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ABSTRACT

An experimental assessment of liquids and iron
based catalysts for use in a Fischer-Tropsch slurry
reactor has been conducted. The best catalyst/liquid
combination was found to be a 48Fé/4.8Cu/47.2Kiéselguhr
catalyst in Chevron Refined Wax 143, At the optimum
operating conditions of 3GE°C, 288 psig, using a 5
weight % catalyst slurry with a molar Bzfco feed ratio
of 8.5, the yield of product was 118 mg/g-cat/hr.

Five different catalysts were tested in their
ability to produce diesel type fuels from biomass
pyrolysis gas. The catalysts tested, in order of
decreasing product yield, were: kieselguhr supported,
potassium promoted alumina supported, potassium promoted
unsupported, unsupported, and alumina supported iron.

- Two of the liguids tested, Syltherm 888 and Dow
Corning 2188 fluid, had a detrimental effect on catalyst
activity. n~Hexadecane and n—eicosane were also tested,
but their vapor pressures at synthesis temperatures were
too high for practical use; Pischer-Tropsch product was
tested successfully as ‘a slurry liquid, but equipment

modifications are required for the long term use of this

liguid.
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A two level factorial study using temperature,
pressure, Bzfco feed ratio, and catalyst concentration
in the slurry as factors was also performed. Based on
product yields, temperature was the most important
facter, followed by the 32/C0 feed ratio, catalyst
concentratiorn, and pressure, OQptimum operating
conditions were located by fitting polynomials to the
factorial study yields, and solving for the best

operating conditions using c¢lassical optimization with

constraint check.
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I. Introduction.

The production of diesel type transportation fuels
from biomass feedstocks is an attractive alternative
energy process., Biomass represents a large variety of
renewable, low suifur content cellulosic wastes such as
sawdust, almond prunings, wheat straw, and forest
residues. Urban wastes and crops grown specifically for
their energy value are also potential feedstocks. Most
other synthetic fuel projects reguire the use of coal.

There are two categories of biomass conversion
processes: thermal and biological. 1In a typical
biological process, microbes digest cellulose to produce
methane as a product. Large reaction vessels and long
pfocessing times are required, and the processing is not
always continuous. Thermal processing can be performed
continuously in smaller reactors with residence times
less fﬁan 1 second. A drawback to the thermal processes
is their energy requirements, and the processing equip-
ment is more_complex.than for biological methods.

The conversion Process under investigation at
Arizona State University is a two step gasification/
liguefaction process. The biomass is gasified using a

thermal process, pyrolysis. The biomass is pyrolyzed to
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gaseous hydrocarbons, char, and tar. The pyrolysis gas
contains hydrogen, carbon monoxide, carbon dioxide,
methane, and ethylene as its primary components. The
composition ranges of each species is listed in Table 1.
After scrubbing, the pyrolysis gas is compressed and
sent to & liguefaction reactor. The ligquefaction step,
utilizing Pischer~Tropsch catalysts, proquces the
desired product: diesel type fuels. & schema;ic of the
ASU process appears in Figure 1.

The work performed in this study focused on the
continued develcpment of a slurry phase Fischer~Tropsch
reactor system for use in pyrolysis gas liquefaction. A
characteristic of the Fischer-Tropsch reactions is their
high exothermic heat of reaction. Removal of the heat
of reaction is subsequently a primary consideration in
the design of Fischer—Tropsch reactors. Slurry reactors
provide excellent temperature control, and can operate
at near isothermal conditions. They may be operated in
a wider range of flowrates than a fluidized-bed reacter,
and are less prone to carb&n fouling when carbon
monoxide rich feeds are used.

Several models have been proposed for slurry
Fischer-Tropsch reactors (14,34,49). Although the

models themselves are quite general, a knowledge of the

————

R g T T



Table 1. Composition of
gas (38).

Component
BEydrogen

Methane
Ethylene

~ ‘Ethane

Carbon Monoxide
Carbon Dioxide

biomass derived pyrolysis

Mole Fraction

-1 - -45
2108 - .45
.85 —~ .40
.Bl - .85
-15 - .60

g -~ .15

Higher gaseous hydrocarbons are also
present in small amounts.

AT,
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reaction kinetics, heat and mass transfer coefficients,
and hydrodynamics of the system are reguired. Reaction
kinetics in particular are very specific to the catalyst
used. The three models available are useful for pre-—
dicting reactant conversions and cooling reguirements;
however, a method of predicting product distributions
from reactant conversions is not available. Considering
the unknown factors involved in modeling, it is not
currently possible to predict a priori the performance
of a slurry Fischer-Tropsch reactor. An experimental .
approach was ;onsequently chosen to evaluate catalystis
and liquids for use in the slurry reactor.

A variety of liguids have been tested as slurry
ligquids in previous studies at ASU (9,59)}. These
liguids are listed in Table 2. The slurry liguid must
be stable at elevated temperatures, and exert a low
vapor pressure. Since some of the slurry liquid will
undoubtedly be.carxied out of the reactor with the
synthesis product, the slurry liquid must be compatible
with the product. .Part of this study was devoted to the
testing of additional slurry liguids.

The most widely used catalysts in the Fischer-
Tropsch synthesis are iron based. A previous investi-

gation at ASU tested commercial iron based catalysts in




Table 2. Ligquids tested previously for use in Fischer-
Tropsch slurry reactors (9,59).

Conmercial Diesel Fuel
Diethyl Phthalate
Dimetnyl Naphthalene
Dow Corning 21PH Fluid
Hexadecane

Mineral Motor 0il
Mobil-1 Synthetic Motor 0il
Paraffin 0il
1-0Octadecene
Tetraethylene Glycol
Tetralin

Triethylene Glycol
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2 packed bed reactor (35). The performance of these
catalysts was not encouraging. Nevertheless, there have
been many reports in the literature on successful iron
catalysts, and their preparation procedures are well
documented in most cases. In light of the information
available in the literature, additional iron catalyst

testing was performed in this study, using catalysts

designed specifically for use in the Fischer-Tropsch

synthesis.

Using the best slurry ligquid/best iron catalyst
combination, a facteor study and optimization was per-
formed to determine the optimum set of operating
conditions for producing the maximum liguid product
yields. The factors considered were temperature,
Pressure, feed gas composition, and catalyst concentra-

tion in the slurry. The strategy followed in performing

this work appears in Figure 2.
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II. Review of the Fischer-Tropsch Synthesis

Traditionally, the Fischer-Tropsch synthesis has
been considered to be the catalytic formation of higher
hydrocarbons via the hydrogenation of carbon monoxide.
Sabatier and Senderens first reported the methanation of
carbon monoxide over nickel and cobalt catalysts in 1982
{46). In 1913 and 1914, the Badische Analin und Soda
Fabrik (BASF) received patents for the production of
liquid, oxygenated hydrocarbons from carbon monoxide and
hydrogen over a variety of metals, at pressures exceed-
ing 186 atmospheres (3,4). Eventually, in 1926, Fischer
and Tropsch were able to produce liguid hydrocarbeons at
atmospheric pressure by paséing coal-derived synthesis
gas over cobalt and iron catalysts (22}.

A lack of petroleum reserves, an abundance of
coal, harsh tariffs on importeé fuel, and guaranteed
Prices for synthetic fuels encouraged the development of
the German synthetic fuels industry, leading to the
start up of the first commercial Pischer-Traopsch plant
in 1536. By 1943, there were nine such plants operating
in Germany, with a peak production capacity of 748,009

metric tons/year (16,28). The German technology





