------|------------|-----------------|---------|----|----------| | | | | | | | | | Primatech Inc. Node: 59 Page: 1 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 59 Char Fines Storage Hopper D-701 Parameter: Pressure Intention: Maintain vessel at near atmos COMMENTS BY RECOMMENDATIONS REMARKS SAFEGUARDS CONSEQUENCES DEVIATION CAUSES Adequate protection already include in base design (3/15/95) Verify over/under pressure protection 1) During conveyence Higher Pressure Lower Pressure 1) During Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 59 Char Fines Storage Hopper D-701 Parameter: Level Intention: Maintain Char level acceptable | Parameter: D | ever | 11100110101111 11011 | | | | _ | | |-----------------|-------------|----------------------|----------------|-----------------|---|---------|----------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | Higher
Level | 1) Overfill | | C1.1) LIT-16** | | Celtek probes
will be provided
RS will add to
DCS logic
(3/15/95) | R
RS | | Primatech Inc. Node: 60 Page: 1 HAZOP-PC 2.12 Workshee Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 60 Fill line from D-701 to Supersac Parameter: Flow Intention: Provide flow to the supersac SAFEGUARDS RECOMMENDATIONS REMARKS BY COMMENTS DEVIATION CAUSES CONSEQUENCES Note: rotary valve no longer VS c1.1.1) Visual insp. of bag fill No/Less Flow Rotary valve failure 1.1) No flow to c1.1.2) No weight gain in fill measuring system Plugging 2.1) Same as 1.1) 2.2) Maintenance c.3.1.1) Visual insp. of operation 3.1) Bag overfill and back-up 3) Scale fails Session: 1 02-13-95 Revision: 0 02-17-95 Dwg#: 9417-1006-C Node: 60 Fill line from D-701 to Supersac Parameter: Temperature Intention: Temperature not hazardous to operators 3.2) May damage rotary valve | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------------|--------------|-----------------------|------------|-----------------|--|----|----------| | Higher
Temperature | 1) Any cause | 1.1) Personnel safety | | cone area and | IGT will
incorporate into
operating
procedures
(3/15/95) | R | | Primatech Inc. Node: 61 Page: 1 HAZOP-PC 2.12 Workshee Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-16-95 Dwg#: 9417-1006-C Node: 61 Weigh Hopper for Coal Fines and attached tote bag unloader Parameter: Composition Intention: Moisture control | . arameter, o | omposition. | | | | | | | |---------------------------|-------------|--|------------|-----------------|--|--------|----------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | Other Than
Composition | | 1.1) Difficult operation and freeze-up | | weather | Provide roof and
field
installation of
side wall tarp | I
B | | Session: 1 02-13-95 Revision: 0 02-16-95 Dwg#: 9417-1006-C Node: 61 Weigh Hopper for Coal Fines and attached tote bag unloader Parameter: Level Intention: Hold and measure coarse coal load | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|--|----------------------------|---------------|---|----------------------------------|----|----------| | Higher
Level | 1) Overfill operator error | 1.2) Cleanout and maintain | C1.1) WT-0622 | Review and
recommend how and
where to
determine weight
of coal for a
given run | be determined by the decrease in | | | | | 2) Failure to
flow out due to
sticking | 2.1) Same as above | | Operating and maintenance procedures will include inspection of the cone lining | from Reimelt
scope (3/15/95) | I | | Primatech Inc. Node: 62 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Revision: 0 02-16-95 Dwg#: 9417-1006-C Node: 62 Fill line from Weigh Hopper to Lockhopper (fines) Parameter: Flow Intention: Flow control and isolation of transfer from weigh hopper to lock hopper | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--|---|---|--|--|---|----|---| | Reverse
Flow | 1) Poor seal of
block valve | 1.1) Not able to
equalize pressure | | Investigate design change to knife gate or other alternative isolation valve | Design to
reflect use of
8" Macawber dome
valves for
coarse inlet and
6" for fine and
all other coarse
for isolation.
(Valve supply no
longer part of
Reimelt scope)
(3/15/95) | | Cost info and stack
height are to be
considered | | | 2) Instrument
loop failure | 1.2) Not able to feed coal 2.1) Same as 1.*) | C2.1) Weight and level in weigh hopper does not decrease C2.2) Valve position ind. | review and revise
PLC program to
includ a trouble | PLC program will
be revised
(3/15/95) | R | Note: Reimelt system
is completely
automated, P4ID will
reflect this | | No Flow
(when
required to
flow) | 1) Valve fails to open 2) Instrument loop fails 3) Plugging | 2.2) Seal Valve could jam and fail 1.1) No flow to lock hopper 1.2) No flow from the Weigh hopper 2.1) Same as 1.*) 3.1) Same as 1.*) | C.1.1)Valve position ind.
C.1.2) Weight and level
in weigh hopper does not
decrease | | | | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 63 Coal Fines Lockhopper Parameter: Pressure Revision: 0 02-16-95 Dwg#: 9417-1006-C Intention: Operate between atmos. and 40 psia Primatech Inc. Node: 63 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------|-------------------------------|---|------------------------------------|---|---|----|-------------------------------------| | Higher
Pressure | 1) Failure of instrument loop | 1.1)
Overpressurization
of vessel | C1.1.1) Rupture disc | pressure rating
and pressure
relieving on the | A downstream
line
PSV set at
50 psi will be
supplied by
Reimelt.
