Section 8 ### CAPITAL AND PRODUCTION COST ESTIMATES ### INTRODUCTION Estimates of plant investment and other capital requirements, as well as estimates of the costs of production of the coal liquid products, have been developed for the three coal conversion plants presented in Sections 5, 6, and 7. For reference, the basic parameters of these plants are summarized in Table 8-1. Data developed include: - 1. Capital cost estimates - 2. Required product selling prices to achieve acceptable returns on equity - 3. Analysis of the sensitivity of product selling price to several factors including: - --Capital cost - --Technical and economic parameters - --Alternative financing schemes Production cost estimates are developed on two bases: first, for nonregulated producers, and second, for regulated utility producers. Table 8-1 COAL CONVERSION PLANT PARAMETERS | Case | | HE | HW | CM | |--|--------------------------------------|------------------------------------|---------------------------|----------------------------------| | Process
Type of Coal | | H-Coal
Illinois No. 6 | H-Coal
Wyodak | Lurgi Methanol
Illinois No. 6 | | Plant Performance | | | | | | Coal Feed (As Receive
Products | d) st/sd | 21,891 | 30,960 | 25,418 | | Propane
Butane | bbl/sd
bbl/sd | 7,175 | | | | Gasoline
Turbine Fuel
Fuel Oil | bbl/sd
bbl/sd
bbl/sd
bbl/sd | 4,658
16,010
27,393
6,880 | 21,772
25,880
3,743 | | | Methanol
Ammonia | st/sd
st/sd | 222 | • | 15,919 | | Sulfur
Phenol | st/sd
st/sd | 664
50 | 162
194
24 | 768 | | Power Export
Thermal Efficiency, | a kW | 0
69.7 | 18,572
59.6 | 0
53.9 | | Operating Requirement | <u>s</u> | | | | | Raw Water
Ash Disposal (Dry)
Operating Jobs/Shif | gpm
st/sd
t | 9,196
2,253
82 | 8,633
1,716
82 | 16,624
2,646
60 | | <u>Land Requirement</u> - Ac | res | 1,000 | 1,000 | 1,000 | ^a Thermal efficiency is shown for primary fuel products. By-products and power are excluded. # PROJECT CAPITAL AND OPERATING COST ESTIMATING BASES Table 8-2 presents the parameters used in developing the investment and production cost estimates. This table is divided into several sections as follows: - A. General project parameters as applied to nonregulated producers - B. Modifications to those general project parameters relevant to regulated producers - C. Capital estimating bases - D. Operating cost estimating bases Tables 8-3, 8-4, and 8-5 present process contingency and maintenance cost rates for the three plants under consideration. In an effort to quantify the uncertainty in the design and cost of a commercial-scale plant, process contingencies are added to those sections of the plant not considered to be commercially proven at this time. In addition, project contingency is applied at the rate of 15 percent of plant cost including process contingency to allow for additional equipment or other costs that would result from complete design of a specific project at an actual site. Assumptions and considerations involved in developing the cost estimates are listed below: - Location Springfield, Illinois area for Cases HE and CM Gillette, Wyoming area for Case HW - All field labor data are based on a Stone & Webster labor survey for the plant locations mentioned above. - Labor productivity is 1.31 for Springfield, Illinois area and 1.25 for Gillette, Wyoming area, based on ample labor being available at the job site. No construction camp cost is included. - All material, subcontracts, labor, and construction costs are mid-1982. - A clear and level site is assumed. - A soil pressure of 3000 lb/sq ft and a frost line of 4 ft are assumed. - It is assumed that no underground obstructions exist and that site drainage is not required. - Electrical power is generated at the site with an emergency tie-in to the local power grid. - Water supply is provided from a river water source including all associated water treating. - All equipment costs are derived from Stone & Webster in-house estimating data, except for special proprietary items. - Bulk materials and labor costs are estimated for foundations, electrical services, painting, fireproofing, and structural steel. - Erection man-hours for equipment are based on Stone & Webster standard estimating labor units. Factored piping, instrumentation, and insulation man-hours are based on man-hour per dollar of material cost. - All