3.0 CONCLUSIONS

The research work conducted was concentrated on the feasibility of using waste iron
oxides in a simultaneous hot gas desulfurization and particulate filtration process. The test results
indicated that the very heavy dust loading of iron oxide and coal ash mixture can be successfully
dislodges with the use of back pulse cleaning technique. Heavy particulate filtration testing were
repeated many times with a concentration more than 100,000 ppmw. The successful dust cake
dislodging on very high dust loading and efficient hot gas desulfurization performance with the
use of waste iron oxides provided assurance of the feasibility of the use of iron oxides as a
disposable sorbent candidate for hot gas desulfurization work.

Based on the parametric test results of particulate filtration, a high efficiency filtration
system can be optimized to filtrate particulate and have the dust cake removed with the use back
pulse cleaning technology. The sharp increase of dust loading of iron oxides as a disposable
sorbent can be successfully managed and cleaned during the particulate filtration process.

An innovative design was completed to evaluate the reaction time and residence time
required for iron oxide on hot gas desulfurization at a wide spectrum of temperature. Reducing
KRW-Gas stream with 5500 ppm hydrogen sulfide concentration was desulfurized with mixtures
of coal ash and waste iron oxides to reduce hydrogen sulfide concentration to a safe level.
- Different ratio of iron oxides to coal ash mixture (same as the filtration testing) was utilized to
evaluate the amount of iron oxides required in the coal ash and iron oxide mixtures (converted to
space velocity after post test data analysis) to perform desulfurization task.

‘Based on the test results of hot gas desulfurization, disposable iron oxide can be injected
into a strong reducing KRW gas, to absorb corrosive hydrogen sulfide. The major parameters of
hot gas desulfurization include the reaction temperature, space velocity and the reaction time
provided for iron oxide to absorb hydrogen sulfide from the hot gas stream. According to the test
results of hot gas desulfurization described in section 2.2.6, it is encouraging to find out that
waste iron oxides can be served as a disposable sorbent alternative to reduce the concentration
level of hydrogen sulfide to a low ppm level, better than 200 ppm goal set for regenerable
sorbent. The findings of hot gas desulfurization testing provides a guideline for hot gas
desulfurization testing system design. The coordination of space velocity, residence time and
reaction temperature could help develop an efficient and economical hot gas desulfurization
system.

The particulate filtration testing also indicates that the use of waste iron oxides as sorbent
additive could also aid dust cake maintain low differential pressure across the filtration chamber
and the filtrated gas stream plenum. The back pulse cleaning technology was also verified to be
capable to dislodge dust cake developed by heavy dust loading of mixtures of waste iron oxide
and coal ash.

The use of disposable iron oxides as a desulfurization sorbent candidate will mitigate
many constraints imposed on current sorbent candidates. Physical attrition and reducing of iron
oxides for reducing gas are not issues any more for iron oxides to act as a sorbent candidate.

The less stringent operating temperature requirement of lower operating temperature
IGCC and PFBC system will also justify the use of iron oxides as the low cost desulfurization
sorbent alternative, because it is efficient for iron oxides for desulfurization application at lower
operating temperatures. The use of standard off shelf components for particulate cleanup system
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will accelerate the realization of new IGCC and PFBC power systems for industries.

The use of disposable sorbent can also eliminate the needs of sorbent regeneration
process, saving a lot of initial capital investment and downstream operation and maintenance
expenses required for current regenerable sorbent applications.

The very low cost of waste iron oxide material and the elimination of the capital
investment on sorbent regeneration system make it attractive to use waste iron oxide as a
disposable sorbent alternative to replace the regenerable sorbent candidates developed in the last
decade. The additional savings on lower operation and maintenance expenses justify various
economical benefits of the use waste iron oxides as the disposable sorbent candidate on the
operation of simultaneous hot gas desulfurization and particulate filtration for hot gas cleanup
applications.

According to the parametric testing results of particulate filtration and hot gas
desulfurization, it concluded that the use of disposable iron oxide as an alternative of
desulfurization sorbent during coal combustion or coal Gasification processes is feasible.
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Figure A. Filter Cleaning Test Facility
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Figure 7. Test Setup
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Figure 9b. Gas Supply and Post Gas Treatment Assembly
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Figure 10b. Fast Response Solenoid Valve
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Reaction Temp. 1000 F vs Space Velocity (1/HR)
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Temperature Effect (F) vs Residence Time @
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