(3/15/95) | B | <u> </u> | | | | 1.2) Rupture first | C1.2.1) Peaking PI-0627 | | | | | | Less
Pressure | 1) Instrument
failure | 1.1) Reverse flow | | and recommend the addition of | probabilty of failure low, no immediate action | | PDI alternative to
br considered | | | | 1.2) System upset | | | | |] | | | 2) N2 failure | 2.1) Can't
pressurize | C2.1.1) Delta Pressure
control | | | | | | | 1 | 2.2) Can't operate | C.2.1.2) PI-0628A | | | | | | | 3) Leak or
gasket failure | 3.1) Same as 2.*) | C.3.1.1) Maintenance
procedures | | | | | Session: 1 02-13-95 Node: 63 Coal Fines Lockhopper Parameter: Level Revision: 0 02-16-95 Dwg#: 9417-1006-C Intention: To hold coarse coal (25 cuft gross) | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|----------------------------|---------------|--|-------------------------------|--|-------------------|----------| | Higher
Level | 1) Instrument loop failure | 1.1) Overfill | C1.1) Manual
inspection of weigh
change
c1.2.1) See node 62 | alarm and
possible cut-off | Improved reliability by using Celtek probe. No safety issue. Sufficient information is provided with | I
B
R
RS | | Primatech Inc. Node: 63 Page: 2 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 63 Coal Fines Lockhopper Parameter: Level Revision: 0 02-16-95 Dwg#: 9417-1006-C Intention: To hold coarse coal (25 cuft gross) | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|--------|-------------------------------|------------|-----------------|--|----|----------| | | | 1.2) Plugging of
feed line | | | the existing
instrumentation.
DCS will be used
to generate
alarm (3/15/95) | | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 64 Fill Line from Lockhopper to Feed Vessel (Fines) Parameter: Flow Node: 64 Fill Line from Lockhopper to Feed Vessel (Fines) Primatech Inc. Node: 64 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--|--------------------------------|---|--|---|---|----|--| | Reverse
Flow | 1) Poor seal of
block valve | 1.1) Heat-up of
feed line,
material and
release of gas
from coal | C1.1) Valve position
indication and
interlocks to PLC
controls | knife gate or
other
alternative
isolation valve | Design to reflect use of 8" Macawber dome valves for coarse inlet and 6" for fine and all other coarse (Valve supply no longer part of Reimelt scope) (3/15/95) | | Cost info and stack
height are to be
considered
Note: Reimelt system
is completely
automated, P&ID will
reflect this | | | | 1.2) Inability to feed coal 1.3) System upset | | | | | | | | | 1.4) Potential baghouse damage | | | | | | | | 2) Instrument
loop failure | 2.1) No
consequence | C2.1) Lock hopper
at same pressure | Reimelt will
review and revise
PLC program to
includ a trouble
alarm on weight
change rate | PLC program will
be revised
(3/15/95) | R | | | No Flow
(when
required to
flow) | 1) Valve fails to open | 1.1) No flow to
feed hopper
1.2) No flow from
the lock hopper
1.3) System
shutdown operator
initiated | C.1.1)Valve position ind. C.1.2) Level in lock hopper does not decrease C1.3) Level in feed hopper does not increase | | | | | | | 2) Instrument
loop fails | 2.1) Same as 1.*) | | | | | | | | 3) Plugging | 3.1) Same as 1.*) | | | | | 1 | Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 65 Coal Fines Feed Vessel Parameter: Pressure Revision: 0 02-16-95 Dwg#: 9417-1006-C Intention: Maintain pressure at 35-40 psia REMARKS BY COMMENTS SAFEGUARDS RECOMMENDATIONS CONSEQUENCES DEVIATION CAUSES Add in N2 header C1.1.1) Rupture disc Investigate 1) Failure of instrument loop Higher pressure rating and pressure relieving on the N2 feed to Feed Overpressurization downstream PSV Pressure set at 50 psi. PSV now in C1.2.1) Peaking PI-0633 of vessel Reimelt scope (same valve as System in node 40 (3/15/95) 1.2) Rupture first disc 1.1) Back pressure C.2.1) Same as Cl.*) to feed hopper Review need for Add a manual 2) Gasifier upset adjust rotometer B and remove PV-08B (3/15/95) continous bleed flow N2 to C.2.2) Gasifier pressure indication the feed hopper 1.2) Hot gases back-up line 1.3) Eventual plugging. Cleaning required Include in the review of the lock hopper Severity of failure and probabilty of failure low, no R 1.1) Reverse flow 1) Instrument failure Less Pressure pressure protection issue the need to protect the feed hopper immediate action required. Note: Spare nozzles are provided on the vessels to accommodate later modifications. (3/15/95) 1.2) System upset C.2.1.1) PI-0628B 2) N2 failure 2.1) Can't pressurize C.2.1.2) Gasifier 2.2) Can't operate instrumentation 2.3) Unit upset 3.1) Same as 2.*) C.3.1.1) Maintenance 3) Leak or Primatech Inc. Node: 65 Page: 1 Primatech Inc. Node: 65 Page: 2 Revision: 0 02-16-95 Dwg#: 9417-1006-C HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 1 02-13-95 Node: 65 Coal Fines Feed Vessel Parameter: Pressure Intention: Maintain pressure at 35-40 psia | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | ву | COMMENTS | |-----------|-------------------------------|--------------|---------------------------------|-----------------|---------|----|----------| | | gasket failure | | procedures | | | | | | | 4) Rupture leak