other indirect construction costs are factored based on inhouse historical data. - The following items are excluded: office equipment, office supplies, medical equipment, and expendable laboratory supplies. Table 8-2 PROJECT CAPITAL AND OPERATING COST ESTIMATING BASES ## A. GENERAL PROJECT PARAMETERS - NONREGULATED PRODUCERS | No. | <u>Item</u> | | | Basis | |-----|--------------------------------|--------|----------------------------------|---| | 1. | Cost Estimates | | Mid-1982 | \$ | | 2. | Type of Industry | | Non-regul | ated | | 3. | Common Equity Capital | | 100% | | | 4. | Rate of Inflation (Escalation) | | 8.5% per | year | | 5. | Return on Equity (DCF Rate) | | 18.3% per
(9.0% exc | year
cluding inflation) | | 6. | Plant Schedule | | Commence
of 1985
Commercia | Construction - at the beginning al Operation - Start eginning of 1990 | | 7. | Schedule of Expenditures | (1985) | <u>Yr</u>
1 | <u>%</u>
10 | | | | (1903) | 2
3
4
5 | 20
30
20
20 | | 8. | Plant Book Life | | 20 years | | | 9. | Book Depreciation | | Straight | Line | | 10. | Plant Tax Life | | 5 years | | | 11. | Method of Depreciation | | elerated Co
Lows: | ost Recovery System as | | | | | <u>Yr</u> | Depreciable Fraction | | | | | 1
2
3
4
5 | 0.15
0.22
0.21
0.21
0.21 | ### Table 8-2 (cont'd) | No | <u>Item</u> | Basis | |-----|---|---| | 12 | . Income Tax | Federal Rate - 46%
State Rate - 7.4% | | 13 | . Rate of Increase in Coal Pure | chase Price | | | | Type Coal Illinois Wyodak """ """ """ """ """ """ """ | | 14. | Rate of Increase of Competiti
Fuel Price | ve 0.74% per year over the Inflation Rate | | 15. | Competitive Fuel | North African Crude with an average delivered price of \$6.50/10 ⁶ Btu mid-1982 basis. | | В. | MODIFICATIONS TO GENERAL PROJECT PAREGULATED PRODUCER | RAMETERS FOR UTILITY-TYPE FINANCING - | | No. | <u>Item</u> | Basis | | 1. | Type of Utility | Investor-Owned Utility | | 2. | Common Equity | 35% | | 3. | Preferred Stock | 15% | | 4. | Debt | 50% | | 5. | Return on Common Equity | 15.3% per year | | 6. | Preferred Stock Dividend | 11.5% per year | | 7. | Interest on Debt | 11.0% per year | | 8. | Plant Book Life | 30 years | | С. | CAPITAL COST ESTIMATING BASES (BOTH | TYPES OF PRODUCERS) | | No. | <u>Item</u> | Basis | | 1. | Project Contingency | 15% | | 2. | Process Contingency | (Refer to Tables 8-3, 8-4, 8-5) | | 3. | Prepaid Royalty | 0.5% of Unescalated PFI | ### Table 8-2 (cont'd) | No. | <u>Item</u> | Basis | |-----|---|--| | 4. | Land | \$6200/acre | | 5. | Organization & Start-up Expenses | Sum of a) One month of fixed operating and maintenance costs b) One month of variable operating costs (calculated at full capacity) c) One week of full capacity fuel or raw materials cost d) 2% of Total Plant Facilities Investment | | 6. | Investment Tax Credit | 8% of Non-expensable, Escalated PFI in the year of expenditure | | 7. | Working Capital | Sum of a) Two months cost of coal at full capacity b) Three months cost of total labor c) Two months cost of all other operating costs at full capacity d) A contingency of 25% of the total of above three costs | | 8. | Allowance for Funds During
Construction (AFDC) | Cost of money for regulated facility and return on common equity for nonregulated facility. | | D. | ESTIMATING OPERATING COST BASES (BOTH TYPES C | OF PRODUCERS) | | No. | <u>Item</u> | Basis | | 1. | Annual Operating Capacity Factor | 90% | | 2. | Coal Price | Illinois Coal-\$1.89/10 ⁶ Btu, HHV
Wyodak Coal-\$0.75/10 ⁶ Btu, HHV | | 3. | Operating Labor | \$17.25/man-hour, including 35% payroll burden | ### Table 8-2 (cont'd) | No. | <u>Item</u> | Basis | |-----|---|---| | 4. | Administrative & Support Labor | 30% of the total Operating & Maintenance Labor | | 5. | Maintenance Cost | (Refer to Table 8-3, 8-4, 8-5) | | 6. | Maintenance Labor Cost | 40% of Maintenance Cost | | 7. | Maintenance Materials Cost | 60% of Maintenance Cost | | 8. | General & Administrative Expense (Only for nonregulated producer) | 0.7% of Unescalated PFI | | 9. | By-product Credits | Electric Power - 50 mils/kWh
Sulfur - \$62.50 per short ton
Ammonia - \$70.00 per short ton | | 10. | Property Tax and Insurance | 2% of Escalated PFI | | 11. | Raw Water Cost | 60¢ per 1000 gallons | | 12. | Ash Disposal Cost | \$5.65 per short ton (dry) | Table 8-3 PROCESS CONTINGENCY AND MAINTENANCE COST RATES CASE HE | Unit | Section | Process Contingency
