FINAL REPORT

(Reporting Period: 10/1/1998 to 6/30/2002)

Principal Author: Godwin A. Chukwu, Ph.D., P.E.

September, 2002

Work Performed under Cooperative Agreement No. DE-FC26-98FT40016

Submitted by:

Petroleum Development Laboratory University of Alaska Fairbanks P.O. Box 755880 Fairbanks, AK 99775-5880

Prepared for:

The US Department of Energy National Energy Technology Laboratory P.O. Box 880 Morgantown WV 26507-0880

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ABSTRACT

The Alaskan North Slope is one of the largest hydrocarbon reserves in the United States where Gas-to-Liquids (GTL) technology can be successfully implemented. The proven and recoverable reserves of conventional natural gas in the developed and undeveloped fields in the Alaskan North Slope (ANS) are estimated to be 38 trillion standard cubic feet (TCF) and estimates of additional undiscovered gas reserves in the Arctic field range from 64 TCF to 142 TCF. Transportation of the natural gas from the remote ANS is the key issue in effective utilization of this valuable and abundant resource. The throughput of oil through the Trans Alaska Pipeline System (TAPS) has been on decline and is expected to continue to decline in future. It is projected that by the year 2015, ANS crude oil production will decline to such a level that there will be a critical need for pumping additional liquid from GTL process to provide an adequate volume for economic operation of TAPS. The pumping of GTL products through TAPS will significantly increase its economic life. Transporting GTL products from the North Slope of Alaska down to the Marine terminal at Valdez is no doubt the greatest challenge facing the Gas to Liquids options of utilizing the abundant natural gas resource of the North Slope.

The primary purpose of this study was to evaluate and assess the economic feasibility of transporting GTL products through the Trans Alaska Pipeline System (TAPS). Material testing program for GTL and GTL/Crude oil blends was designed and implemented for measurement of physical properties of GTL products. The measurement and evaluation of the properties of these materials were necessary so as to access the feasibility of transporting such materials through TAPS under cold arctic conditions. Results of the tests indicated a trend of increasing yield strength with increasing wax content. GTL samples exhibited high gel strengths at temperatures as high as 20°F, which makes it difficult for cold restart following winter shutdowns.

Simplified analytical models were developed to study the flow of GTL and GTL/crude oil blends through TAPS in both commingled and batch flow models. The economics of GTL transportations by either commingled or batching mode were evaluated. The choice of mode of transportation of GTL products through TAPS would depend on the expected purity of the product and a trade-off between loss in product value due to contamination and cost of keeping the product pure at the discharge terminal.

TABLE OF CONTENTS

CHAPTER PAGE		
	Abstract	ii
	Executive Summary	xi
1	Introduction	1
	1.1 Project Objectives	2
	1.2 Project Tasks	2
	1.3 GTL Transportation Issues	5
	en e	
2	GTL Process Review	7
	2.1 Synthesis Gas Production	7
	2.1.1 Non-Catalytic Partial Oxidation Of Natural Gas	8
	2.1.2 Steam Reforming	8
	2.1.3 Autothermal Reforming	8
	2.1.4 Process Evaluation	9
	2.2 Fischer Tropsch Synthesis	9
	2.2.1 FT Synthesis In Fixed Bed Reactors	10
	2.2.2 Fluidized Bed FT Reactors	10
	2.2.3 Slurry Bed Reactors	11
	2.3 Range Of Products	13
	2.3.1 The Fischer Tropsch Process	13
	2.3.2 Type Of Reactors	16
	2.3.3 Catalyst	17
	2.3.4 Pressure	19
	2.3.5 Temperature	19
	2.3.6 H ₂ /CO Ratio	19
	2.3.7 Space Velocity	19
	2.4 FT Products Refining And Upgrading	20
	2.5 Summary	22
3	GTL Material Testing	24
. •	3.1 Introduction	24
	3.2 Quality Assurance Project Plan	25
	3.3 Description Of The Density And Viscosity Measurement Apparatus	26
	3.3.1 Anton-Parr Densitometer	26
	3.3.2 Brookfield Rotational Viscometer	26
	3.4 Test Fluids For Density And Viscosity Measurements	27
	3.4.1 Crude Oil Reconditioning And Aliquoting	27
	3.5 Test Conditions For Density And Viscosity Measurements	28
	3.6 Experimental Procedures For Density And Viscosity	
	Measurements	28