or failure | | C4.1) Double disc
protection | | | | | Revision: 0 02-16-95 Dwg#: 9417-1006-C Session: 1 02-13-95 Node: 65 Coal Fines Feed Vessel Parameter: Level Intention: To hold 45 cuft gross | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-------------------|-------------------------------|---|---|-----------------|---------|----|----------| | Higher
Level | 1) Instrument
loop failure | 1.1) Overfill 1.2) Plugging of feed line 1.3) Valve may not close and thus indicate so. | C1.1) Manual
inspection of level
change at lock hopper | | | | | | | 2) Plugging | | C2.1) LI-0630 and the PLC program control | | | | | | No/Lower
Level | 1) Instrument
loop failure | 1.1) Empty hopper 1.2) No feed to screws 1.3) System interruption | c1.1.1) TE-0635 may decrease c1.1.2) Gasifier temp increase at TE-0710/27 c1.1.3) Hot oil retrun temp will rise | | | | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Node: 66 Flare Parameter: Flow Revision: 0 03-14-95 Dwg#: 9417-1006-C Intention: Provide adequate flow for the various relief conditions | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|--|--|---|--|---------|----|----------| | No/Less
Flow | , , , , , , , | 1.1) Back-up of
relief header | C1.1) Knock-out drum
protects discharge line | | | | | | (main flow) | 2) Valve fails
closed | 1.2) Same as 1.1 | C1.2) Same as C1.1) | | | | | | (pilot gas) | 1) Any cause | 1.1) Loss of pilot | c1.1.1) Low temp alarms
TSL445 and 444 | | | | | | | , | 1.2) Non-ignited
atmospheric
release | | | | | | | More Flow | 1) Any cause | | | Flare loads will
be confirmed as
part of the
relief study | | В | | | Reverse
Flow | 1) Back flow from atmospheric conditions | 1.1) Oxygen in
relief system | C1.1) Check valve in line | Callidus to provide recommendation on flare design and replacement of check valve with molecule seal | | С | , | Session: 2 03-14-95 Node: 66 Flare Parameter: Temperature Revision: 0 03-14-95 Dwg#: 9417-1006-C | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-------------|---|--------------------|----------------------|--|---------|----|----------| | Temperature | 1) Loss of either
pilot (any cause)
2) Loss of both
pilots | 2.1) Loss of flare | 02.1, 0441 parasa | Callidus will
revise PLC to try
to re-ignite
pilot and alarm
if unsuccessful | | С | | | | | | C2.2) Cut-off gas to | | | | | Revision: 0 03-14-95 Dwg#: 9417-1006-C HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Node: 66 Flare Parameter: Composition | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS |
---------------------------|---------------------------|----------------------------|---|-----------------|---------|----|----------| | Other Than
Composition | 1) Pure N2
release | 1.1) None | | | | | | | | 2) H2S and N2 | 2.1) Release to atmosphere | C2.1) Intermittant and unlikely. Release is elevated. | | | | | | | 3) Hot Syntherm
vapors | 3.1) Release to atmosphere | c3.1.1) Non-toxic c3.1.2) K.O. pot protects against large liquid releases | MSDS required | | В | | A-92 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Revision: 0 03-14-95 Dwg#: 9417-1006-C Node: 67 Bypass around T.O to K.O. pot Parameter: Flow Intention: Flow to flare in the bypass mode | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------------------------|---|---------------------|--|---|---------|------------------|----------| | More Flow
(not
bypass
mode) | 1) FV-135 fails open | 1.1) Flared release | C1.1) Limit switch on valve is monitored by the PLC | DCS will pick-up
information and
display as
appropriate | | RS | | | No/Less
Flow
(bypass
mode) | 1) FV-135 fails
in closed
position when FV-
136 closes | system | cl.1.1) Relieve via
rupture discs
cl.1.2) Release to flare | Review re-routing
bypass to scubber
instead of flare
Review routing of
char baghouse
vent to T.O.
Review capacity
of T.O. for the
max flow
condition | | B
I
B
I | | A-93 Primatech Inc. Node: 67 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Node: 68 Emergency Shutdown Parameter: Emergency Shutdown Revision: 0 03-14-95 Dwg#: 9417-1006-C Intention: Isolate or purge as required by design | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-------------------------------------|----------------|--|------------|--|---------|----|----------| | Startup/SD
Emergency
Shutdown | 1) Manual trip | 1.1) Isolate nat gas to all heaters 1.2) Open air valves to all heaters except the boosters 1.3) Closed air to booster heaters 1.4) Kill power to PLC outputs 1.5) N2 purge whole system | | Add automated
purge. Revise
PaiD 009 to
reflect automatic
valve in N2 line | | RS | | | | | 1.6) S/D all feed screws 1.7) Trip hot oil pumps 1.8) Open ESD valve off of secondary cyclone 1.9) Relieve to flare | | upstream of FV-
01.
