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APPENDIX B

LIQUID DISPERSION DATA ANALYSIS
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APPENDIX B

LIOUID MIXING DATA ANALYSIS PROGRAM

A modified method of moments involving approximation of the RTD curves by a
log-normal distribution has been selected to process the liquid mixing data.
This method starts with calculations of the total area under the RID curve

and the percentage of cumulated area as a function of time. These percentage-
cumulated areas are then plotted against sampling time on logarithmic proba-
bility paper and fit by a straight line td> smocth the raw, experimental data
points. The Peclet number (or the dispersion coefficient) 1s calculated from
the mean (the first moment) and the variance (the second moment) of the RTD

curves according to an axial dispersion model.

Axial Dispersion Model

To calculate the liquid Peclet number and the dispersion coefficient, a dis-
persed plug flow axial mixing model is assumed. In dimensionless form, the
basic differential equation representing this dispersion model is

dc dc _d&c
% - (T8 ~a: (B-1)
vwhere C = Sulfur concentration, ppm.
® = Sampling time, TeUp/L, dimensionless.
D; = Liquid dispersion coefficient, cmz/sec.
U, = Average linear liquid velocity, cm/sec.
L = Dpistance between measuring points, cm.
2 = BAxial pogition, z/L, dimensionless.

Solutions to the Dispersion Model

If a perfect'input pulse is assumed, the analytical solution to Equation 1
(Levenspiel and Smith, B-4) is

9 -n-g? | (B-2)
C = aAJamoD /U P | 4epy/UsL

vhere Q = Amount of tracer injected into the system.
A = Cross-sectional area of the reactor.

D) can be estimated by least squares using Equation 2 and the concentration-
time data.

In practice, it is impossible to introduce an ideal input pulse of the tracer
into the system. In order to eliminate the necessity for a perfect input
pulse, the technique of detecting tracer concentration at two downstream
positions is employed.
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As shown by many investigators.(Aris [B-1); Bischoff and Levenspiel [B-2];
Levenspiel and Smith [B-4): Sater and Levenspiel [B-7]), the axial dispersion
coefficient can be calculated from the first and second moments of the RTD
curves at two positions. The first and second moments of the RTD curves are

given by
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where i = 1 and 2.
T = Real time, sec.

Since the first moment of the RTD curve is the mean of that curve, the
average residence time of the tracer can be calculated by taking the dif-
ference of the first moments of the RTD curves:

Tn = “2,' "
The second moments of the RTD curves are a measure of the spread of the RTD
curves, and the difference of the second moments is a measure of the amount
of axial mixing occurring between the two measuring points.. This relationship
has been derived analytically by Levenspiel and Smith (B-4):

(B=5)

(Me)2 = (092)2 = (o, 32 = 2/Pe + 8 (1/Pe)2 (B~6)

Aris (B-1) has shown that for a one-shot injection of tracer with the RTD
being measured at two downstream positions, the above equation can be approxi-
mated adequately by

(acg) 2 = 2/pre (8-7)

In this method, however, the tail of the RTD curve can cause significant
error in the calculation of Pe. Ostergaard and Michelsen (B-6) introduced a
method involving the Laplace transform of the axial dispersion model and
evaluation of a linear transfer function. The authors claim that this method
gives more consistent results than the method of moments, regardless of the
severity of the tailing and the terminal point of the tail.
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The transter function for a linear system is described by

-4 -~}
Ca(s) ‘;Cz('l’) exp (-ST)dt/ é Ca(T)ar |
Fls) = &s5 ° F ¥ (3-8)
1 Icl('l‘) exp (-ST)at/ I C1(r)ar
The axial dispersion model after the Laplace transformation is
(R-9)

F(s) = exp{ 7 [L- @+ -;;—") 13

After rearranging, the above equation becomes

Eog (‘(:)>:} N = TS i:log G%SDJ-Z - %e‘ (B-10)

A plot of (1/F(s])~! versus S[log(1/F[s])]~2 should yield a straight line.
The Peclet number and the mean residence time can then be calculated from the
intercept and slope, respectively.

