H-COAL FLUID DYNAMICS

STUDY OF EBULLATED BED FLUID DYNAMICS FOR H-COAL

FINAL PROGRESS REPORT AUGUST, 1977-DECEMBER, 1979

I. A. VASALOS, E. M. BILD, D. N. RUNDELL, D. F. TATTERSON

SUBMITTED: FEBRUARY, 1980

CONTRACT DE-ACO5-77ET-10149

Date Published: April 16, 1980

Research and Development Department

Amoco Oil Company P. O. Box 400 Naperville, Illinois 60540

	Page
FOREWORD	1
OBJECTIVE AND SCOPE OF WORK	2
SUMMARY	2
	-
Review of Prior Work	2
Data Collection and Analysis	2 3 3
Cold Flow Model	
Data Analysis	4 5 5
Model Development	5
Recommendations	5
INTRODUCTION	5
CONSTRUCTION OF COLD FLOW UNIT AND DATA COLLECTION	11
Equipment	12
Physical Properties of Liquids and Solids	12
Unit Data	13
Pressure Drop Data	14
Gamma-Ray Scan Data	14
Tracer Data	14
Catalyst and Coal Fines Settling Data	15
Physical Properties of H-Coal Liquids	15
PDU Sampling Technique	15
Viscosity Measurements	15
Data Analysis	17
Fines Distribution	17
Liquid or Slurry Fluidization	17
Three-Phase FluidizationGamma-Ray	19
Three-Phase FluidizationTracer Data	20
Three-Phase FluidizationData Analysis	23
Catalyst and Coal Fines SettlingData Analysis	24
Comparison of Experimental Results with HRI PDU Data	24
MODEL DEVELOPMENT	25
Three-Phase Holdup Model	25
Correlation of Wake Volume Ratio, K.	26
Correlation of Bubble Terminal Velocity, Uta	26
Correlation of Solids Holdup, Xk	27
Model Predictions	28
Gas Mixing Model	28
CONCLUSIONS AND RECOMMENDATIONS	29
ACKNOWLEDGMENTS	30

NOMENCLATURE	31 35 37
TABLE I LIST OF PUBLICATIONS DURING THE PROGRAM	37
FLUIDIZED BEDS	
	39
TABLE IV SUMMARY OF DATA FOR GAS/LIQUID/SOLID FLUIDIZATION	40
TABLE V EMPIRICAL CORRELATIONS FOR THREE-PHASE BEDS	41
TABLE VI BHATIA-EPSTEIN MODEL	42
	43
TABLE VIII SUMMARY OF GAS/KEROSENE DATA	44
TARLE IX VISCOSITIES OF COAL CHAR/KEROSENE SLURRIES	45
TABLE X COMPARISON OF COAL CHAR WITH H-COAL REACTOR FINES	46
TABLE XI CUMULATIVE SIZE DISTRIBUTION OF COAL CHAR	47
TABLE XII PROPERTIES OF HDS-2A CATALYST	48
TABLE XIII SUMMARY OF EXPERIMENTAL RUNS	49
TARLE YIV DATA FOR PDU LIQUID SAMPLES	50
TABLE XV COAL CHAR DISTRIBUTION ALONG THE REACTOR	51
TABLE XVI PARTICLE SIZE DISTRIBUTION OF REACTOR COAL CHAR SAMPLES	52
TABLE XVII VARIATION IN RICHARDSON-ZAKI INDEX	53
TABLE XVIII FIRST AND SECOND MOMENTS CALCULATED BY TWO METHODS	54
TABLE YIX CALCULATED GAS LINEAR VELOCITIES	55
TABLE XX GAS HOLDUPS CALCULATED FROM GAS TRACER AND	56
GAMMA-RAY TESTS	
TABLE XXI RESULTS OF GAMMA-RAY SCANS THROUGH CHORDS OF THE CROSS-SECTION	5 7
TABLE XXII CALCULATION OF DISPERSION COEFFICIENT	58
TABLE XXIII SOLUTION OF THE BHATIA-EPSTEIN MODEL	59
TABLE XXIV BED SETTLING RATE	60