Review ESD
philosophy
Provide max
design capacity | | ВІ | | Primatech Inc. Node: 69 Page: 1 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Revision: 0 03-16-95 Dwg#: 9417-1006-C Node: 69 Tar Separator to middle oil separator (see node 21) Parameter: Flow Intention: Provide flow path from Tar Separator to Middle Oil Separator | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|---|--|---|---|---------|----|----------| | | 1) Manual valve
left closed | 1.1) Unit upset 1.2) Pressure in retort increases | c1.2.1) PIT-1109 reads high c1.2.2) PIT-1109 PAH and (HH) alarms c1.2.3) Low pressure at PIT-1208 c1.2.4) Low pressure alarm at PAL and (LL) | | | | | | | 2) XV-01A valve open 3) Plugging in | 2.1) Release to
flare
2.2) Pressure in
system decreases
2.3) Unit upset
3.1) Same as 1.*) | c2.1.1) Low pressure at PIT-1208, PIT-1202 and PIT-1109 c2.1.2) Low pressure alarms PAL and (LL) -1109 -1202 and -1208 c3.1.1) Same as c1.*.*) | | | | | | | left open 5) Air cooler tube leak or rupture | 4.1) Release to
environment | c4.1.1) Operator training and procedures | Add blind flange
to flush
connections | | RS | | | | | 5.1) Release to
environment
5.2) Potential
fire | c5.1.1) Located outside of primary structure c5.1.2) Possible odor detection c5.1.3) PIT-1208 reads lower than normal c5.1.4) Relatively low heating value. | | | | | HAZOP-PC 2.12 Workshee Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Revision: 0 03-16-95 Dwg#: 9417-1006-C Node: 69 Tar Separator to middle oil separator (see node 21) Parameter: Temperature Intention: Cool gas down to 170F 2) Louver failure | arameter: Te | emperature | Intention: Cool | gas down to 170F | | | | | |-----------------------|------------------------------|---|--|---|---------|----|----------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | Higher
Temperature | 1) Fan failure | 1.1) Discharge
temperature rises | c1.1.1) TAH-1206 (H) and (HH) alarms on the cooler skid | | | | | | | | 1.2) Less
condensation of
middle oil | c1.1.2) Local run lights | | | | | | | | 1.3) Middle oil
carry-over to
light oil | | | | | | | | 2) Tube fouling | 2.1) Discharge
temperature above
normal | c2.1.1) Same as c1.1.1)
c2.1.2) Flush connections
are provided | Add additional
downstream TE
(TIT-1216) off of
cooler skid | | RS | | | | | 2.2) Higher
upstream pressure
(gradual) | | | | | | | | | 2.3) Less
condensation of
middle oil | | | | | | | | | 2.4) Middle oil
carry-over to
light oil | | | | | | | | 3) Damper failure | 3.1) Similar
to 1.*) | c3.1.1) Same as c1.1.1) | | | | | | | 4) Instrument
loop | 4.1) Similar to 1.*) | c4.1.1) Same as c1.1.1) | | | | | | Lower
Temperature | 1) Loop
calibration error | 1.1) No
significant
consequences | | | | | | | | 1 | I | 1 | 1 | ı | | 1 | A-96 Primatech Inc. Node: 69 Page: 2 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Node: 70 Middle oil separator Parameter: Temperature Revision: 0 03-16-95 Dwg#: 9417-1006-C Primatech Inc. Node: 70 Page: 1 | lode: 70 Mid
Parameter: Te | lle oil separator
emperature | Intention: Maintai | n temperature above | 40F | | | | |-------------------------------|---------------------------------|--|---------------------|-----------------|---------|----|----------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | | 1) Failure of
heat trace | 1.1) No
significant
consequence, only
affects start-up
freeze protection | | | | | | Session: 2 03-14-95 Node: 70 Middle oil separator Parameter: Pressure Revision: 0 03-16-95 Dwg#: 9417-1006-C Intention: Maintain the pressure in the vessel between 23 and 27 psia | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|--|----------------------------------|---|-----------------|---------|----|--| | | 1) Valve doesn't
open enough | | | | | | All issues covering
pressure control
other than PSE are
on hold until
compressor selection
is completed | | | 2) Instrument
loop calibr.
error | | | | | | | | | 3) ESD valve
closed | | | | | | | | | 4) Blocked nozzle | 4.1)
Overpressurize
vessel | c4.1.1) PSE-1209
sized for worst case
between blocked nozzle or
fire | | | | | | | 5) Fire | 5.1)
Overpressurize
vessel | c5.1.1) Same as c4.1.1) | | | | | Session: 2 03-14-95 Node: 70 Middle oil separator Parameter: Level Revision: 0 03-16-95 Dwg#: 9417-1006-C Intention: Maintain liquid level between 12" and 24" | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |------------------|------------------------------------|------------------------------|--|---|---------|----|----------| | No/Less
Level | 1) Level
transmitter
failure | | c1.1.1) LG-1210
c1.1.2) Loop failure
alarm | Add back-up low
level switch on
C-302 pump cut-
off and alarm (
LSH-1217) | | RS | | | | | 1.2) Pump gas to
run tank | | | | ŀ | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Node: 70 Middle oil separator Parameter: Level Revision: 0 03-16-95 Dwg#: 9417-1006-C Intention: Maintain liquid level between 12" and 24" | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | ву | COMMENTS | |-----------------|------------------------------|--|--|-----------------|---------|----|----------| | | 2) Loop
calibration error | 2.1) Pump runs dry
1.2) Pump gas to
run tank |
c2.1.1) LG-1210 | | | | | | | 3) Root valve
left open | | c3.1.1) Double protection via valve and cap | | | | | | Higher
Level | 1) Nozzle plugged | | c1.1.1) High level at LIT-1211 and alarm H(S) c1.1.2) No or low full at FIT-1407 and alarm S(L) c1.1.3) LG-1210 | | | | | | | 2) Loop
calibration error | | c1.1.4) High level alarm
and compressor trip LSH-
1214 S (H) and S (HH)
c2.1.1) No or low full at
FIT-1407 and alarm S (L) | | | | | | | | | c2.1.2) LG-1210
c2.1.3) High level alarm
and compressor trip LSH-
