APPENDIX D

SAMPLE CHEMISORPTION EXPERIMENT

Table D.1. Sample Chemisorption Experiment.

Run #: 08154.

Catalyst: 1.0001 gm of Co_3O_4/Al_2O_3 (9.3 wt.% of cobalt, 60-150 mesh).

Reduction: Start heating with hydrogen (Air Product ultrapure carrier 99.999%) of 0.74 ft³/hr (room conditions: 84 °F and 28.91 in-Hg @ 86.5 °F), to 750 °F in 2 hrs, stay at 750 °F for 20 hrs and finally cool down with hydrogen.

Outgassing: at 730 °F for 1 hr.

Manifold volume: 66.08 ml.

Dead volume: 46.28 ml.

Manifold vacuum: 6.60×10^{-7} torr after degassing ion gauge.

Adsorption temperature: 83 °F.

Amount of Hydrogen Uptaken

Let P_1 be the pressure of hydrogen in the manifold before expanding into the sample cell, in torr,

 $^{\mathrm{p}}$ eq the equilibrium pressure of previous adsorption step, in torr,

and P_2 the equilibrium pressure of this adsorption step. Then, the number of moles of hydrogen, n_H , adsorbed in this step can be calculated as follows:

$$n_{H} = \frac{P_{1}V_{M} + P_{eq}V_{d} - P_{2}(V_{M} + V_{d})}{RT}$$
 (D.1)

where V_{M} is the volume of manifold, in ml,

 $V_{\rm d}$ is the dead volume, in ml,

R is the gas constant, $62400 \frac{\text{torr-cm}^3}{\text{gm.mol-K}}$, and T is the adsorption temperature, in °K.

<u>P_1</u>	P _{eq}	<u>P2</u>	n _H (muol)
1042.4	•	608.9	24.9
1005.7	608.9	840.1	13.0
870.9	840.1	857.2	6.1

Total hydrogen uptaken of the monolayer = 44.0

Number of Initial Active Sites

Assume that the number of initial active sites, N_S , is equal to the number of accessible surface atoms of cobalt in the fresh catalyst after reduction. For hydrogen adsorption stoichiometry on cobalt, X_H = 1.0 hydrogen atom per surface cobalt atom, then by Eqn. (4.2), N_S can be calculated:

$$N_{S} = (44.9 \frac{\mu mol}{gm})(\frac{1 mol}{10^{6} \mu mol})(6.023 \times 10^{23} \frac{molecules}{mol}) \times$$

$$(2.0 \frac{H \text{ atoms}}{H_{2} \text{ molecule}})(1.0 \frac{\text{active site}}{H \text{ atom}})$$

$$= 5.29 \times 10^{19} \frac{\text{active sites}}{gm\text{-catalyst}}.$$

Cobalt Surface Area

With the site density, $n_S = 14.6 \frac{\text{active sites}}{(\text{nm})^2}$ [181], the surface area of cobalt, A_S , can be calculated by Eqn. (4.3):

$$A_{S} = \frac{5.29 \times 10^{19} \frac{\text{active sites}}{\text{gm-catalyst}}}{(14.6 \frac{\text{active sites}}{\text{nm}^2})(\frac{1 \text{ nm}^2}{10^{-18} \text{ m}^2})}$$

$$= 3.62 \frac{m^2}{gm-catalyst}$$