This method was evaluated by processing several sets of liquid mixing data,
and the results were unsatisfactory. One of the problems associated with
using the Laplace transfer function for estimating dispersion parameters is
the range of the Laplace operator, s. Hopkins, et al., (B-3) studied this
effect and showed that for small values of s, the transfer function becomes
insensitive to variation in the parameter seT,. Therefore, small errors in
the transfer function will greatly affect the resulting values of slope and
intercept. For large values of s, the initial part of the tail is too
heavily weighted to give accurate evaluation of the transfer function.

Selected Method of Solution

Due to unsatisfactory results produced by using the Laplace transfer function,
a modified method of the moments was used to process the liquid mixing data.
This modified method of moments, involving avproximation of the RTD curves by
a log-normal distribution, has been selected to process the liquid-phase mixing
data. The method requires plotting the cumulative percentage (per cent total
area) against the corresponding sampling time (t) on the logarithmic proba-
bility paper (Levenspiel and Smith [B-4]). Data smoothing, including deter-
mination of the cut-off point of the tail, was done by drawing a straight

line which best fit the data points up to about 98% total area on the logar-
ithmic probability paper. An example plot is shown in Figure B-l.

Because the cumulative percentage area is plotted against the corresponding
sampling time on logarithmic probability paper, the following conversions are
involved in obtaining the first and second moments on the arithmetic scale.
The first moment about the origin of sampling time is

u= exp [ln T' + §2/2) (B-~11)
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where 8 = 1ln T'' - 1n 7

T' = sSampling time corresponding to log-normal distribution
mean (at 508%).

T'' = Sampling time corresponding to one standard deviation
in log-normal distribution (at B48).

The second moment about origin of sampling time is
o= u [exp(s?) - 1)1/2 (B-12)
Since the dimensionless sampling time & = t/Tp = t/Au

2. o _2
(oe) = T 2- Pe (3‘13)
m

For liquid mixing experiments using two RTD curves to estimate the variance,
the above equation becomes

Ag? 2 Dy
(bog)?= TpZ = Pe 2 9,0 (B-14)

Substituting values calculated from Equations B-11 and B-12 into Equation B-14,
the Peclet number and dispersion coefficient can be calculated.

Sensitivity of Po_on Parameters s, y, and ¢

The application of the method of moments to estimate the dispersion coef-
ficient is straightforward, as illustrated by Equation B-14. The value of
Pe, however, is greatly influenced by the difference of the second moments.
As the values of Ac2 approach zero, error associated with the Pe calculation
increases rapidly.

In general, the first moments can be estimated with less relative error than
the second moments. As can be seen from the logarithmic probability plot
(Figure B-1) for the liquid mixing data, the first moment is estimated at a
single point (50%) and is relatively insensitive to the slope of the line.
The second moment, estimated from the difference between 84% and 50% points
(one standard deviation), is very sensitive to the slope of the line.

The slope of the line is determined by the distribution of the cumulative
area under the RTD curve, which in turn is affected by the value of the base
line for the RTD curve. Based on analysis of the cold-flow liquid mixing
data, a guideline was established for selecting a proper base line concen-
tration. In general, if the initial sulfur concentration agrees closely with
the average sulfur concentration of the tail, the average of the two is
chosen. When this is not the case, the average sulfur concentration of the
tail is chosen as the base line.
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Variability between tests may also be estimated by comparison of results of
experiments performed at similar conditions. Table B-I contains two such
compar isons.
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NOMENCLATURE FOR APPENDIX B

C(s)
Dy
F(s)

Pe

TI

T‘.

Cross-sectional area of the column.
Sulfur concentration, ppm. |

Laplace transform of C.

Dispersion coefficient, cmz/aec.

Laplace transfer function, Bquation B~8.
Peclet number.

Amount of tracer injected into the system.

Standard deviation or square root of the variance
in log scale.

Sampling time corresponding to C, sec.
Sampling time corresponds to log-normal mean.

Sampling time corresponds to one log-normal
standard deviation.

Mean residence time, sec.
Average linear liquid velocity, cm/sec,
Axial position, cm,

Axial position, dimensionless (z/L).

Sampling time, dimensionless.
Second moment or square root of the variance.
‘ﬂ'm-

First moment or mean of the RI'D curve.
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Figure B-1

PROBABILITY PLOT FOR RUN 490-08
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