APPENDIX M

SAMPLE CALCULATIONS OF TRANSPORT PROPERTIES

Sample No. 052542000

	Feed		<u>Product</u>		
	gm-mol hr	mol %	gm-mol hr	mol %	
H ₂	0.6705	21.9570	0-5700	19.1917	
CO	0.8330	27.2784	0.7848	26.4262	
^C 2 ^H 4	0.4685	15.3420	0.4533	15.2644	
co ₂	0.6946	22.7462	0.7085	23.8570	
CH ₄	0.3871	12.6764	0.4316	14.5342	
^C 2 ^H 6	0.0	0.0	0.0216	0.7266	
Total	3.0537		2.9698		

Reaction temperature: T = 507.04 °K,

Reaction pressure: P = 10.53 atm.

Average molecular weight of product: $M = 25.1208 \frac{gm}{mol}$,

Net reactant conversion: 8.3092 %

The viscosity calculations were based on the method described in the book of Reid et al. [180] and all data were obtained from the same source.

Critical Properties and Lennard-Jones Potentials [180]

y <u>k</u> d (°K) (Å)	59.7 2.827	91.7 3.690	224.7 4,163	195.2 3.941	148.6 3.758	215.7 4.443
Critical Compressibility Z	0.305	0,295	0.276	0.274	0.288	0,285
Critical Volume V _c (cc/mol)	65.0	93.1	129.0	94.0	0.66	148.0
Critical Pressure P. (atm)	12.8	34.5	49.7	72.8	45.4	48.2
Critical Temperature T _C (°K)	33.2	132.9	282.4	304.2	9.061	305.4
Component	# ,	- S	C ₂ H ₄	, 60	, K	, с ₂ н ₆

For pure nonpolor gas at low pressure, the viscosity, μ , can be calculated by Chapman-Enskog equation [180]:

$$\mu = 26.69 \left(\frac{\sqrt{MT}}{\sigma^2 \Omega_v} \right) \quad \text{in } \mu P \tag{M.1}$$

Here, an empirical equation proposed by Nuefeld et al. [180] is used to evaluate

$$\Omega_{V} = \frac{A}{T^{*}B} + \frac{C}{e^{DT^{*}}} + \frac{E}{e^{FT^{*}}}$$
 (M.2)

where
$$T^* = (\frac{k}{\epsilon})T$$
, (M.3)
 $A = 1.16145$,
 $B = 0.14874$,
 $C = 0.52487$,
 $D = 0.77320$,
 $E = 2.16178$,
and $F = 2.43787$.

The viscosities of individual component gases were calculated and are listed below:

Component	<u>T*</u>	$\Omega_{\mathbf{V}}$	<u>u (uP)</u>
H ₂	8.49313	0-84565	126.26215
CO	5.52933	0.90791	257.29460
C ₂ H ₄	2.25652	1.12955	162.61069
co ₂	2.59754	1.08200	237.24999
CH ₄	3.41211	1.00570	169.48480
C ₂ H ₆	2.35067	1.11506	149.72145

Foa a gas mixture at low pressure, the viscosity, μ_m , can be estimated using the mixing rule below [180]:

$$\mu_{m} = \sum_{i=1}^{n} \frac{y_{i} \mu_{i}}{n}$$

$$\sum_{j=1}^{n} y_{j} \phi_{ij}$$
(M.4)

Here, Wilke's approximation is used to evaluate $\phi_{i,j}$,

$$\phi_{i,j} = \frac{\left[1 + \left(\frac{\mu_{i}}{\mu_{j}}\right)^{\frac{1}{2}} \left(\frac{M_{j}}{M_{i}}\right)^{\frac{1}{2}}\right]^{2}}{\left[8\left(1 + \frac{M_{i}}{M_{j}}\right)\right]^{\frac{1}{2}}}$$
(M.5)

or,

$$\phi_{\mathbf{j}\mathbf{i}} = \frac{\mu_{\mathbf{j}}^{\mathbf{M}_{\mathbf{i}}}}{\mu_{\mathbf{i}}^{\mathbf{M}_{\mathbf{i}}}} \phi_{\mathbf{i}\mathbf{j}} \tag{M.6}$$

and $\boldsymbol{y}_{\hat{i}}$ is the mole fraction of component i.