1214 S(H) and S(HH) | | | | | Primatech Inc. Node: 71 Page: 1 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Revision: 0 03-16-95 Dwg#: 9417-1006-C Node: 71 Middle oil separator to run tank Parameter: Flow Intention: Flow path from separator to run tank | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------|---------------------------|------------------------------------|---------------------------------------|----------------------------------|---------|----|----------| | No/Less
Flow | 1) Manual valve
closed | 1.1) Same as Node
70 Level High | c1.1.1) Same as Node 70
Level High | | | | | | | | | c1.1.2) Low pressure at
PI-1212 | | | | | | | 2) Pump failure | 2.1) Same as 1.1 | c2.1.1) Same as c1.1.1) | | | | | | | ļ | | c2.1.2) Pump motor status
UA-1213 | | | | | | | | 3.1) Same as 1.1) | c3.1.1) Same as c1.1.1) | Delete LV/LY-
1211 and revise | | RS | | | | failure | | c3.1.2) High pressure at
PI-1212 | logic to pump
control | | | | | | 4) Plugging | 4.1) Same as 1.1) | c4.1.1) Same as c1.1.1) | | | | | | Other Than
Flow | | | | Develop operating
scenarios | | I | | Session: 2 03-14-95 Revision: 0 03-16-95 Dwg#: 9417-1006-C Node: 71 Middle oil separator to run tank Parameter: Pressure Intention: Maintain pressure below design pressure for associated piping and equipment | | | | · • | - | | | | |--------------------|-------------------|--------------|-------------------------------|-----------------|---------|----|----------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | Higher
Pressure | 1) Dead head pump | | C1.1) Internal relief on pump | | | | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Node: 72 Run tank Parameter: Temperature Revision: 0 03-17-95 Dwg#: 9417-1006-C Primatech Inc. Node: 72 Page: 1 | Parameter: To | | Intention: Main | Intention: Maintain temperature above 40F | | | | | | | |----------------------|--------|-----------------|--|-----------------|---------|----|----------|--|--| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | | | Lower
Temperature | | | cl.1.1) TIT-1412 low temp
alarms (S)L and (S)LL | | | | , | | | Session: 2 03-14-95 Node: 72 Run tank Parameter: Pressure Revision: 0 03-17-95 Dwg#: 9417-1006-C Intention: Maintain the pressure between 0 and 1-2 psi | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------|------------------------|----------------------------------|---|-----------------------|---------|----|----------| | Higher
Pressure | 1) PRV 1421
failure | 1.1)
Overpressurize
vessel | c1.1.1) PSE 1409 set at
10 psig | | | | | | | | Vesse1 | cl.1.2) PCV -1422 shuts
off | | | | | | | | | c1.1.3) PI-1410 | | | | | | | 2) PCV
1422 failure | 2.1) Same as 1.1) | c2.1.1) PSE 1409 set at
10 psig | | | | | | | | | c2.1.2) PRV -1421 opens | | | | | | | | | c2.1.3) PI-1410 | | | | | | Lower
Pressure | 1) PCV 1422 fails | 1.1) Draw vacuum
in vessel | c1.1.1) PI-1410 | Add vacuum
breaker | | RS | | | | | 1.2) Pump
cavitation | c1.1.2) Low level alarms
LIT-1408 (S)L and (S)LL | | | | | Session: 2 03-14-95 Node: 72 Run tank Parameter: Level Revision: 0 03-16-95 Dwg#: 9417-1006-C Intention: Maintain level below 80% capacity | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | ву | COMMENTS | |-----------------|-------------------------------|--------------------------------------|--|-----------------|---------|----|----------| | Higher
Level | discharge | level in the tank 1.2) Overfill tank | c1.1.1) Hi level alarm
LIT-1408 (S)H and (S)HH
c1.1.2) Operator training
and procedures | | | | | | | 2) Instrument
loop failure | 2.1) Same as 1.*) | c2.1.1) Loop failure
alarm | | | | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Node: 72 Run tank Parameter: Level Revision: 0 03-16-95 Dwg#: 9417-1006-C Primatech Inc. Node: 72 Page: 2 Intention: Maintain level below 80% capacity RECOMMENDATIONS REMARKS BY COMMENTS SAFEGUARDS CAUSES CONSEQUENCES DEVIATION c2.1.2) Operator training and procedures c3.1.1) Operator training and procedures 3) Loop calibration error 3.1) Same as 1.*) No/Less Level c1.1.1) Low level alarm LIT-1408 (S)L and (S)LL 1) Operator error 1.1) Pump runs dry 1.2) Blow N2 to tanker c1.1.2) Operator training and procedures 2) Loop calibr. error c2.1.1) Operator training and procedures 2.1) Same as 1.*) c3.1.1) Operator training and procedures 3) Loop failure 3.1) Same as 1.*) c3.1.2) Loop failure alarm A-101 Primatech Inc. Node: 73 Page: 1 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Revision: 0 03-16-95 Dwg#: 9417-1006-C Node: 73 Middle oil separator to the light oil separator Parameter: Flow Intention: Flow path for recycle gas from middle oil separator to light oil separator | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------|---|--|---|--|---------|----|----------| | No/Less
Flow | 1) Manual valve
closed | 1.1) Dead head
compressor | c1.1.1) Operator training and procedures | | | | | | | 2) Plugging in cooler 3) Compressor failure | 1.2) Unit upset 1.3) High pressure in C-302 1.4) Low pressure in C-303 1.5) High pressure upstream of manual valve 1.6) No change in level in C-303 1.7) Reduced temperature at cooling water side discharge 2.1) Same as 1.*) 3.1) Unit upset 3.2) Low pressure in C-303 | c1.1.3) High pressure alarms at PIT-1301 (S)H and (S)HH. c1.1.4) High pressure at PIT1208 c1.1.5) High pressure alarms PIT-1208(S)H and (S)HH c1.1.6) PSV-1205 set ** psig design for compressor dead head flow c2.1.1) Same as c1.1.*) c3.1.1) Compressor trip alarm UA-1207 c3.1.2) High pressure | Review of set
pressure to be
performed with
compressor
selection and
considering
preheater coils | | RS | | | | | in C-303 3.3) Higher pressure in C-302 | C3.1.2) High pressure
alarm PIT-1208 (S)H and
(S)HH
3.1.3) Low pressure
alarm in PIT-1301 (S)L
and (S)LL | | | | | | Other Than
Flow | 1) Tube failure | 1.1) Water in the
light oil | cl.1.1) Reduce flow
indication on cooling
water return line | Add flow
indication and
totalizing
logic on sour
water to T.O.