Percent of Mid-1982
Estimated Base Cost | Maintenance Costs
Percent of Mid-1982
Estimated Base Cost | |-------------|---|---|---| | 100 | Coal Preparation | 0 | 3 | | 200 | H-Coal Liquefaction | | | | 201-202-203 | Coal Slurrying, H-Coal
Reaction, Effluent
Separation, Fractionation | n 30 | 6 | | 204 | Amine Plant | 0 | 2 | | 205 | Cryogenic Plant | 0 | 2 | | 206-207-208 | Product Upgrading | 20 | 3 | | 300 | Light Ends Processing | | | | 301 | DGA Amine Plant | 0 | 2 | | 302 | Gas Plant (LPG Recovery) | 0 | 2 | | 400 | Hydrogen Plant | | | | 401 | Gasification (Texaco) | 15 | 4 | | 402 | CO Shift | 0 | 3 | | 403 | Acid Gas Removal | 0 | 2 | | 500 | Oxygen Plant | 0 | 2 | | 600 | Emission Control System | | | | 601 | Sulfur Recovery (CLAUS) | 0 | 2 | | 602 | Tail Gas Treating (SCOT) | 15 | 3 | | 603 | Sulfur Flaking | 0 | 2 | | 700 | Effluent Control System | | | | 701 | Phenol Recovery | 0 | 3 | | 702 | Sour Water Stripping | 0 | 3 | | 703 | Ammonia Recovery (PHOSAM | 0 | 3 . | Table 8-3 (cont'd) PROCESS CONTINGENCY AND MAINTENANCE COST RATES CASE HE | Unit | Section | Process Contingency
Percent of Mid-1982
Estimated Base Cost | Maintenance Costs
Percent of Mid-1982
Estimated Base Cost | |------|-------------------------|---|---| | 800 | Tank Storage | 0 | 1.5 | | 900 | Refrigeration | 0 | 2 | | 1000 | Power Generation | 0 | 1.5 | | 1100 | Cooling Water System | 0 | 1.5 | | 1300 | Water & Waste Treatment | 20 | 1.5 | | 1400 | Flare System | 0 | 1.5 | | 1500 | Building | 0 | 1.5 | | 1600 | Common Facilities | 0 | 1.5 | Table 8-4 PROCESS CONTINGENCY AND MAINTENANCE COST RATES CASE HW | Unit | Section | Process Contingency
Percent of Mid-1982
Estimated Base Cost | Maintenance Costs
Percent of Mid-1982
Estimated Base Cost | |-------------|--|---|---| | 100 | Coal Preparation | 20 | 3 | | 200 | H-Coal Liquefaction | | | | 201-202-203 | Coal Slurrying, H-Coal
Reaction, Effluent
Separation, Fractionatio | n 30 | 6 | | 204 | Amine Plant | 0 | 2 | | 205 | Cryogenic Plant | 0 | 2 | | 206-207-208 | Product Upgrading | 20 | 3 | | 300 | Light Ends Processing | | | | 301 | DGA Amine Plant | 0 | 2 | | 400 | Hydrogen Plant | | | | 401 | Gasification (Texaco) | 15 | 4 | | 402 | CO Shift | 0 | 3 | | 403 | Acid Gas Removal | 0 | 2 | | 405 | Gas Reform & Shift | 0 | 4 | | 406 | CO ₂ Removal | 0 | 3 | | 500 | Oxygen Plant | 0 | 2 | | 600 | Emission Control System | | | | 601 | Sulfur Recovery (CLAUS) | 0 | 2 | | 602 | Sulfur Recovery (Beavon
Stretfo | | 3 | | 603 | Sulfur Flaking | 0 | 2 | | 700 | Effluent Control System | | | | 701 | Phenol Recovery | 0 | 3 | Table 8-4 (cont'd) PROCESS CONTINGENCY AND MAINTENANCE COST RATES CASE HW | <u>Unit</u> | Section | | Maintenance Costs
Percent of Mid-1982
Estimated Base Cost | |-------------|--------------------------|-----|---| | 702 | Sour Water Stripping | 0 | 3 | | 703 | Ammonia Recovery (PHOSAM |) 0 | 3 | | 800 | Tank Storage | 0 | 1.5 | | 900 | Refrigeration | 0 | 2 | | 1000 | Power Generation | 0 | 1.5 | | 1100 | Cooling Water System | 0 | 1.5 | | 1300 | Water & Waste Treatment | 20 | 1.5 | | 1400 | Flare System | 0 | 1.5 | | 1500 | Buildings | 0 | 1.5 | | 1600 | Common Facilities | 0 | 1.5 | Table 8-5 PROCESS CONTINGENCY AND MAINTENANCE COST RATES CASE CM | Unit | Section | Process Contingency
Percent of Mid-1980
Estimated Base Cost | Maintenance Costs
Percent of Mid-1980
Estimated Base Cost | |------|---------------------------------------|---|---| | 100 | Coal Preparation & Grind | ing 0 | 3 | | 200 | Slurry Preparation | 30 | 3 | | 300 | Air Separation Plant | 0 | 2 | | 400 | Gasification, Quench and Scrubbing | 15 | 4 | | 500 | Shift Conversion and