All values of $\phi_{\tilde{1}\tilde{J}}$ were calculated and are summarized in the table below:

			<u>i</u>				
		H ₂	CO	C ₂ H ₄	co ₂	CH ₄	^C 2 ^H 6
	Н ₂		0.27717	0.23073	0.19760	0.33731	0.21404
	co	1.88978		0.80490	0.76090	1.05333	0.75142
	C ₂ H ₄	2.49304	1.27557		0.95373	1.33281	0.92734
<u>ī</u>	CO ₂	2.29571	1.29656	1.02547		1.31923	0.95677
	CH ₄	1.99971	0.91587	0.73127	0.67318		0.67813
	С ₂ Н ₆	2.69238	1.38628	1.07955	1.03589	1.43882	

The molecular weights of individual components used in the calculations are M_{H_2} = 2.016, M_{CO} = 28.010, $M_{C2}^{H_4}$ = 28.054, M_{CO_2} = 44.010, M_{CH_4} = 16.043, and $M_{C_2^{H_6}}$ = 30.070.

The viscosity of the product mixture can now be calculated as $\mu_m = 218.77690~\mu P.$

To correct the viscosity of a gas mixture at high pressure, following empirical equation of Dean and Stiel will be used.

$$(\mu_{\rm m} - \mu_{\rm m}^{\circ})\xi_{\rm m} = 1.08(e^{-1.11\rho_{\rm m}^{1.858}})$$
 (M.7)

where μ_m is the high-pressure mixture viscosity, in μP , $\mu_m^o \text{ is the low-pressure mixture viscosity, in } \mu P,$ $\rho_{r_m} \text{ is the pseudo reduced mixture density, } \frac{\rho_m}{\rho_{c_m}} \quad (M.8)$ $\rho_m \text{ is the mixture density, in } g\text{-mol/cm}^3,$ $\rho_{c_m} \text{ is the pseudo critical mixture density, in } g\text{-mol/cm}^3,$

$$\rho_{C_{m}} = \frac{P_{C_{m}}}{Z_{C_{m}}RT_{C_{m}}} \tag{M.9}$$

and,

$$\xi_{\rm m} = \frac{T_{\rm c_{\rm m}}^{1/6}}{M_{\rm m}^{1/2} P_{\rm c_{\rm m}}^{2/3}} \tag{M.10}$$

Using Prausnitz and Gunn combination rules, following equations can be employed to evaluate the pseudocritical properties for the gas mixture:

$$T_{c_{m}} = \sum_{i=1}^{n} y_{i} T_{c_{i}}$$
 (M.11)

$$V_{c_{m}} = \sum_{i=1}^{n} y_{i} V_{c_{i}}$$
 (M.12)

$$Z_{c_{m}} = \sum_{i=1}^{n} y_{i} Z_{c_{i}}$$
 (M.13)

$$P_{C_{m}} = \frac{Z_{C_{m}}RT_{C_{m}}}{V_{C_{m}}}$$
 (M.14)

They are:
$$T_{cm} = 187.09295$$
 °K, $V_{cm} = 94.65828$ cm³/gm-mol, $Z_{cm} = 0.28792$, and $P_{cm} = 46.68681$ atm.

_

For the mixture gas at 140 psig = 10.5264 atm, and 507.04 °K. the reduced pressure $\mathbf{P}_{\mathbf{r}_{\underline{m}}}$ and temperature $\mathbf{T}_{\mathbf{r}_{\underline{m}}}$ are:

$$P_{rm} = \frac{10.5264 \text{ atm}}{46.6868 \text{ atm}} = 0.2255,$$
 (M.15)

and

$$T_{r_m} = \frac{507.04 \text{ °K}}{187.09 \text{ °K}} = 2.7101.$$
 (M.16)

From the generalized compressibility chart of Figure 3-1 on pp. 27 of the book of Reid et al. [180], $\rm Z_{C_m} \simeq 0.998$, and so the pseudo critical density of the gas mixture can be calculated, $\rho_{C_{m}}$ = 0.01056 g-mol/cm³ by Eqn. (M.9). Also from Eqn. (M.10), $\xi_{\rm m}$ = 0.0368.