	3.6.1 Density Measurements	28
	3.6.1.1 Calibration	28
	3.6.1.2 Test Sample Density Measurement	30
	3.6.2 Viscosity Measurements	30
	3.6.2.1 Calibration	30
1.1	3.6.2.2 Test Sample Viscosity Measurement	31
•	3.7 Experimental Results And Discussions	33
	3.7.1 Density Measurements	33
	3.7.2 Viscosity Measurements	34
	3.8 Correlations Of The Measured Density And Viscosity Data	34
	3.9 Test Fluids For Gel Strength Measurements	36
	3.9.1 GTL 1	36
	3.9.2 GTL 2	36
	3.10 GTL And Taps Crude Oil Blends	36
	3.11 Compositional Analysis Of GTL 1 And Crude Oil Blends	37
	3.12 Compositional Analysis Of GTL 2 And Crude Oil Blends	38
	3.13 Test Temperatures For Gel Strength Measurements	38
	3.14 Gel Strength Measurement Procedure	38
	3.15 Experimental Results And Discussions	39
	3.15.1 Gel Strength Measurements On GTL 1	
	And TAPS Crude Oil	39
	3.15.2 Gel Strength Measurements On GTL 2	
	And TAPS Crude Oil	
	40	*
	3.16 Comparison Of Gel Strength Measurements On GTL 1 And	
	GTL 2 And TAPS Crude Oil Blends	41
	3.17 Conclusions	41
	3.17.1 Density And Viscosity Measurements	41
	3.17.2 Gel Strength Measurements	42
4	Hydraulic Modelling of GTL Transportation	66
	4.1 Batch Flow	66
	4.2 Commingled Flow	68
	4.3 Development Of Model Equations	69
	4.3.1 Batch Flow Model	69
	4.3.1.1 Assumptions	69
	4.3.1.2 Governing Equations	69
	4.3.2 Commingled Flow Model	76
	4.3.2.1 Assumptions	76
	4.3.2.2 Governing Equations	76
	4.4 Application Of Model Equations	80
	4.4.1 Calculation Algorithm	80
	4.4.1.1 Batch Flow	80
	4.4.1.2 Commingled Flow	81

	4.5	Results	82
		Conclusions	85
5	The	ermodynamics of GTL Transportation	90
		Heat Transfer Analysis	90
	J.1	5.1.1 Below Ground Pipe Line	90
		5.1.2 Above Ground Pipe Line	98
	5.2	Fluid Dynamic Analysis	101
		Pipeline Specifications And Fluid Properties	102
	J.J	5.3.1 Pipe Specifications	102
		5.3.2 Fluid Properties	104
		5.3.3 Properties Of Air	106
	5.4	Heat Transfer Calculations	110
	5.5	Results And Discussion	110
		5.5.1 Heat Transfer Parameters	110
		5.5.2 Heat Loss From TAPS	112
		5.5.3 Exit Temperature Of The Fluid From TAPS	114
	100	5.5.4 Exit Temperature Of Fluid In Various Months	115
		5.5.5 Heat Loss From Aboveground And Belowground	
		Sections Of The Pipeline	118
		5.5.6 Comparison Of Actual Data And Calculated Results	122
	5.6	Conclusions	125
6	Eco	nomics of GTL Transportation through TAPS	129
		Introduction	129
	6.2	GTL Transportation Modes	129
		6.2.1 Commingled Mode	129
		6.2.2 Batch Mode Of Transportation	130
:		6.2.2.1 Batch Mode A	130
		6.2.2.2 Batch Mode B	131
		6.2.2.3 Batch Mode C	132
	6.3	Economic Parameters	133
		6.3.1 Rate Of Return Analysis	133
	6.4	Identifying Capital And Operating Costs	133
		6.4.1 Plant Cost	134
		6.4.2 Storage, Product Separation And Other Costs	136
		6.4.3 Energy Cost	137
		6.4.4 Cost Of Upstream Natural Gas	138
		6.4.5 The TAPS Tariff	140 143
		6.4.6 Taxes	143
		6.4.6.1 Property Tax (Ad Valorem) 6.4.6.2. State Corporate Income Tax	143
		6.4.6.3 Severance Tax	143
		6.4.6.4 Federal Corporate Income Tax	143
	6.5	GTL Product Premium	143
	6.5		145