Heat Recovery | 0 | 3 | | 600 | Acid Gas Removal | 0 | 2 | | 700 | Sulfur Recovery (CLAUS) | 0 | 2 | | 800 | Tail Gas Treating (SCOT) | 15 | 3 | | 900 | Methanol Synthesis | 0 | 2.5 | | 1000 | Power Generation | 0 | 1.5 | | 1100 | Cooling Water System | 0 | 1.5 | | 1200 | Tankage-Storage | 0 | 1.5 | | 1300 | Water Management | 10 | 1.5 | | 1400 | Flare System | 0 | 1.5 | | 1500 | Buildings | 0 | 1.5 | | 1600 | Common Facilities | 0 | 1.5 | #### CAPITAL COST ESTIMATES Table 8-6 summarizes capital requirements for the three cases under study. The data presented are based on data developed in subsequent tables and sections as follows: - Tables 8-7, 8-8, and 8-9 present data on the catalyst and chemical requirements - both for initial fill and for makeup. - Tables 8-10, 8-11, and 8-12 present the capital cost estimates for the plants by sections, with definition of the elements of these estimates: equipment and material, subcontract, labor, etc. - The total capital requirements for a facility to start up in 1990 are based on data presented in Appendix A. These data were developed through use of an EPRI computer program designed to develop project costs on a real time basis as well as to develop manufacturing costs. Table 8-6 CAPITAL REQUIREMENTS SUMMARY | Case | HE | HW | CM | |---|--|--|---| | Process
Coal | H-Coal
Illinois No. 6 | H-Coal
Wyodak | Lurgi Methanol
Illinois No. 6 | | Plant Facilities Investment
- Mid-1982 \$10 ⁶ | | | | | Base Estimate Process Contingencies Project Contingencies Total Plant Investment Initial Fill of Cat. & Chem. Total Plant Facilities Investment | $ \begin{array}{r} 2,032 \\ 224 \\ \underline{338} \\ 2,594 \\ \underline{20} \\ 2,614 \end{array} $ | $ \begin{array}{r} 2,536 \\ 351 \\ \underline{433} \\ 3,320 \\ \underline{21} \\ 3,341 \end{array} $ | $ \begin{array}{r} 2,416 \\ 98 \\ \underline{377} \\ 2,891 \\ \underline{24} \\ 2,915 \end{array} $ | | Total Capital Requirement - Jan 1990 | startup @ 8.5% gene | eral inflation rate | - \$10 ⁶ | | Nonregulated producer
Regulated, investor-owned utility | 5,733
5,300 | 7,198
6,640 | 6,367
5,882 | Table 8-7 SUMMARY OF CATALYSTS AND CHEMICALS COST CASE HE | | | Initial | Charge | Annual N | fakeup ^C | |---------------|--|--|--|--|---| | <u>Unit</u> | Catalyst or Chemical | Quantity ^a | Cost \$ ^b | Quantity ^a | Cost \$b | | 200 | American Cyanamid HDS-1442A
Catalyst | 998,500 lb | 5,419,900 | 7,063,500 lb | 38,340,600 | | | Startup Oil | 13,400 ъъ1 | 441,300 | - | | | 300 | DGA (diglycolamine) | 100,000 lb | 88,500 | 22,200 lb | 20,200 | | 400 | Sour Shift Catalyst
Selexol Solvent | 1,144,000 lb
2,128,000 lb | 10,367,400
2,813,100 | 251,100 lb
200,000 lb | 2,275,700
264,900 | | 600 | Activated Alumina
Cobalt Moly Catalyst | 164,000 lb
343,000 lb | 108,600
728,100 | 61,100 lb
76,200 lb | 40,700
162,500 | | 700 | Solvent (for Tar Acids)
Sour Water Stripper Chemicals | : | 17,700
14,200 | | 103,500
64,600 | | 1000/
1300 | Lime Soda Ash Sulfuric Acid (93 percent) Caustic Soda (100 percent) Cooling Water Chemicals Boiler Feedwater Chemicals | 55 tons
47 tons
89 tons
12 tons | 2,000
5,600
7,400
99,100
14,200
7,100 | 2,900 tons
2,600 tons
2,200 tons
160 tons | 102,800
296,300
178,300
1,220,700
198,000
29,300 | | | TOTAL | | 20,134,200 | | 43,298,100 | a Ref: EPRI AF-1297 ^b Mid-1982 dollars c At 100% Annual Capacity Factor Table 8-8 SUMMARY OF CATALYSTS AND CHEMICALS COST CASE HW | | | Initial | Charge | Annual M | akeup ^C | |---------------|---|--|--|---|---| | Unit | Catalyst or Chemical | Quantity ^a | Cost \$b | Quantity ^a | Cost \$h | | 200 | American Cyanamid HDS-1442A
Catalyst | 897,600 lb | 4,872,200 | 7,946,700 lb | 43,135,600 | | | Startup Oil | 18,000 bbl | 594,700 | - | - | | 300 | DGA (diglycolamine) | 249,000 lb | 226,600 | 43,300 lb | 39,300 | | 400 | Sour Shift Catalyst Selexol Solvent HDS Catalyst Zinc Oxide Adsorbent Reforming Catalyst High Temp. Shift Catalyst Low Temp. Shift Catalyst Potassium Carbonate Gas Treatment Chemicals | 1,192,500 lb
2,250,000 lb
1,875 cf
2,925 cf
1,988 cf
2,160 cf
2,220 cf
232,500 lb | 10,807,600
2,973,600
308,000
311,500
479,100
181,700
398,800
55,500
42,500 | 266,700 lb
210,000 lb
700 cf
3,300 cf
700 cf
600 cf
1,200 cf
46,700 lb | 2,425,600
277,800
110,100
346,100
177,000
53,800
221,600
11,000
5,900 | | 600 | Activated Alumina
Stretford Process Chemicals | 78,000 lb | 51,900
60,200 | 16,700 lb | 11,000
29,300 | | 700 | Solvent (for Tar Acids)
Sour Water Stripper Chemicals | | 7,900
8,400 | | 30,800
26,500 | | 1000/
1300 | Lime Soda Ash Sulfuric Acid (93 percent) Caustic Soda (100 percent) Cooling Water Chemicals Boiler Feedwater Chemicals TOTAL | 45 tons
38 tons
120 tons
17 tons | $ \begin{array}{r} 1,700 \\ 4,500 \\ 9,900 \\ 140,400 \\ 10,500 \\ \underline{4,800} \\ 21,552,000 \end{array} $ | 2,300 tons
2,000 tons
2,900 tons
200 tons | 85,200
236,000
241,200
1,652,000
150,800
19,800
