
APPENDIX E

CALCULATION: FORCE TO SUSPEND A CATALYST PARTICLE

APPENDIX E

CALCULATION: FORCE TO SUSPEND A CATALYST PARTICLE

Extreme Case: No Impact from Other Particles:

By a Force Balance Shear Force + Buoyancy Force = Weight.

$$\tau_{w} \cdot \pi dL + 2 \frac{\pi d^{2}}{4} + \frac{\pi d^{2}L}{4} \rho_{sl}g = \frac{\pi d^{2}L}{4} \rho_{p}g$$

Values used for calculation are listed in Table E-I.

$$\tau_{\rm w} = 20.41 \frac{\rm gm-cm}{\rm sec^2} / {\rm cm}^2$$

$$= 20.41 \, \rm dyne/cm^2$$

$$= 2.04 \, \rm N/m^2$$

By contrast, yield stresses measured by Battelle and ORNL are ~ 0.2.

The shear stresses predicted using the Bingham plastic model are expressed:

$$\tau_w = \tau_o + \dot{\gamma}\eta_{p1}$$

For the slurries tested:

$$\tau_o = 0.2 \text{ N/m}^2$$

$$\eta_{p1} = 2.5 \text{ cp}$$

$$= 2.5 \cdot 10^{-2} \text{ gm/cm-sec} = 2.5 \cdot 10^{-3} \text{ kg/m-sec}$$

$$= 2.5 \cdot 10^{-3} \frac{\text{N-sec}}{\text{m}^2}$$

Then 2.0 N/m² * 0.2 N/m² + 2.5 x
$$10^{-3}$$
 $\mathring{\gamma}$ * 720 sec⁻¹

For the PDU tests, this value was reduced to 450 sec 1 to account for the buoyant effect of the gas. A pseudo-viscosity was then calculated:

$$\eta \star = \frac{\tau}{\tilde{\gamma}} = \eta_{\text{pl}} + \frac{\tau_0}{\tilde{\gamma}}$$

TABLE E-I

đ	Particle diameter (1)	0.140 cm
L	Particle length (1)	0.332 cm
^ρ s 1	Slurry density (2)	0.93 g/cm ³
ρ _P	Soaked Particle Density (2)	1.65 g/cm^3
τ w	Shear stress, N/m ²	
g	Gravitational acceleration	980.7 cm/sec ²
Ÿ	Shear rate, sec ⁻¹	
^т о	Yield stress, N/m ²	
η _{p1}	Plastic viscosity, cp	
η*	Pseudo-viscosity, cp	

- (1) Table 28, Reference 2.
- (2) Nominal value--Table XIX.
- (3) Nominal value—Table XVIII.