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. Figure 54. A schematic diagram of a2 staged reactsr

system for the indirect liquefaction of tiomass.
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The water flow rate is a manipulated variable and can be
based on the scrubber exit gas temperature. The water
level in the scrubber is automatically controlled.

The gas then flows into the Fischer-Tropsch reactor.
The flow rate through this reactor can be manipulated buf
the pressure is controlled avtomatically. The gas remain-
ing after the product traps can be recycled or vented.

Based on the work of Prasad (1986) the range of
desirable operating temperatures for the pyrolyzer is
between 960 and 1969 K . The reactor is designed to run at
a feed rate of 10 lb/hr. The Fischer-Tropsch reactor will
operate at 588 E (Dry, 1976). The entire reactor system
will operate at a maximum pressure of 5 atm. Above this
pressure significant amounts of methane will be formed.
{Bungay, 1981) The Pischer-Tropsch synthesis has been '
successfully carried ont at that pressure using both iron
and cdbalf catalysts. Iron catalyst promoted by alkalil
metals seem to show the most promise for low pressure
liquefaction'. {(Dry, 1976)

Additional research is needed to develop an effec-
tive low pressure Fischer-Tropsch catalyst. An effective
catalyst and promoter combination would have to be located
befere the actual test reactor can be constructed.
Alternatively, a catalyst that promotes the formation of

the proper synthesis gas compositicn in the pyrolyzer at
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high pressures could be developed. If such a catalyst were
located then the reactor could operate at standard
Fischer-Tropsch pressures of 18 atm. or greater.

Additional overall configurations can alsoc be ex-
amined in order to determine their operating
characteristics as opposed to those of the currently
proposed design. Two potential alternatives are shown in
Figure 18.

The final area that future investigators may find
fruitful is the control'system to be employed. The control
system shown in Figure 54 deals with each unit
individually. A more effective technique may be to imple-
ment ap overall control system that considers several

variables before adjusting the operation of the system.
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DESIGN RATIONALE
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PYROLYZER / COMBUSTOR STAGE

The first dimension determined was the height of the
pyrolysis stage. Figure 30 shows the effect of the height
of the reactor on the product gas composition from the
pyrolysis stage as predicted by the preliminary pyrolysis
model. As can be seen, after the initial ten centimeters
the bed height has only a marginal effect of the
conversion. Thus, the bed must be at least 18 centimeters
tall. However, a ten centimeter bed would not be suffi-
cient for physical reasors. The bed would not have a
uniform radial concentration profile. In addition, it
would not have the thermal stability needed to maintain a
constant temperature under the feed conditions that will be
encountered. Unfortunately, it is not possible to deter-
mine the height needed to remedy these problems with any
pPrecision. FProm experience with the currently existing
indirect liguefaction system, it was determined that the
desirable bed height was between one and two feet. A
height of 16 in., was selected. This height was sufficient
to provide for mixing and thermal stability while also
providing room for the installation of such internal com~-

ponents as a <¢yclone. The combustor bed must be the same
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height as that of the pyrolyzer due to the interconnection
between the two beds.

The diameter of the pyrolysis reactor was determined
by the desire to be able to use currently available
equipment to feed the test reactor. The feeder is capable
of introducing feed into the reacter at rates varying from
less thar 1 1lb/br to around 28 lb/hr. For proper opera-
tion, the gas flow through the reactor at the smallest feed
rate desired shbuld produce a gas velocity equal to or
greater than the minimum fluidization velocity of the
reactor while the highest expected velocity will not
produce a velocity high enough to cause the reactor to
experience slugging. -

Using the data obtained by Prasad (1986) it is
possible to calculate the amoant of steam that must be
introduced into the reactor in order ot obtain the optiual
ﬁroduct gas. ' The ratio of steam to biomass obtained is
2.8, Assuming all the biopass gasifies and that the gases
approximate ideal behavior it is possible to determine the
volumetric flow rate through the reactor as a function of

the feed rate.

g = 20 g/mole + 18 g/mole 9.882]1 molje K = 1889 X (Al)