49,286,400 | a Ref: EPRI AF-1297 b Mid-1982 dollars c At 100% Annual Capacity Factor Table 8-9 SUMMARY OF CATALYSTS AND CHEMICALS COST CASE CM | Unit | Catalyst or Chemical | $\frac{\text{Initial}}{\text{Quantity}}$ | Charge
Cost \$a | Annual
Quantity | Makeup ^b
Cost \$ ^a | |---------------|---|--|----------------------------|---------------------------|---| | 500 | Shift Catalyst | 704,700 lb | 6,386,200 | 156,600 lb | 1,419,100 | | 600 | Methanol | 2,000 gal | 1,800 | 1,420,800 gal | 1,257,300 | | 700 | CLAUS Sulfur Recovery Catalyst | | 2,336,400 | | 519,200 | | 800 | SCOT Catalyst
Di-Isopropanol Amine | 8,000 gal | 1,274,400
45,300 |
21,300 gal | 283,200
120,600 | | 900 | LURGI Methanol Synthesis Catalyst | | 13,957,000 | *** | 3,101,600 | | 1000/
1300 | Lime
Sodium Hydroxide (50%)
Miscellaneous | 525 tons
200 tons | 19,400
44,800
30,300 | 13,900 tons
2,800 tons | 510,800
1,244,200
512,000 | | | TOTAL | | 24,095,600 | | 8,968,000 | ^a Mid-1982 dollars b At 100% Annual Capacity Factor Table 8-10 ESTIMATED PLANT FACILITIES INVESTMENT - CASE HE BASIS: MID-1982 \$1000 | | | Cos | t | Without | | Contingen | ies | | Conting | gencies | | |-------|-------------------------|-------------------------|------------------|---------|----------------------|--------------------------|--------------|------------------------------|----------------------------|---------|---------------------------| | Unit | Plant Section | Equipment
& Material | Sub-
contract | Labor | In Place
Estimate | Overhead
& Support | Sales
Tax | Total Estimated
Base Cost | Proress | Project | Total Plant
Investment | | 100 | Coal Preparation | 57,330 | 18,095 | 13,347 | | 25,948 | 1,292 | 116,012 | | 17,402 | 133,414 | | 200 | Coal Liquefaction | 238,162 | 94,324 | 77,774 | 53,546 | 164.347 | 6,753 | 634,986 | 152,606 | 118,127 | 905,639 | | 300 | Light Ends Processing | 7,610 | 725 | 2,104 | | 4,404 | 152 | 14,995 | | 2,249 | 17,244 | | 400 | Hydrogen Plant | 82,324 | 147,360 | 23,287 | | 57,754 | 3,267 | 313,992 | 20,271 | 50,140 | 384,409 | | 500 | Oxygen Plant | | | | 116,301 | 5,015 | 814 | 122,130 | | 18,320 | 140,450 | | 600 | Emission Control System | 25,286 | 4,228 | 11,509 | | 19,700 | 536 | 61,259 | 2,952 | 9,632 | 73,843 | | 700 | Effluent Control System | 7,738 | 638 | 2,369 | 44,934 | 10,876 | 473 | 67,028 | | 10,054 | 77,082 | | 800 | Tank Storage | 8,174 | 23,635 | 6,391 | | 10,405 | 447 | 49,052 | | 7,358 | 56,410 | | 900 | Refrigeration | 6,445 | 240 | 2,544 | | 4,273 | 129 | 13,631 | | 2,045 | 15,676 | | 1000 | Power Generation | 5,849 | 136,328 | 2,613 | | 13,471 | 1,752 | 160,013 | | 24,002 | 184,015 | | 1100 | Cooling Water System | | | -, | 22,420 | 7,670 | 291 | 30,381 | | 4,557 | 34,938 | | 1300 | Water & Waste Treatment | | | | 204,678 | 35,267 | 2,047 | 241,992 | 48,399 | 43,559 | 333,950 | | 1400 | Flare System | | | | 5,459 | 2,323 | 71 | 7,853 | | 1,178 | 9,031 | | 1500 | Buildings | *** | 9,989 | | | 3,269 | 70 | 13,328 | | 1,999 | 15,327 | | 1600 | Common Facilities | 65,084 | 25,303 | 34,909 | | | 1,503 | 185,277 | | 27,791 | 213,068 | | TOTAL | | 504,002 | 460,865 | 176,847 | 447,338 | $\frac{58,478}{423,200}$ | 19,597 | 2,011,849 | 224,234 | 338,413 | 2,594,496 | | | | | | | | | | Init | ial Fill o | f | | | | | | | | | | | | lysts & Cho
 Plant Fac | | 20,134 | | | | | | | | | | | stmen! | | 2,614,630 | ^a Includes Material, Labor, and a portion of Overhead & Support ^b Includes Payroll Burden, Field Indirect Cost, Home Office Cost and Fee c 2% Sales Tax on Material and Equipment Cost Table 8-11 ESTIMATED PLANT FACILITIES INVESTMENT - CASE HW BASIS: HID-1982 \$1000 | | | Cos | t | Without | | Contingen | cies | | Conting | gencies | | |--|--|--|--|--|---|---|--|-----------------------------|--|---------|---| | Unit | Plant Section | Equipment
& Material | Sub-
contract | Labor | In Place
Estimate ^a | Overhead
& Support | Sales
Tax | Total Estimate
Base Cost | l
Process | Project | Total Plant
Investment | | 100
200
300
400
500
600
700
800
900
1000
1300
1400
1500
TOTAL | Coal Preparation Coal Liquefaction Light Ends Processing Hydrogen Plant Oxygen Plant Emission Control System Effluent Control System Tank Storage Refrigeration Power Generation Cooling Water System Water & Waste Treatment Flare System Buildings Common Facilities | 116,735
363,093
5,921
127,698

