IX) MODEL APPLICATION

Use of the Bhatia Epstein model for prediction of volume fractions from
operating conditions was discussed previously (1). The three parameters
(Upp, Ko, and Xy) are provided to the model as input, along with gas and
liquid velocities. Other necessary data, such as the Richardson Zaki
parameters (Uy and n) may be predicted using the technique in Section
VIII.

The application of this model to an operating liquefaction reactor is
complicated by the variation of slurry density and viscosity; over the
46 operating periods of PDU-10, significant changes in these two slurry
properties were observed. Inducing these changes and observing their
effect was an objective of the PDU-10 run. In a full scale commercial
operation, the ranges of fluid properties would not be as broad after
the initial startup.

For modelling purposes, Amoco Test 6, coming at the end of the PDU-10
normal run may be taken as most representative. The values of bubble
rise velocity, wake volume ratio, and wake concentration ratio from this
test are recommended for use. Implicit in these values, however, are

the effects of the Amocat I-A catalyst properties, coal and ash concen-
tration, and the reactivity and yield structure of the Wyodak coal tested
in PDU-10. Application of this model to other coals or catalysts should
proceed only after suitable tests, such as physical inspection and micro-
autoclave experiments provide the basis for estimation of slurry product
properties.

X) CONCLUSIONS

The overall goal of our research efforts is to develop a fundamental under-
standing of the fluid dynamics occurring in the three-phase, ebullated-bed
H-Coal system, as well as obtain data useful in the design, operation, and
control of the system. Several important areas have been investigated under
this DOE contract, and the results are summarized here.

A) The fluid dynamics occurring in HRI's H-Coal process development unit
(PDU) during Run PDU-10 were measured and compared with Amoco Oil cold-
flow fluidization results. It was found that catalyst bed expansions and
gas holdups are higher in the PDU than those observed in the cold-flow
tests for slurries having the same nominal viscosity.

B) Analysis of the PDU results shows that the differences in A) can be
explained by assuming that the viscosity in the reactor is effectively
four times greater than the viscosity of the slurry sample obtained from
the pressure letdown vessel. It may be that viscosity gradients rather
than a uniform viscosity exist in the reactor. It is known from results
published in the literature that a small amount of asphaltenes added to
an oil has a dramatic effect on the viscosity of the oil.



c)

D)

E)

F)

G)

H)

1)

J)

Comparison of PDU results with cold-flow results shows that the bulk of
the operating reactor gas flow lies in the ideal bubbly regime. It also
appears that the gas bubbles in these PDU tests are rising quite slowly.
Only two of the operating points in our test program on the PDU were
found to lie in the churn turbulent regime.

Two- and three-phase fluidization experiments were carried out inm Amoco's
cold-flow fluid dynamics unit. The data base now includes coal char/
kerosene slurry concentrations of 4.0, 9.8, and 20.7 volZ in addition to
the 15.5 and 17.8 vol% data from our earlier work. Both HDS-2A and
Amocat-1A catalysts were used in the tests. Bed expansion is primarily a
function of slurry velocity, with gas velocity having only a weak effect.
Bed contractions have been observed in some cases at sufficiently high
gas velocity.

Gas and liquid holdups were found to be uniform across the cross-section
of the Amoco cold-flow fluid dynamics pilot plant.

A significant degree of backmixing was found to occur in the H-Coal
system as measured in the Amoco cold-flow unit. Dispersion coefficients
and Peclet numbers were found to lie in the ranges 70 to 130 cm?/sec and

3.6 to 9.9, respectively.

Three techniques were developed for the study of the bubble dynamics
occurring in three-phase fluidized beds: 1) A laser light beam probe for
measuring the behavior of bubbles greater than 120 micronms; 2) A laser
holographic technique for determining the size, shape, and position of
bubbles in the bed; and 3) A resistivity probe for determining bubble
frequencies and a qualitative measure of the flow regime.

The bubble size studies in G) showed that the design of the inlet dis-
tributor played an important role in the breakup of bubbles entering the
fluidized bed. It was shown that smaller bubbles can be generated by
this particular inlet distributor than could be produced by the breakup
of bubbles by solid particles within the bed.

An equilibrium bubble size model was developed based on data obtained
using the light beam probe. ’

A viscometer was adapted for measurement of the viscosity of coal slurries
at high temperature and pressure.
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NOMENCLATURE

A
BE

-9

o?ﬂ

3 X

Tl
Tll

Ug

Cross-sectional area of the column

Catalyst bed expansion, %

Concentration, ppm

Particle diameter, cm

Sauter mean bubble diameter

Particle diameter

Column diameter

Laplace transform of C

Drag coefficient

Reactor diameter, feet

Dispersion coefficient, cm?/sec

Laplace transfer function

Gravitational acceleration constant, 980.6 cm/sec?
Galileo number

Catalyst bed height

Gamma-ray intensity th;ough empty reactor, counts/sec
Gamma-ray intensity through kerosene, counts/sec
Gamma-ray intensity through test conditions, counts/sec
Wake volume ratio, volume of wake/volume of bubble
Distance between sampling trays, 157.5 cm or material thickness
Mass of dry catalyst

Richardson-Zaki index

Peclet number

Amount of tracer injected into the system

Radiai position index, R /R,

Radial sampling position

Radius of fluidization column

Particle Reynolds number

Standard deviation or square root of the variance in log scale
PDU reactor temperature minus ambient temperature, °F
Sampling time corresponding to C, sec

Sampling time corresponding to log-normal mean
Sampling time corresponding to one log-normal standard deviation
Mean residence time, sec

Superficial gas velocity, cm/sec

Superficial liquid velocity, cm/sec




U, Particle terminal velocity, cm/sec
Uep Bubble terminal velocity, cm/sec
s Gas/liquid slip velocity, cm/sec

U, Average linear liquid velocity, cm/sec
¥ Volumetric liquid feed rate, ft3/sec
Vep Drift flux, cm/sec
X Solid concentration ratio in wake

Axial position, cm

Axial position, dimensionless (z/L)
Greek
a Thermal expansion coefficient, in/in OF
(2] Sampling time, dimensionless
o Second moment or square root of the variance, or surface tension
) O’/Tm
m First moment or mean of the RTD curve, or viscosity in centipoise
€ Volume fraction catalyst, dimensionless
€co Settled catalyst volume fraction, dimensionless
ef Volume fraction fines, dimunsionless
€g Volume fraction gas, dimensionless
€] Vclume fraction liquid, dimensionless
Ew Volume fraction wake, dimensionless
€51 Volume fraction slurry = € + €¢
Pp Catalyst dry particle density, g/cm3
Oc Catalyst soaked particle density, g/cm3
p£ Fines density, g/cm3
p1 Liquid density, g/cm3
Psl Slurry density, g/cm3
Ap Solid/liquid density difference
0B Catalyst bulk density, g/cm3
He Catalyst mass absorption coefficient
173 Fines mass absorption coefficient
TS Liquid mass absorption coefficient
we Weight percent fines
T Shear stress, gm/cm-sec
1o Yield stress, gm/cm-sec
Npl Platic viscosity, cp
Y Shear rate, sec~l
A Difference (in predicted and observed volume fractioms)