The molar density of the product gas at 507.04 °K and 10.5264 atm can be estimated as below:

$$\rho_{\rm m} = \frac{10.5264 \text{ atm}}{(0.998)(82.06 \text{ cm}^3 - \text{atm/g-mol} \cdot ^{\circ}\text{K})(507.04 ^{\circ}\text{K})}$$
$$= 0.00025 \frac{\text{g-mol}}{\text{cm}^3} \qquad (M.17)$$

(M.17)

The pseudo reduced molar density, $\rho_{\rm rm}$, is calculated by Eqn. (M.8), $\rho_{\rm rm}=0.0237$. Plugging $\mu_{\rm m}^{\rm o}=218.7769~\mu{\rm P}$, $\xi_{\rm m}=0.0368$, and $\rho_{\rm rm}=0.0237$ into Eqn. (M.7), the viscosity of the product gas is corrected, $\mu_{\rm m}=219.840~\mu{\rm P}$. The kinematic viscosity for the product gas, $\nu_{\rm m}$, can be

$$v_{m} = \frac{v_{m}}{\rho_{m}} \tag{M.18}$$

$$= \frac{(219.840 \text{ } \mu\text{P})(\frac{1 \text{ P}}{10^6 \text{ } \mu\text{P}})(\frac{1 \text{ cm-sec}}{1 \text{ P}})}{(0.00025 \frac{\text{g-mol}}{\text{cm}^3})(25.1208 \frac{\text{g}}{\text{g-mol}})}$$

calculated as below:

The cross section of the fixed-bed is

$$A = \frac{\pi}{4} \left[(0.25 - 0.035x2 \text{ in }) (2.54 \frac{\text{cm}}{\text{in}}) \right]^2$$
$$= 0.1642 \text{ cm}^2 \tag{M.19}$$

The superficial velocity across the bed is

$$u_{\text{superficial}} = \frac{(2.9698 \frac{g-\text{mol}}{hr})(\frac{1 \text{ hr}}{3600 \text{ s}})}{(0.00025 \frac{g-\text{mol}}{cm^3})(0.1642 \text{ cm}^2)}$$

The interstitual velocity can be calculated by:

$$\frac{u_{\text{interstitual}}}{v_{\text{oid fraction}}}$$
 (M.21)

$$u_{\text{interstitual}} = \frac{20.0961 \frac{\text{cm}}{-\frac{\text{s}}{\text{s}}}}{0.563}$$

The Reynolds number based on the mean particle diameter $(d_p = 0.015 \text{ cm})$ is,

$$Re_p = \frac{d_p u_{inst.}}{v_m}$$

$$= \frac{(0.015 \text{ cm})(35.6947 \frac{\text{cm}}{\text{s}})}{0.0350 \frac{\text{cm}^2}{\text{s}}}$$

The axial aspect ratio is calculated by:

$$\frac{z}{d_p} = \frac{(2\frac{3}{16} \text{ in})(2.54 \frac{\text{cm}}{\text{in}})}{0.015 \text{ cm}}$$
= 370.42 (M.23)

Assume that the effective diffusivity, $D_{\rm eff}$, obtained in Eqn. (B.21) of Appendix B can be used to approximate the bulk axial diffusivity $D_{\rm a}$, then the Peclet number for axial mass transfer can be determined as follow,

$$Pe = \frac{d_p u}{D_a}$$

$$= \frac{(0.015 \text{ cm})(35.6947 \frac{\text{cm}}{-})}{0.0016 \frac{\text{cm}^2}{-}}$$