	6.7	Method Of Evaluation		en e	147
		6.7.1 Investment Pattern			147
	6.8	Results And Discussion			147
	6.9	Summary And Conclusions			153
	1.4				
7	Con	clusions and Recommendation	ns		156
	7.1	Conclusions			156
	7.2	Recommendations	All Control of the Co		159
APF	PENDL	X A Quality Assurance Proje	ct Plan		161
ATT	TACHN	MENT 1 Evaluation of GTL#1	l and Blends l	by WTC	
ATI	CACHI	MENT 2 Evaluation of GTL#2	2 and Blends I	y WTC	

LIST OF FIGURES

Figure 3.1	The Anton-Paar Digital Density Meter	56	
Figure 3.2	The Brookfield Cone And Plate Viscometer		
Figure 3.3	Crude Oil Re-Conditioning Assembly		
Figure 3.4	Experimental Density Data Of Tested Crude Oil,		
	GTL, And Their Blends.	58	
Figure 3.5	Experimental Viscosity Data Of Tested Crude Oil,		
	GTL, And Their Blends.	58	
Figure 3.6	Comparison of Correlated and Measured Density Data	59	
Figure 3.7	Comparison of Correlated and Measured Viscosity Data	60	
Figure 3.8	Piano Analysis Of GTL 2 Sample	61	
Figure 3.9	Comparison Of Back-Calculated And Actual Taps		
	Crude Oil Composition	61	
Figure 3.10	Cooling Ramp And Profile Of Test Temperatures		
	For Gel Strength Measurements.	62	
Figure 3.11	Yield Stress Data As A Function Of Test Temperature.	63	
Figure 3.12	Yield Stress Data Of GTL 2 as A Function Of		
	Test Temperature.	64	
Figure 3.13	Comparison Of Gel Strength Measurements Of		
	GTL 1 And GTL 2 Blends.	65	
Figure 3.14	Comparison of Gel Strength Measurements	65	
Figure 4.1	Schematic Representation Of The Dukler And		
v	Hubbard Model	67	
Figure 4.2	Schematic Representation Of Slug Flow	70	
Figure 4.3	Schematic Representation Of Batch Or Slug Flow	72	
Figure 4.4	Force Balance On A Finite Element (Streeter, 1985)	78	
Figure 4.5	Pressure Gradient Plot For Commingled Flow	84	
Figure 4.6	Comparison Plot Of Batch And Commingled Flow Modes	85	
Figure 5.1.	Below Ground Configuration Of The Pipe Line	92	
Figure 5.2	Pipe Orientation For Conduction Shape Factor	93	
Figure 5.3	Assumed Zone Of Heat Loss From The Pipe	94	
Figure 5.4	Relationship Between Fluid Inlet And Exit Temperatures		
	And Overall Heat Transfer Coefficient	98	
Figure 5.5	Above Ground Configuration Of The Pipe Line	100	
Figure 5.6	The Trans Alaska Pipeline System And The Pump Stations	104	
Figure 5.7	Variation Of Thermal Conductivity Of Fluids		
	With Temperature	106	
Figure 5.8	Prandtl Number Variation For Air With Temperature	107	
Figure 5.9	Viscosity Variation For Air With Temperature	108	
Figure 5.10	Density Variation For Air With Temperature	108	
Figure 5.11	Variation Of Thermal Conductivity Of Air With Temperature	109	
Figure 5.12	The Cumulative Heat Loss From Taps From Different		
	Fluids In January	113	
Figure 5.13	Exit Temperature Of The Fluid Leaving TAPS In January.	115	