line. Remove
solenoid LV- | | RS | | Primatech Inc. Node: 73 Page: 2 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Revision: 0 03-16-95 Dwg#: 9417-1006-C Node: 73 Middle oil separator to the light oil separator Parameter: Flow Intention: Flow path for recycle gas from middle oil separator to light oil separator | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|--------|---|------------|--|---------|--------|----------| | | | | | 1310A (not required, already supplied on Callidus skid) Review Callidus control logic to ensure that Callidus logic does not back-up sour water discharge | | I
B | | | | | 1.2) Increase
water at C-303
boot | | | | | | | | | 1.3) Contaminated product at run tank | | | | | | Session: 2 03-14-95 Revision: 0 03-16-95 Dwg#: 9417-1006-C Node: 73 Middle oil separator to the light oil separator Parameter: Temperature Intention: Reduce temperature from 300F to 100F | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------------|-----------------------------|---|--|------------------------|---------|----|----------| | Higher
Temperature | 1) Loss of
cooling water | 1.1) High temperature in C- 303 1.2) Less product 1.3) Higher load on T.O. 1.4) Higher heating valve of recycle gas 1.5) Increased potential for carbon deposition in preheater F-202 1.6) Less load on water boot | C1.1) FIT-1303 low flow
c1.1.1) TIT-1306 high
temp alarms (S)H
and (S)
HH | Add low flow
alarms | | RS | | HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Revision: 0 03-16-95 Dwg#: 9417-1006-C Node: 73 Middle oil separator to the light oil separator Parameter: Temperature Intention: Reduce temperature from 300F to 100F Primatech Inc. Node: 73 Page: 3 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|-------------------------------------|-------------------------------|---|-----------------|---------|----|----------| | | 2) Fouling | | c2.1.1) TIT-1306 high
temp alarms (S)H and (S)
HH | | | | | | | 1) Overcooling
due to any reason | No significant
consequence | | | | | | Worksheet Primatech Inc. Node: 75 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Node: 75 Light oil separator Parameter: Pressure Revision: 0 03-17-95 Dwg#: 9417-1006-C Intention: Maintain pressure below vessel 75 (??) psig | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------|--------|-----------------------|--|---|---------|----|----------| | Higher
Pressure | | Overpressurize vessel | 75 (??) psig and design capacity for fire or | Review pressure
protection of the
light oil quench
cooler (gas side) | | | | Session: 2 03-14-95 Node: 75 Light oil separator Parameter: Level Revision: 0 03-16-95 Dwg#: 9417-1006-C Intention: Maintain light oil level at between **" and **" and the water level in the boot below **" | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | вч | COMMENTS | |---------------------------|--|--|--|---|---------|----|----------| | No/Less
Level
(oil) | 1) Instument loop
failure | to the run tank | c1.1.1) Gear pump has
minimum flow thru
C1.1) Failure of
instrument loop fails to
the shut-off condition | Add low level LS
(same as middle
oil) with
pump control and
remove control
valve | | RS | | | | | 1.2) Recycle gas
then flows thru
the run tank to
the T.O. | | | | | | | | 2) Instrument
loop calibr.
error | | c2.1.1) Operator training and procedures | | | | | | (water) | 1) Instument loop
failure | sour water line to | | Add low water
level switch
protection | | RS | | | | | 1.2) Higher temp
potential in T.O. | c1.2.1) High temperature alarm in T.O. | | | | | | | 2) Instrument
loop calibr.
error | | c2.1.1) Operator training and procedures | | | | | | Higher
Level
(oil) | 1) Instument loop
failure | | cl.1.1) Production rate
low
cl.1.2) Instrument
failure alarm | | | | | | | | 1.2) May carbon up
the preheater | Idilate algrm | | | | | | | 2) Instrument
loop calibr. | | c2.1.1) Low production rate | | | | | HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Node: 75 Light oil separator Parameter: Level Revision: 0 03-16-95 Dwg#: 9417-1006-C | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|--|---|-----------------------------|-----------------|---------|----|----------| | | error | | | | | 11 | | | (water) | 1) Instument loop
failure | 1.1) High water
level in C-303
boot | c1.1.1) Low production rate | | | | | | | | 1.2) Water into
the run tank | | | | | | | | 2) Instrument
loop calibr.
