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Abstract

A staged reactor was designed to convert biomass to
usefni fuels. The reactor consists of three stages.
The first stage is a concentric combustor/pyrolyzer system
where the biomass is gasified in a fluidized bed at high
temperatures in the absence of oxygen. The second stage is
a2 cyclonic scrubber where particulates and condensable
materials are removed from the gas stream while the gas is
cooled. In the final stage the gas undergoes a
Fischer-Tropsch synthesis in a fluidized bed or slurry
reactor. Mathematical models of the gystem were developed
and used to create computer programs that would predict the
behavior of the bed. The models were based on fundamental
phenomena and were used to predict key dimensions of the
staged reactor system. A transparent plastic, full-scale,
cold flow reactor simulator was built using the models’®
predictions. The simulator was used to refine the models
and determine the coperating characteristics of the reactor.
The design was determined to be workable And potentially
useful. The reactor was, bowever, difficult to operate and

would require extensive automated control systems.
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INTRODUCTION

Modern society has developed to the point where it
is intimately dependant on the availability of large
amounts of ready energy. In the past, the procurement of
needed energy has been relatively easy. Petroleum cur-
rently fills the role of our principle energy source. It
is, héwever a finite resource. In time, we will exhaust
all our current reserves of oil. Eventually we will have
to look elsewhere for the energy which our lifé styles
demand. |

Over the past decade, numerous aiternatives_for the
use of petroleum have been examined. Some, like coal and
nuclear power, are also based on finite reserves of raw
materials. Thus they represent, at best, a temporary
solution to the problem. Ideally, any new energy system to
be developed would be based on reserves that can not be
exhausted. These sources are those that are continually
being renewed or are so vast that they can not be used up
in the lifetime of this planet.

One potential energy source that is continually
being renewed is biomass. The plants and animals-on the
Earth are constantly converting solar energy into

energy-containing materials. These materials are known
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¢collectively as biomass and are found in a wide variety of
forms and 1oca£ions. The vast majority of the material is
currently unused. Much, in fact, is considered waste and
disposed of at significant expense. If.the potential of
these materials were tapped, it would be possible to supply
a large portion of the energy demands of society. It
should be noted that the earth is not capable of producing
sufficient gquantities of biomass to both satisfy all our
energy demands while at the same time meeting our demand
for food.(Cheremisinoff et'al., 1988) The use of biomass
as an energy source, however, does have the capability of
meeting a significant portion of our energy demands while
at the same time reducing the load on our waste handling
capabilities.

There are several barriers that must be overcome
before the potential of biomass can be tapped. Foremost
among the difficulties is the conversion of biomass into
useful formg; In its naturally occurring forms, biomass is

not suitable for most enerqgy demanding activities. The

- materials have a low energy density containing around S£89

cal/g. (Bungay, 1981) This can be compared with 9568
cal/g, the value for gasoline.(theremisinoff et al., 1988)

The amount of ~2ergy extracted from naturally occurring

‘biomass would .ot even offset the amount reguired to

transport it to the points where it is needed. The second
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major difficulty étemé from the fact that biomass is
produced in a wide variety of forms. Each form has its own
set of characteristics that must be considered in
processing.

In order to overcome these problems, it is necessary
to convert biomass from its naturally occurring forms into
some other forms that are more convenient. Two general
classes ¢f conversion technigues have been examined.
Figure 1 is a diagram of the c¢lasses and some of the tech-
nigques associated with each class. The first class of
techniques makeés use of biological processes. The
principle techniques in this class are fermentation and
anaercbic digestioﬁ. Fermentation converts specific types
of biomass into ligquid alc;hols. The alcohols have a
higher energy density than the biomass. Anaerobic digest-
ion involves the production of gases containing mainly
methane. Anaercbic digestion can handle a wider range of
types of biomass than fermentation. The product, however,
is more difficult to utilize. Biological processes in
general are pollution free and use nearly ambient
conditions. However, they are very sensitive to their
operating conditions and are slow.

The second class of techniques involves the use of
thermochemical processes. These technigques make use of

much more extreme conditions than the biological processes