Figure 5.14	The Exit Temperature Of The Crude Oil	
	Leaving TAPS In Various Months.	117
Figure 5.15	The Exit Temperature Of GTL Leaving TAPS In Various	
	Months	118
Figure 5.16	Heat Loss From Different Sections Of The Pipe	
	Per Unit Length	120
Figure 5.17	Heat Loss Rate From Above And Below Ground	
	Sections Of The Pipeline In January.	121
Figure 5.18	Heat Loss From Different Sections Of The Pipe	
	While Transporting Crude Oil.	122
Figure 5.19	Comparison Of Actual Temperatures With Calculated Results	125
Figure 6.1	Typical Batch In TAPS	131
Figure 6.2	Energy Cost As A Function Of Throughput.	139
Figure 6.3	Tariff Estimate For Different Scenarios Of Fluid Through	
	Pipeline	141
Figure 6.4	Sensitivity Analysis With Various World Oil Prices	
J	And Various Capex	146
Figure 6.5	ROR Analysis For Batch Mode A	148
Figure 6.6	ROR Analysis For Batch Mode B	148
Figure 6.7	ROR Analysis For Batch Mode C	149
Figure 6.8	GTL Premium Variation with Rate of Return	150
Figure 6.9	Effect Of Building New Tanks Versus Reconfiguring	
in S eries de la companya de la com	Existing Tanks At Terminal.	151
Figure 6.10	ROR Analysis For Commingled Mode	152
Figure 6.11	Summary Of ROR Analysis For All Modes Of Transportation	152
Figure 6.12	Summary Of Payout Time For Capex \$25,000 / DBL	
	And Crude Price Of \$21/Bbl	153
Figure 6.13	Project Life Evaluation Time.	154
Figure 7.1	Summary of Payout Time (Capex \$25000/DBL, Oil \$21/bbl)	158
Figure 7.2	Project Life Evaluation Time	159

LIST OF TABLES

Table I	Economic Assumptions	xii	
Table II	Model Parameters for ROR	xiii	
Table 2.1			
	CFB and FFB Reactors	11	
Table 2.2	Typical Yield From A Slurry Bubble Column Reactor	12	
Table 2.3	Product Selectivity For The FT Process	13	
Table 2.4	Typical GTL Composition From Low Temperature and		
	High Temperature FT Synthesis Reactors	14	
Table 2.5	Variation in Product Range and Principal Properties		
	of SMDS Products	15	
Table 2.6	Product Distribution as Function of Chain Growth Probability	16	
Table 2.7	Typical Composition From a Tubular Fixed Bed Reactor	17	
Table 2.8	Typical Product Composition from Different Catalysts	18	
Table 2.9	GTL Production From Low-Temperature Fixed Bed And High-		
	Temperature Fluidized Bed Fischer-Tropsch Operations	21	
Table 3.1	Composition Of The Gas-To-Liquids (GTL) Sample Used In		
	Density And Viscosity Measurements.	45	
Table 3.2	Composition Of The Crude Oil Sample Used In Density,		
	Viscosity, And Gel Strength Measurements.	46	
Table 3.3	Density Of Water.	47	
Table 3.4	Experimental Density Data Of Tested Crude Oil, GTL,		
	And Their Blends.	48	
Table 3.5	Experimental Viscosity Data Of Tested Crude Oil,		
	GTL, And Their Blends.	48	
Table 3.6	Compositional Data Of GTL 1 Sample By Gas Chromatography.	49	
Table 3.7	Characteristics Of The GTL 2 Sample.	50	
Table 3.8	Compositional Data Of GTL 2 Sample By Gas Chromatography.	- 51	
Table 3.9	Compositional Data For GTL 1 And Crude Oil Blends.	52	
Table 3.10	Compositional Data For GTL 2 And Crude Oil Blends	53	
Table 3.11	Yield Stress Data Of GTL 1 And Crude Oil Blends.	54	
Table 3.12	Yield Stress Data Of GTL 2 And Crude Oil Blends.	55 .	
Table 5.1	Constant Properties	103	
Table 5.2	Variation Of Thermal Conductivity With Temperature	105	
Table 5.3	Heat Transfer Parameters For Below Ground Pipeline	111	
Table 5.4	Air Parameters For Below Ground Pipe	111	
Table 5.5	Heat Transfer Parameters For Above Ground Pipeline	111	
Table 5.6	Air Parameters For Above Ground Pipe	112	
Table 5.7	Heat Loss From TAPS	112	
Table 5.8	Exit Temperature Of The Fluid From TAPS	114	
Table 5.9	The Exit Temperature Of Fluid In Various Months	116	
Table 5.10	Resistance Offered In Below Ground And Above Ground		
	Section Of The Pipe	119	
Table 5.11	Heat Loss In Below Ground And Above Section Of The Pipe	119	