error | 2.1) Same as 1.*) | c2.1.1) Low production rate | | | | | A-106 Primatech Inc. Node: 76 Page: 1 一天 - 桑 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Revision: 0 03-16-95 Dwg#: 9417-1006-C Node: 76 Light oil separator to run tank Parameter: Flow Intention: Flow path from separator to run tank | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|---------------------------|------------------------------------|---|--|---------|----|----------| | No/Less
Flow | 1) Manual valve
closed | 1.1) Same as Node
75 Level High | Level High c1.1.2) Low flow at FIT- | Delete manual
valve downsteam
of FIT | | RS | | | | 2) Pump failure | 2.1) Same as 1.1 | 1407
c2.1.1) Same as c1.1.1) | | | | | | | | | c2.1.2) Pump motor status
 UA-1311 | | | | | | | 3) Control valve failure | 3.1) Same as 1.1) | c3.1.1) Same as c1.1.1) | Delete LV/LY-
1308 and revise
logic to pump
control | | RS | | | | 4) Plugging | 4.1) Same as 1.1) | c4.1.1) Same as c1.1.1) | | | | | | | 5) Drain open | 5.1) Release to
environment | c5.1.1) Operator training and procedures | | | | | | | | | c5.1.2) Double
protection block valve
and cap | | | | | | Reverse
Flow | | | Check valve and positive displacement pump | | | | | Revision: 0 03-16-95 Dwg#: 9417-1006-C Session: 2 03-14-95 Revision: 0 03-16-95 Dwg#: 9417-1006-C Node: 76 Light oil separator to run tank Parameter: Pressure Intention: Maintain pressure below design pressure for associated piping and equipment | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------|-------------------|----------------------------------|-------------------------------|-----------------|---------|----|----------| | Higher
Pressure | 1) Dead head pump | 1.1)
Overpressurize
system | C1.1) Internal relief on pump | | - 170 | | | HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Revision: 0 03-17-95 Dwg#: 9417-1006-C Node: 77 Light oil separator sour water to incinerator Parameter: Flow Intention: Provide flow path from light oil boot to T.O. | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|---------------------------|-----------------------------|--|-----------------|---------|----|----------| | No/Less
Flow | 1) Manual valve
closed | level (water) in
node 75 | cl.1.1) Same as High
level (water) in node 75
c.1.2.1) Fresh water
make-up to T.O. (in
Callidus design) | | | | | | Reverse
Flow | -,,,, | 3.1) Same as 1.*) | c2.1.1) Same as c1.*.*) c3.1.1) Same as c1.*.*) C1.1) C-303 operating pressure higher than T.O. C1.2) High level alarm in C-303 boot LIT-1310 (S) H and (S) HH | | | | | Primatech Inc. Node: 77 Page: 1 Worksheet Primatech Inc. Node: 78 Page: 1 HAZOP-PC 2.12 Workshee Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Revision: 0 03-16-95 Dwg#: 9417-1006-C Node: 78 Low pressure depressurization line Parameter: Flow Intention: ESD line | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------|------------------|-----------------|---|-----------------|---------|----|----------| | More Flow | open, any reason | 1.2) Relieve to | C1.1) Unit shutdown as
designed
c1.2.1) Flare capacity
designed for this event | | | | | Worksheet Primatech Inc. Node: 80 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Node: 80 Recycle gas to the T.O. Parameter: Flow Revision: 0 03-17-95 Dwg#: 9417-1006-C Intention: Provide flow path from light oil separator to T.O. during operation to bleed-off production | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------------------|--|----------------------------------|---|-----------------|---------|----|----------| | No/Less 1) Manual valve closed | 1.1) Higher
pressure in C-303 | cl.1.1) PSV 1309 lifts to flare | Add flow
measurement and
indication | · | RS | | | | | | | c1.1.2) PI-1307 | | | | | | | | | c.1.1.3) PIT-1301 high
pressure alarm (S)H | | | | | | | 2) Control valve failure 2.1) Same as 1.1) | 2.1) Same as 1.1) | c2.1.1) Same as c1.1.*) | | | | | | | | | c2.1.2) PIT-1305 high
pressure alarm (S)H and
(S)HH | | | | | | More Flow | 1) Control valve fails open | 1.1) Insufficient
recycle gas | c1.1.1) Low flow alarm
FIT-0901 (S)L | | | | | | | | 1.2) Bed
disturbance | | | | | | Session: 2 03-14-95 Parameter: Pressure Revision: 0 03-17-95 Dwg#: 9417-1006-C e: 80 Recycle gas to the T.O. Intention: Control pressure in process loop | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------|--------|--------------|------------|---|---------|----|----------| | Higher
Pressure | | | | To be reviewed as part of the over-
all pressure regulation/
compressor control study | | В | | Primatech Inc. Node: 81 Page: 1 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Revision: 0 03-17-95 Dwg#: 9417-1006-C Node: 81 Recycle gas to preheater (See node 26) Parameter: Flow Intention: Provide flow path from light oil separator to preheater | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------
---------------------------------------|--------------|-------------|-----------------|---------|----|----------| | No/Less
Flow | 1) Manual or
check valve
closed | | See node 26 | | | | | 7 3. HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Revision: 0 03-17-95 Dwg#: 9417-1006-C Node: 82 Coarse char from retort to coarse char surge vessel Farameter: Flow Intention: Provide flow from retort to surge vessel at approx. 900 lbs/hr Primatech Inc. Node: 82 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------|--|---|---|-----------------|---------|----|----------| | No/Less
Flow | 1) Plugging | | c1.1.1) PDI-0703/02 high alarms (S)H and (S)HH | | = | | | | | | | c1.1.2) TE-0728/40 high
temp alarms (S)L and
(S)LL
c2.1.1) Same as cl.*.*) | | | | | | | | flow lines 2.1) Same as 1.*) | | | | | | | | 2) Driver failure | | c2.1.1) Driver status
alarm UA-0746 | | | | | | | | | c2.1.2) Same as c1.1.*) | | | | | | More Flow | 1) Miscalibration
of discharge rate | 1.1) Bed goes to
minimum draw-off
point | c1.1.1) PDI-0703/02