6,148

10,323

65,084
695,002 | 23,180
135,346
552
164,374

19,989

180,266

9,989
25,303
558,999 | 18,290 127,287 1,722 32,875 4,884 3,573 34,909 223,540 | 127,931
25,278
45,727

9,516

18,880
197,696
5,459

496,171 | 41,931
258,025
3,577
80,318
5,266
4,967
8,437
8,163
3,074
18,146
6,492
34,085
2,323
3,269
58,478
536,551 | 2,544
10,018
118
4,361
896
177
412
362
114
2,369
245
1,977
71
70
1,505
25,239 | Cata
Tota | 40,536
244,867
15,489
3,107
 | | 279,698
1,384,968
13,674
488,882
154,207
38,558
62,762
45,478
14,610
246,878
29,460
322,585
9,031
15,327
213,071
3,319,189 | Facilities Investment 3,340,741 ^a Includes Material, Labor, and a portion of Overhead & Support b Includes Payroll Burden, Field Indirect Cost, Home Office Cost and Fee ^C 2% Sales Tax on Material and Equipment Cost Table 8-12 ESTIMATED PLANT FACILITIES INVESTMENT - CASE CM BASIS: MID-1982 \$1000 | | | Cos | t | Without | | Contingen | ies | | Conting | encies | | |--|--|---|--|--|---|--|---|---|--|----------------------|--| | Unit | Plant Section | Equipment
& Material | Sub-
contract | Labor | lu Place
Estimate ^a | overhead
& Support | Sales
Tax | Total Estimat
Base Cost | ed
Princess | Total Pla
Project | Investment | | 100
200
300
400
500
600
700
800
300
100
200
1300
1400
1500
TOTAL | Coal Preparation Slurry Preparation Air Separation Plant Gasification Shift & Heat Recovery Acid Gas Removal Claus/Sulfur Flaking SCOT Methanol Synthesis Power Generation Cooling Tankage Water & Waste Treatment Flare Buildings Common Facilities | 34,019
3,359

283,233
96,371

15,441
8,514
116,716
122,784
24,595
5,646
17,019
3,232
1,306
65,084
797,319 | 15,488

68,032
7,269
1,048
3,293
9,933
28,620
16,935
51,325
58
5,601
25,303
236,078 | 13,145
1,211

62,051
22,223
7,380
3,663
20,914
17,049
11,185
5,317
7,624
1,720
1,882
34,909
210,274 | 523,826

177,000
2,707

5,286

708,819 | 23,224
2,417
17,698
127,198
42,851
5,105
12,867
6,291
40,053
39,366
23,779
9,982
23,619
2,682
3,881
58,478
439,491 | 805
67
3,666
6,413
2,000
1,770
346
170
2,351
2,575
864
316
906
65
65
1,505
23,884 | 86,681
7,678
545,190
546,927
170,714
183,875
41,290
19,686
183,327
191,707
89,043
38,196
105,777
7,757
12,736
185,279
2,415,865 | 2,303
82,040

