- DOE/MC/29246-3941
(DE95000034)
Distribution Category UC-106

Hot Coal Gas Desulfurization With
Manganese-Based Sorbents

Final Report
September 1992 - December 1994

M. T. Hepworth
R. Ben Slimane

Work Performed Under Contract_ No.: DE-AC21-92MC29246

For
U.S. Department of Energy
Office of Fossil Energy
Morgantown Energy Technology Center
P.O. Box 880 '
Morgantown, West Virginia 26507-0880

By
University of Minnesota
Department of Civil Engineering
500 Pilisbury Drive, SE.
Minneapolis, Minnesota 55455-0220

November 1994




DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.




ACKNOWLEDGEMENT

Credit for the original conception of manganese as a regenerable sorbent is given to
Dr. E. T. Turkdogan, whose assistance in formulating the initial stages of this work
proved invaluable. The support and encouragement of members of the staff of the
Morgantown Energy Technology Center is acknowledged. In.particular, the author
wishes to express thanks to Dr. Venkat K Venkataraman for his help as the technical
monitor and Mr. Suresh Jain who originally participated in the formulation of the
program. In addition, the patience of Ms. Dianne Manilla, who guided the author in
the process of satisfying report requirements is acknowledged. The support of the staff
of the U. S. Bureau Mines, Twin Cities Research Laboratories, in particular, Dr.
Dianne Marozas, is acknowledged and also Dr. Lewis Wade, Director, for permission
. to use the Cahn micro balance and gas train at that laboratory. Finally, and not
least, the author wishes to express his thanks to the personnel at METC who carried
out the complex tasks of arranging contractors’s meeting which proved especially
valuable in maintaining current awareness for the author and his students on
developments in the field of sorbent development. These contributions of METC
have provided a rich background for instruction to graduate and undergraduate
students in recognizing the importance of clean coal combustion. By this means, the
efforts of the METC staff are multiplied by their willingness to provide technical
reports and encouragement to the academic community. When one realizes that up
to one billion tons of new coal combustion facilities in China are being scheduled for
construction up-wind of our continent, the importance of technical advances in clean
coal combustion cannot be under-estimated. The wise provision of Congress in
funding Clean Coal Programs shows their concern for the preservation of our
environment for future generations.




ABSTRACT

The focus of much current work being performed by the Morgantown Energy
Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas
desulfurization is in the use of zinc-based sorbents. Extensive research, however, casts
doubt that these sorbents can be utilized even for the mild conditions associated with
fixed-bed operation. Accordin » METC has shown interest in formulating and testing
manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200 °C
temperature range.

To substantiate the Potential superiority of Mn-based pellets, a systematic
approach toward the evaluation of the desulfurizing power of single-metal sorbents is

sorbent capable of being utilized under a wide temperature range, irrespective of the
reducing power (determined by CO,/CO ratio) of the fuel gas. Then, the
- thermodynamic feasibility of using Mn-based pellets for the removal of H,S from hot-
coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided)
pellets was established. It was concluded that MnO is the stable form of manganese for
virtually all commercially available coal-derived fuel gases. In addition, the objective of
reducing the H,S concentration below 150 ppmv to satisfy the integrated gasification
combined cycle system requirement was shown to be thermodynamically feasible.

A novel process is developed for the manufacture of Mn-based spherical pellets
which have the desired physical and chemical characteristics required during the long-
term cyclic sulfidation and regeneration in a high-temperature desulfurization operation.
Sereening sulfidation tests on a number of formulations, consisting of a Mn-containing
compound (ore or MnCO,), alundum (Al,0;), and organic or inorganic binders, were
carried out using H,S- 2 8as mixtures in a thermogravimetric (Tt ‘GA) apparatus at
temperatures ranging from 700 to 1000 °C. A formulation, designated FORM4-A, was
found to possess the best combination of sulfur capacity, reactivity, and strength.
Regeneration tests determined that for T 2 900 °C, loaded pellets can be fully
regenerated with air in 10 to 15 minutes, without sulfate formation, in strict accordance
with thermodynamic guidelines. Repeated cycling of the leading sorbent formulation
(FORM4-A) was then conducted in the TGA apparatus, up to 5 consecutive cycles. One
important finding was that the capacity of the pellets for sulfur pickup from fuel gas and
the kinetics of reduction, sulfidation, and regeneration reactions improved with recycling
without compromising the strength. ‘ :

Testing of the leading Mn-based sorbent pellets was carried out in a 2-inch fixed-
bed reactor to evaluate the long-term durability and regenerability of the sorbent using a
Tampella-U fuel gas for sulfidation and air for regeneration. Consistent with TGA
results on individual pellets, the fixed-bed tests show small improvement in capacity and
kinetics with the sulfur capacity being about 22% by weight of the original pellet, which
corresponds to approximately 90% bed utilization. In addition, the effect of temperature
on sulfidation reaction equilibrium is determined in the range 800 to 1000 °C. A re-
assessment of the equilibrium states of reactions in the Mn-S-O system is then presented
based on the results obtained and a recent study by Turkdogan.

The shrinking unreacted-core model was found to approximate the kinetic




iii

behavior of Mn-based pellets during both the sulfidation and regeneration stages.
Kinetic analysis of TGA experimental data determined that beyond approximately 35%
reaction completion, sulfidation and regeneration reaction rates were controlied
primarily by gaseous counter-diffusion through the porous product layer. -
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