low indication | | | | | | | | 1.2) No
significant impact | | | | | | | Other Than
Flow | 1) Cooling water
leak into
char side | 1.1) Steam
generation | c1.1.1) Low flow switch
FSL-0752 and alarm (S)L | | | | | | | Char side | 1.2) Downstream condensation | | | | | | | | | 1.3) Interrupt
solids product
flow | | | | | | | | | 1.4) Run
interruption | | | | | | HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Revision: 0 03-17-95 Dwg#: 9417-1006-C Node: 82 Coarse char from retort Parameter: Temperature Intention: Discharge coarse char at 140F BY COMMENTS RECOMMENDATIONS REMARKS DEVIATION CAUSES CONSEQUENCES SAFEGUARDS C1.1) Low flow on cooling water return line. Stops screw and alarms (S)H and (S)HH RS Higher 1) Insufficient Temperature cooling Insure that over-1.1) Hot char at surge vessel pressurization protection on cooling water side Add no-touch screens in appropriate locations (such as C-703) RS 1.2) Personnel hazard Standay S Primatech Inc. Node: 82 Page: 2 HAZOP-PC 2.12 Worksheet Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Revision: 0 03-17-95 Dwg#: 9417-1006-C Node: 83 Fine char from cyclone to fine char surge vessel Parameter: Flow Intention: Provide flow from cyclone to surge vessel at approx. 900 lbs/hr Primatech Inc. Node: 83 Page: 1 | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |--------------------|--|--|---|-----------------|---------|----|----------| | No/Less
Flow | | 1.1) Char to
liquid recovery | c1.1.1) TE-1003 high temp
alarm (S)L and (S)LL | | | | | | ' | | 1.2) Low level in
surge vessel | c1.1.2) No/less change in
the fines surge vessel
LIT-15** | | | | | | | | 1.3) Plugging in
quench condenser
and pump | c1.1.3) Eventually lower
than expected fines
discharge rate WE-15** | | | | | | | ! | 1.4) Lower
temperature in
flow lines | | | | ! | | | | 2) Driver failure | 2.1) Same as 1.*) | c2.1.1) Driver status
alarm UA-1004 | | | | | | | | Į | c2.1.2) Same as c1.1.*) | | | | | | More Flow | 1) Miscalibration of discharge rate | 1.1) No
significant
impact | | | | | | | Other Than
Flow | 1) Cooling water
leak into
char side | 1.1) Steam
generation | cl.1.1) Low flow switch
FSL-1005 and alarm (S)L | | | | | | | | 1.2) Downstream condensation | | | | | | | ! | l
I | 1.3) Interrupt
solids product
flow | ** | | | | | | | | 1.4) Run
interruption | | | | | | Session: 2 03-14-95 Revision: 0 03-17-95 Dwg#: 9417-1006-C Node: 83 Fine char from cyclone to fine char surge vessel Parameter: Temperature Intention: Discharge coarse char at 140F | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------------|--------|--------------|---|--|---------|----|----------| | Higher
Temperature | | surge vessel | C1.1) Low flow on
cooling water return
line. Stops screw and
alarms (S)H and (S)HH | Insure that
over-
pressurization
protection on
cooling water
side | | RS | | | Session; 2 0: | perts & Schafer
3-14-95
e char from cyclo | ne to fine char surge | Worksheet
7-95 Dwg#: 9417-1006-C
e vessel
aarge coarse char at 140F | : | | | Primatech Inc.
Node: 83
Page: 2 | |---------------|---|--------------------------|--|---|---------|----|---------------------------------------| | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | | | | 1.2) Personnel
hazard | | Add no-touch
screens in
appropriate
locations (such
as C-701) | | RS | | Primatech Inc. Node: 84 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Node: 84 Primary Cyclone Parameter: Flow Revision: 0 03-17-95 Dwg#: 9417-1006-C Intention: Flow from gasifier to secondary cyclone and solids back to retort | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |----------------------------|-------------|--|---|-----------------|---------|----|----------| | No/Less
Flow
(inlet) | 1) Plugging | 1.1) Unit upset 1.2) Reverse flow in return dip leg 1.3) Dip leg plugging | cl.1.1) PIT-0709 low
pressure alarm (S)L and
(S)LL
cl.1.2) PDIT-0705 alarms
low (S)L and (S)LL | | | | | | (gas
outlet) | 1) Plugging | 1.1) Unit upset | c1.1.1) PIT-0709 low
pressure alarm (S)L and
(S)LL
c1.1.2) PIT-0706 high
pressure alarm (S)H and
(S)HH | | | | | | (solids
return) | 1) Plugging | 1.1) Increase solids carry over to secondary cyclone 1.2) Overwhelm secondary cyclone yielding carry over to the liquids recovery | | | | | | Primatech Inc. Node: 85 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Node: 85 Secondary Cyclone Parameter: Flow Revision: 0 03-17-95 Dwg#: 9417-1006-C Intention: Provide flow path from primary cyclone to liquids recovery and solids to char fines collection | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |----------------------------|-------------|--|---|---|---------|---------|----------| | No/Less
Flow
(inlet) | 1) Plugging | 1.1) See node 84 outlet | c.1.1.1) See node 84
outlet | | | | | | (gas
outlet) | 1) Plugging | 1.1) Stop gas flow
from gasifier,
unit upset | c1.1.1) See node 84
outlet | Review relief
study, ESD
philosophy,
mechanical design
limits of
equipment and the
compressor
pressure control | | B
RS | | | | | 1.2) Send gas to
char fines
collection | | <u> </u>
 | | | | | (solids
outlet) | 1) Plugging | 1.1) Same as
No/less Flow node
83 | c1.1.1) Same as No/less
Flow node 83 | | | | | A-117 Worksheet Primatech Inc. Node: 86 Page: 1 HAZOP-PC 2.12 Company: IGT Facility: Roberts & Schafer Session: 2 03-14-95 Revision: 0 03-17-95 Dwg#: 9417-1006-C | Node: 86 Glycol Cooling System | | • | |--------------------------------|---|-----| | Parameter: Flow | Intention: Closed loop cooling of the tar quench cool | ıer | | DEVIATION | CAUSES | CONSEQUENCES | SAFEGUARDS | RECOMMENDATIONS | REMARKS | BY | COMMENTS | |-----------------|------------------|-----------------------|---|-----------------|---------|----|----------| | No/Less
Flow | 1) Leak or break | environmental release | cl.1.1) Contaminated
drain collection system
provides environmental
release protection | | | | |