2,952

10,578

97,873
Initial Fil
Catalysts & | Chemicals | 99,683
11,478
626,969
723,312
1196,321
211,456
47,484
26,034
210,826
220,463
102,399
43,925
133,811
8,921
14,646
213,071
2,890,799 | | | | | | | | | | | Total Plant
Facilities | | 2,914,895 | a Includes Material, Labor, Sub-contract, and a portion of Overhead & Support b Includes Payroll Burden, Field Indirect Cost, Home Office Cost and Fee ^C 2% Sales Tax on Material and Equipment Cost ### PLANT OPERATING COSTS Estimates of the fixed and variable operating costs for the three cases under study are presented in Tables 8-13, 8-14, and 8-15. These data are based on: - The plant parameters presented in Table 8-1 - The operating cost bases presented in Table 8-2 and other elements of this study as stated in the tables. Table 8-13 ESTIMATED PLANT OPERATING COSTS - CASE HE 100% ANNUAL CAPACITY FACTOR PLANT OUTPUT: 14.175 x 10⁹ BTU/HR | Fixed Costs | Basis | Unit Cost | Cost 1982
_\$10 ³ /Yr | \$/10 ⁶ Btu
Output | |--------------------------------------|---|--------------------|-------------------------------------|----------------------------------| | Operating Labor | 82 jobs/shift | \$17.25/man-hr | 12,391 | | | Maintenance Labor | 40% of total maintenance cost ^a | | 24,942 | | | Maintenance Material | 60% of total maintenance cost | | 37,414 | | | Administrative and Support Labor | @ 30% of Operating & Maintenance
Labor | | 11,200 | | | General & Administrative $Costs^{b}$ | @ 0.7% of Plant Facilities
Investment (see Table 8-10) | | 18,302 | | | Taxes & Insurance | @ 2% of Escalated Plant Facilities | | 43,571 | | | Total Fixed Costs | Investment (see Table A-1) | | 147,820 | 1.32 | | Variable Costs | | | | | | Raw Water | 9,196 gpm | 60 ¢ $/10^3$ gal | 2,900 | | | Catalyst & Chemicals | See Table 8-7 | | 43,298 | * | | Ash Disposal (Dry) | 2253 st/sd | \$5.65/st | 4,646 | | | Total Variable Costs | | | 50,844 | 0.41 | | Total Operating Costs (Nonregulated | Producer) | | | 1.73 | ^a Total maintenance costs based on applying the factors presented in Table 8-3 to the section capital costs presented in Table 8-10. b Nonregulated producer only - not included in the regulated, investor-owned utility case. C Unit costs calculated for 90% Annual Capacity Factor. Table 8-14 ESTIMATED PLANT OPERATING COSTS - CASE HW 100% ANNUAL CAPACITY FACTOR PLANT OUTPUT: 12.284 x 10⁹ BTU/HR | Fixed Costs | Basis | Unit Cost | Cost 1982
_\$10 ³ /Yr | \$/10 ⁶ Btu
Output | |---|--|-------------------------|-------------------------------------|----------------------------------| | Operating Labor | 82 jobs/shift | \$17.25/person-hr | 12,391 | | | Maintenance Labor | 40% of total maintenance cost ^a | | 34,536 | | | Maintenance Material | 60% of total maintenance cost | | 51,803 | | | Administrative and Support Labor | @ 30% of Operating & Maintenance
Labor | | 14,078 | | | General & Administrative Costs ^b | @ 0.7% of Plant Facilities
Investment (see Table A-6) | | 23,385 | | | Taxes & Insurance | @ 2% of Escalated Plant Facilities | | 55,672 | | | Total Fixed Costs | Investment (see Table A-6) | | 191,865 | 1.98 | | Variable Costs | | | | | | Raw Water | 8,633 gpm | 60¢/10 ³ gal | 2,724 | | | Catalyst & Chemicals | See Table 8-8 | | 49,287 | | | Ash Disposal (Dry) | 1,716 st/sd | \$5.65/st | 3,539 | | | Total Variable Costs | | | 55,550 | 0.52 | | Total Operating Costs (Nonregulated | Producer) | | | 2.50 | ^a Total maintenance costs based on applying the factors presented in Table 8-4 to the section capital costs presented in Table 8-11. C Unit costs calculated for 90% Annual Capacity Factor b Nonregulated producer only - not included in the regulated, investor-owned utility case. Table 8-15 ESTIMATED PLANT OPERATING COSTS - CASE CM 100% ANNUAL CAPACITY FACTOR PLANT OUTPUT: 12.726 x 10⁹ BTU/HR | Fixed Costs | Basis | Unit Cost | Cost 1982
\$10 ³ /Yr | \$/10 ⁶ Btu
Output | |---|---|-------------------------|------------------------------------|----------------------------------| | Operating Labor | 60 jobs/shift | \$17.25/man-hr | 9,067 | | | Maintenance Labor | 40% of total maintenance cost ^a | | 23,949 | | | Maintenance Material | 60% of total maintenance cost | | 35,923 | | | Administrative and Support Labor | @ 30% of Operating & Maintenance
Labor | | 9,905 | | | General & Administrative Costs ^b | @ 0.7% of Plant Facilities
Investment (see Table 8-12) | | 20,404 | | | Taxes & Insurance | @ 2% of Escalated Plant Facilities | | 48,576 | | | Total Fixed Costs | Investment (see Table A-11) | | 147,824 | 1.47 | | Variable Costs | | | | | | Raw Water | 16,624 gpm | 60¢/10 ³ gal | 5,243 | | | Catalyst & Chemicals | See Table 8-9 | | 8,968 | | | Ash Disposal (Dry) | 2,646 st/sd | \$5.65/st | 5,457 | | | Total Variable Costs | | | 19,668 | 0.18 | | Total Operating Costs (Nonregulated | Producer) | | | 1.65 | ^a Total maintenance costs based on applying the factors presented in Table 8-5 to the section capital costs presented in Table 8-12. b Nonregulated producer only - not included in the regulated, investor-owned utility case. ^C Unit costs calculated for 90% Annual Capacity Factor. #### PRODUCTION COSTS Using the investment and operating requirement data developed in earlier parts of this section, required selling prices have been developed for the fuel products produced in the three cases under study. Required selling price for a nonregulated producer, in mid-1982 dollars, is defined as the price which, if escalated at the general inflation rate, together with coal and other operating costs, will yield the producer a stipulated minimum acceptable rate of return of common equity. As noted in Table 8-2, the inflation rate is assumed to be 8.5 percent per year and the after tax rate of return on common equity is 18.3 percent per year. This rate of return is equivalent to 9.0 percent per year in the absence of inflation (1.09 x 1.085 = 1.183). For a regulated