		Page
Figure 1	H-COAL PDI REACTOR	(1
Figure 2	DRIFT FLUX VS. GAS HOLDUP: DARTON AND HARRISON	61
Figure 3	SCHEMATIC DIAGRAM OF THE FLUID DYNAMICS UNIT	62
Figure 4	SCHEMATIC DIAGRAM OF EXPERIMENTAL UNIT FOR	63 65
•	VISCOSITY MEASUREMENT	0.5
Figure 5	GAMMA-RAY SCAN	65
Figure 6	RADIOTRACER DETECTOR LOCATION	66
	COAL FINES SETTLING RATE	67
Figure 8	DEFINITION OF BINGHAM FLUID	68
Figure 9	EFFECT OF TEMPERATURE ON VISCOSITY OF H-COAL SAMPLE	
Figure 10		69
	COAL FINES CONCENTRATION	70
Figure 11	EFFECT OF VISCOSITY ON BED EXPANSIONMINERAL OIL	71
Figure 12		71
Figure 13	EFFECT OF CATALYST PARTICLE PROPERTIES FOR BED	72
	EXPANSION	73
Figure 14	CORRELATION OF LIQUID/SOLID DATA	74
Figure 15	EFFECT OF OPERATING CONDITIONS ON BED EXPANSION	, - , 75
Figure 16	EFFECT OF TEMPERATURE ON RED EXPANSION	76
Figure 17	BED EXPANSIONCOMPARISON OF VARIOUS LIGHTS	77
Figure 18	EFFECT OF PARTICLE SIZE ON BED EXPANSION	78
Figure 19	BED EXPANSIONEFFECT OF GAS TYPE	79
Figure 20	BED EXPANSIONEFFECT OF GAS TYPE, MINERAL CIL	80
Figure 21	GAS HOLD'JPEFFECT OF COAL FINES	81
Figure 22	GAS HOLDUPCOMPARISON OF VARIOUS LIQUIDS	82
Figure 23	TRACER RESULTS WITH O VOLZ COAL CHAR	83
Figure 24	TRACER RESULTS WITH 15.5 VOL% COAL CHAR	84
Figure 25	DRIFT FLUXEFFECT OF OPERATING CONDITIONS	85
Figure 26	DRIFT FLUXEFFECT OF LIQUID VISCOSITY	86
Figure 27	COMPARISON OF PDU WITH COAL CHAR/KEROSENE	87
Figure 28	VARIATION OF BUBBLE-INCLUDED ANGLE WITH LIQUID	88
	VISCOSITY	
Figure 29	WAKE VOLUMEEFFECT OF COAL FINES	89
Figure 30	WAKE VOLUME EFFECT OF LIQUID TYPE	90
Figure 31	BUBBLE TERMINAL VELOCITYEFFECT OF COAL FINES	91
Figure 32	BUBBLE TERMINAL VELOCITYEFFECT OF LIQUID TYPE	92
Figure 33	RELATIVE SOLIDS HOLDUPEFFECT OF LIQUID TYPE	93
Figure 34	CATALYST HOLDUPPREDICTED VS. ACTUAL KEROSENE AND	94
	17.8 VOL% COAL CHAR	24
Figure 35	GAS HOLDUPPREDICTED VS. ACTUAL KEROSENE AND 17.8	95
	VOL % COAL CHAR	
Figure 36	GAS MIXING MODEL	96
Figure 37	FITTING RESIDENCE TIME DISTRIBUTIONKEROSENE	97
	WITH NO FINES	
REFERENCES		98
***** ********************************		713

		Page
APPENDIX A:	EQUIPMENT DETAILS	105
APPENDIX B:	EXPERIMENTAL DATA AND METHOD OF ANALYSIS	115
APPENDIX C:	TRACER DATA ANALYSIS	215
APPENDIX D:	VISCOSITY MEASUREMENTS OF H-COAL LIQUIDS	219
APPENDIX E:	PREDICTIVE COMPUTER PROGRAM	227
APPENDIX F:	CIRCULATION MODEL FOR GAS RESIDENCE TIME DISTRIBUTION IN THREE-PHASE FLUIDIZATION	261
APPENDIX G:	MODEL DEVELOPMENT	283