Table 5.12	Actual Temperature Of Crude Oil At Various Pump Stations		
Table 5.13 Calculated Temperatures Of The Crude Oil At Various			
	Pump Stations	124	
Table 6.1	Capital Cost Schedule For The Various Modes Of Transportation	137	
Table 6.2	TAPS Tariff Estimate For Various Modes 14		
Table 6.3	Economic Assumptions	144	
Table 6.4	Model Parameters	145	
Table 6.5	Summary Of Results	146	
Table 6.6	Effect Of Reconfiguring Versus Building New Tanks	150	

EXECUTIVE SUMMARY

The Alaskan North Slope is one of the largest hydrocarbon reserves in the United States where Gas-to-Liquids (GTL) technology can be successfully implemented. Gas-to-liquids (GTL) conversion technology, where natural gas is chemically converted to transportable liquid products, is an emerging technology that is expected to reach commercialization within the next decade. The proven and recoverable reserves of conventional natural gas in the developed and undeveloped fields in the Alaskan North Slope (ANS) are estimated to be 38 trillion standard cubic feet (TCF) and estimates of additional undiscovered gas reserves in the Arctic field range from 64 TCF to 142 TCF. Currently, only a small portion of the produced natural gas of the North Slope of Alaska is used in the oil-field operation, such as gas lift and power generation, and in local sales. The unused portion is injected back into the reservoir for pressure maintenance and oil production. It is expected that as crude oil production on the North Slope continues to decline, approximately 26 TCF of ANS natural gas will become available for gas sales, transportation and/ or conversion to GTL products. This equates to over 4 billion barrels of oil equivalent.

Transportation of the natural gas from the remote ANS is the key issue in effective utilization of this valuable and abundant resource. The throughput of oil through the Trans Alaska Pipeline System (TAPS) has been on decline and is expected to continue to decline in future. Currently, 4 of the 12 pump stations have been shut down due to decline in the TAPS throughput. It is projected that by the year 2015, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that there will be a critical need for pumping additional liquid from GTL process to provide an adequate volume for economic operation of TAPS. The pumping of GTL products through TAPS will significantly increase its economic life. Transporting Gas to Liquids products from the North Slope of Alaska down to the Marine terminal at Valdez is no doubt the greatest challenge facing the Gas to Liquids options of utilizing the abundant natural gas resource of the North Slope.

The primary purpose of this study was to evaluate and assess the economic feasibility of different products through the Trans Alaska Pipeline System (TAPS). Material testing program for GTL and GTL/Crude oil blends was designed following discussions with John Hackworth (UAF consultant on GTL studies) and Alyeska Pipeline Service Company.

The measurement and evaluation of the properties of these materials were necessary so as to access the feasibility of transporting such materials through TAPS under cold arctic conditions. Crude oil samples were supplied by Alyeska Pipeline Service Company and two GTL samples designated as GTL1, which is a solid wax sample from LaPorte, and Fischer-Tropsch (FT) diesel or light hydrocarbon GTL (designated as GTL2) were

supplied by USDOE for this study. The 20% cut of the wax distillate from GTL1 was mixed with samples of GTL2 in different proportions, which were then blended with crude oil samples in three different blend ratios. The density, viscosity and gel strength of these samples were measured. Results of the tests indicate:

- Trend of increasing yield strength with increasing wax content.
- High gel strength of GTL samples at very low temperatures as low as 20°F, which makes it difficult for cold restart following winter shutdowns.