producer, the year-by-year price is determined which would provide the specified return on investment. Also, for comparison purposes, a levelized price is calculated in mid-1982 dollars, which is financially equivalent. These required selling prices, as well as development of the capital outlay schedules, have been developed using the EPRI E&EE computer program. This program accomplishes several objectives including accounting for the annual requirements for funds during construction, the annual rates of capital recovery (both debt and equity), the annual revenue requirements, and the levelized required selling price. A more complete discussion of the program outputs and examples of these outputs for the cases under study are presented in the Appendix. Tables 8-16 and 8-17 present the results of this computer analysis for the non-regulated and the utility cases, respectively. Also included are the outputs of several computer runs made to assess the sensitivity of the required selling price to several important variables. Table 8-16 PLANT INVESTMENT AND REQUIRED PRODUCT SELLING PRICES NONREGULATED PRODUCER | Case | HE | HW | CM | |---|--|--|---| | Process
Coal | H-Coal
Illinois No. 6 | H-Coal
Wyodak | Lurgi Methanol
Illinois No. 6 | | Plant Investment - \$10 ⁶ | | | | | Plant Facilities - Mid-1982 basis
Total Capital - Jan 1990 startup | 2,615
5,733 | 3,341
7,198 | 2,915
6,367 | | Required Product Selling Price - Base Case
Mid-1982 \$/10 ⁶ Btu - Levelized | 9.06 | 10.46 | 10.94 | | Return on equity when product is sold at competitive fuel price, %/yr | 12.86 | 11.27 | 8.22 | | Sensitivity Studies - impact on required selling price - \$/10 ⁶ Btu (% change) | | | | | After tax return on equity increases to 25% 35% increase in plant facilities investment 3%/yr increase in real cost of coal 10% decrease in thermal efficiency 10% increase in thermal efficiency Inflation rate decreases to 5%/yr 75% debt financing @ 12% interest Expensing of investment during construction | 12.85 (+41.8)
10.71 (+18.2)
10.24 (+13.0)
10.07 (+11.1)
8.24 (-9.1)
8.95 (-1.2)
6.50 (-28.3) | 15.98 (+52.8)
12.90 (+23.3)
10.85 (+3.7)
11.62 (+11.1)
9.51 (-9.1)
10.27 (-1.8)
6.68 (-36.1) | 15.63 (+42.9)
12.99 (+18.7)
12.46 (+13.9)
12.16 (+11.1)
9.95 (-9.1)
10.80 (-1.3)
7.75 (-29.2) | | 100% equity
50% debt @ 12%, 50% equity | 7.72 (-14.8)
6.01 (-33.7) | | | $^{^{\}rm a}$ Return on equity, base case, 18.3% per year. Assume competitive fuel price (mid-1982 basis) is $\$6.50/10^{\rm 6}$ Btu. Table 8-17 PLANT INVESTMENT AND REQUIRED PRODUCT SELLING PRICES REGULATED PRODUCER - INVESTOR-OWNED UTILITY | Process Coal H-Coal H-Coal Lurgi Methand Coal Illinois No. 6 Wyodak Illinois No. 6 Plant Investment - \$10 ⁶ Plant Facilities - Mid-1982 basis 2,615 3,341 2,915 Total Capital - Jan 1990 startup 5,300 6,640 5,882 Required Product Selling Price - Base Case Mid 1982 \$/10 ⁶ Btu Levelized 5.78 5.66 6.88 First Year (1990) 9.55 11.26 11.54 Third Year (1992) 7.91 8.85 9.51 Fifth Year (1994) 6.57 6.87 7.86 Tenth Year (1999) 5.36 5.07 6.36 Fifteenth Year (2004) 4.87 4.32 5.76 Thirtieth Year (2004) 4.87 4.32 5.76 Thirtieth Year (2019) 4.53 3.73 5.36 | |--| | Coal Illinois No. 6 Wyodak Illinois No. 6 Plant Investment - \$10 ⁶ Plant Facilities - Mid-1982 basis 2,615 3,341 2,915 Total Capital - Jan 1990 startup 5,300 6,640 5,882 Required Product Selling Price - Base Case Mid 1982 \$/10 ⁶ Btu Levelized 5.78 5.66 6.88 First Year (1990) 9.55 11.26 11.54 Third Year (1992) 7.91 8.85 9.51 Fifth Year (1994) 6.57 6.87 7.86 Tenth Year (1999) 5.36 5.07 6.36 Fifteenth Year (2004) 4.87 4.32 5.76 | | Plant Facilities - Mid-1982 basis 2,615 3,341 2,915 Total Capital - Jan 1990 startup 5,300 6,640 5,882 Required Product Selling Price - Base Case Mid 1982 \$/10^6 Btu Levelized 5.78 5.66 6.88 First Year (1990) 9.55 11.26 11.54 Third Year (1992) 7.91 8.85 9.51 Fifth Year (1994) 6.57 6.87 7.86 Tenth Year (1999) 5.36 5.07 6.36 Fifteenth Year (2004) 4.87 4.32 5.76 | | Total Capital - Jan 1990 startup 5,300 6,640 5,882 Required Product Selling Price - Base Case Mid 1982 \$/10 ⁶ Btu Levelized 5.78 5.66 6.88 First Year (1990) 9.55 11.26 11.54 Third Year (1992) 7.91 8.85 9.51 Fifth Year (1994) 6.57 6.87 7.86 Tenth Year (1999) 5.36 5.07 6.36 Fifteenth Year (2004) 4.87 4.32 5.76 | | Total Capital - Jan 1990 startup 5,300 6,640 5,882 Required Product Selling Price - Base Case Mid 1982 \$/10^6 Btu Levelized 5.78 5.66 6.88 First Year (1990) 9.55 11.26 11.54 Third Year (1992) 7.91 8.85 9.51 Fifth Year (1994) 6.57 6.87 7.86 Tenth Year (1999) 5.36 5.07 6.36 Fifteenth Year (2004) 4.87 4.32 5.76 | | Mid 1982 \$/10^6 Btu 5.78 5.66 6.88 First Year (1990) 9.55 11.26 11.54 Third Year (1992) 7.91 8.85 9.51 Fifth Year (1994) 6.57 6.87 7.86 Tenth Year (1999) 5.36 5.07 6.36 Fifteenth Year (2004) 4.87 4.32 5.76 | | First Year (1990) 9.55 11.26 11.54 Third Year (1992) 7.91 8.85 9.51 Fifth Year (1994) 6.57 6.87 7.86 Tenth Year (1999) 5.36 5.07 6.36 Fifteenth Year (2004) 4.87 4.32 5.76 | | First Year (1990) 9.55 11.26 11.54 Third Year (1992) 7.91 8.85 9.51 Fifth Year (1994) 6.57 6.87 7.86 Tenth Year (1999) 5.36 5.07 6.36 Fifteenth Year (2004) 4.87 4.32 5.76 | | Fifth Year (1994) 6.57 6.87 7.86 Tenth Year (1999) 5.36 5.07 6.36 Fifteenth Year (2004) 4.87 4.32 5.76 | | Tenth Year (1999) 5.36 5.07 6.36
Fifteenth Year (2004) 4.87 4.32 5.76 | | Fifteenth Year (2004) 4.87 4.32 5.76 | | | | Thirtieth Year (2019) 4.53 3.73 5.36 | | | | Sensitivity Studies - impact on required selling price - \$/10 ⁶ Btu (% change) | | 3%/yr increase in real cost of coal 7.59 (+31.3) 6.28 (+11.0) 9.22 (+34.0) | | 35% increase in plant facilities investment 6.36 (+10.0) 6.52 (+15.2) 7.60 (+10.5) | | 10% decrease in thermal efficiency 6.42 (+11.1) 6.29 (+11.1) 7.64 (+11.1) | | Inflation rate decreases to 5% 5.85 (+1.2) 5.73 (+1.2) 6.97 (+1.3) | | 10% increase in thermal efficiency 5.25 (-9.1) 5.15 (-9.1) 6.25 (-9.1) |