Lo

el b

[ 3 V]

L
[T

e

158

where Q = volumetric gas flow rate, liter/s
F = feed rate, g/s
Note that the eguation assumes that the combustor/pyrelyzer
stage of the reactor will operate at 14 atm. and 1489 r.
Hsu (197%) found tkat for the existing indirect
liquefaction system, the correlation proposed by Richardson
and Zaki was the most successful eguation for predicting

the minimum fluidization velocity. The correlation is

- n
U = ¢ mf | Op (A2)

where U . = minimum fluidization velocity, cm/s

= bed voidage at minimum f;uidization

4

= index proposed by Richardson and Zaki, £(Re) _

0, = Terminal settling velocity of the par-
ticles, cm/s

Por the sjstem of interest the correlation gives a minimum

fluidization velocity of 1.83 em/s. Combining this value

with equation (&l) it is possible to obtain an expression

for the cross sectional area of the reacter as a function

of the feed rate.

A= 787.13 Frin (a3)

where A = reactor cross—secticnal area, cm2
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Fmin-= Minimum feed rate, g/s

The minimom flow is not the only concern in deter-
mining the diameter of the reactor. It is also necessary
to consider the maximum flow that can be used without the
the bed begining to exhibit slugging. Slugging is the
condition where voids whose diameter is equal to that of
the reactor rises though the bed. Each veid is separated
from the previous one by an area of solids. When slugging
occurs very little gas—solids contacting occurs. There are

many different equations for predicting the ¢occurrence of

slugging. One proposed by Cheremisinoff and Cheremisinoff

{1984) is :
o]
u_ = 8.8 2 (as)
s p.8
L
where t% = the minimum gas velocity for slugging to

oceur, ft/s
3] = the minimum gas velocity for fluidization to
occ.r, ft/s

L = the bed height, ft

Substituting the values for the bed height and
minimum fluidization velocity derived earlier it is pos-

sible to arrive at a wvalue of 7.15 cm/s for Us. Thus it is
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possible to arrive at an equation for the cross-sectional

area of the reactor based on the maximum feed rate,
A = 281.46 Fmax (A5)

. where A = the cross—sectional area of the reactor, cm2

Poax = Maximum feed rate, g/s.

Between eguations (A35 and (A5) a reactor diameter
of 22.0 cm was determined as the most appropriate. This
diameter allows a minimum flow of 4.1 1lb/bhr and a maximum
of 15.8 lb/hr. This diameter was converted to 9 in. for
practical considerations. _

- The diameter of the combnstor was much easier to
determine since the flow rate of gases through the combus-
tor is independent of the feed rate. The only requirements
for the combustor are that there be sufficient room between
the inner and outer walis for the installation of the
needed internal components and sufficient volume to provide
a long enough particle residence time to regenerate a
catalyst. The regeneration time is dependant on the
catalyst used and thus can not be generalized with any
precision. It was determined that the volume of the com-

bustor be such that the residence time would be twice that
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of the pyrolyzér.' Combining the two requirements a final

diameter of 24 in. was determined.
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FISCHER-TROPSCH STAGE

The height of the Fischer-Tropsch reactor is depend-
ant on the type of bed expected. A slurry bed must be
considerably taller than a fluidized bed to obtain the same
conversion. From figure 37, a height of 168 cm would be
sufficient to produce significant conversions in a
fluidized bed reactor while figure 42 shows that a height
of nearly 7.0 m. would be needed for a slurry reactor. A
variable height reactor that could handle bed heights
between 50 cm and 399 cm was selected.

The diameter of the Fischer—-Tropsch reactor was
determined for a fluidized bed reactor since the require—
ments of a fluidized bed a more restrictive than those of

for a2 slorry reactor. The gas flow arriving at the

' Pischer~Tropsch reactor will be determined by the flow rate

leaving the pyrolyzer, the temperature of the scrubber and
the compoéition of the gas stream leaving the scrubber.
The model of the scrubber predicts that the temperature
effects will be significantly wmore important that the

composition changes., The felliowing equation can thus be

used :