Simplified analytical models were developed to study the flow of GTL and GTL/crude oil blends through TAPS in both commingled and batch flow models. Commingled flow involves the blending of the GTL product and the crude oil to form a commingled homogenous liquid mixture. Batch flow involves pumping alternate slugs of GTL products and crude oil. It can be achieved by three different techniques, namely:

- Uncontrolled or traditional batching of products, termed batch mode A
- Controlled batching using physical barrier such as pigs and spacers, termed batch mode B

Controlled batching using modern batching technique, which entails pumping alternate slugs of GTL and crude oil while fluid movement is monitored by interface detection devices to minimize the loss of product value. The pressure gradients and related hydraulic flow parameters for each transportation mode were determined and compared.

The economics of GTL transportations by either commingled or batching mode were evaluated. The choice of mode of transportation of GTL products through TAPS would depend on the expected purity of the product and a trade-off between loss in product value due to contamination and cost of keeping the product pure at the discharge terminal. Tables 1 and 2 show the basic economic assumptions and the parameters used for rate of return analysis for the different transportation modes

TABLE I Economic Assumptions

Conversion @ 60% efficiency	9.67 MScf / bbl
Plant Uptime Efficiency	95%
Project Life	20 years
Plant Capacity	100 MBPD
Taxes:	
State Income	9.4%
Federal CIT	35.0%
Property Tax	2%
Depreciation	Modified Accelerated
	Capital Recovery Scheme

TABLE II Model Parameters for ROR

Cost Estimates

- Plant Cost ranging from \$ 20,000/BPD to \$ 35,000
- Gas cost based on net back of 20%
- Annual Operating and Maintenance cost of 5.6% of Plant Cost
- Transportation and storage estimated with Tariff estimates. Capital investments are amortized over the project life and worked out per barrel of product.

Revenue Estimates

ROR calculation based on \$21.00 per barrel crude price. GTL products given a premium of 1.4 times Spot Oil price Batch Transportation efficiency of 95%

SENSITIVITY ANALYSIS

Key Parameters in the rate of return analysis were modified to identify those with the greatest influence on the results. The parameters include:

- Capital Expenditure was varied between \$20,000 per daily barrel and \$35,000 per daily barrel to accommodate speculated range of plant costs and possible North Slope scale up factor.
- The crude oil price was varied between \$21.00 per barrel and \$35.00 per barrel
- For the batching operation, installing new storage and relief tanks at the terminal and pump stations respectively versus refurbishing some old tanks to accommodate production of storage.

CONCLUSION

The modern batching operation consistently gave the highest return in investment and it is recommended for transportation of the Gas-to-Liquid products from the North Slope of Alaska to Valdez. The major concern with batching is the length of mixing zone or interface and the purity of GTL products as they arrive the marine terminal in Valdez. Since experience shows that the length of this interface is independent on volume pumped, it becomes an optimization issue to find the optimum holding capacity on the North Slope that can give the minimum number of batches at any given production period. The optimum fluid velocity in pipeline should be determined with reasonable accuracy based on the density and viscosity difference of the two products to be transported to ensure minimum interface.

RECOMMENDATIONS

This study indicates that even the light GTL (LaPorte type) or FT diesel can pose problems for transportation through TAPS from the cold restart point of view. Rigorous studies are needed to identify the upper limit on the quantity and nature of the paraffins in GTL that can be accepted for transportation through TAPS.

Although modern batching technique appears to be the transportation mode of choice at this time, batching GTL products through the same pipeline that carries crude oil is likely to create significant problems of GTL product contamination. Wax, sulfur, asphaltene and other assorted solid deposits on the inside walls of the pipeline can potentially redissolve in the slug of pure GTL. Since GTL is a clean, zero sulfur fuel, this type of contamination could defeat the very purpose of gas to liquid conversion. Further studies are necessary to investigate the effect of GTL contamination from the pipe-wall residue.

After studying the operational issues, it will be necessary to re-visit the economics of GTL transportation. For example, the economics of batching mode could potentially include an additional cost of purifying contaminated GTL products. The blending mode, on the other hand, may make it feasible to have a cheap GTL plant producing low grade GTL, thus reducing capital expenditure.