MODELLING
A. A BUBBLE-SLUG FLOW MODEL

MODEL DEVELOPMENT

The basis of the physical model developed 1in the subsequent
paragraphs is founded on the following assumptions. These include a
system of fully developed, axially symmetric, steady state, two-phase
flow at isothermal and low pressure conditions. Alse, it is assumed
there is equilibrium between phases (i.e. no mass transfer), both the
coalescence and breakage rates are equivalent, and the gas phase
undergoes negligible expansion for the short rise distance of one
bubble-slug unit length. |

Actual observations of this flow pattern would show highly
fluctuating, spatial distribution of the gas and 1iquid phases within the
column. However, based on the characteristic hydrodynamics of this flow
pattern, one can géneralize as to the physical geometry which prevaiis.
This consists of the tendency for the agglomerated, large spherical cap
shaped bubbles to rise quickly, up the center of the column, through a
nearly uniform dispersion of smaller spherical bubbles in a flowing
liquid. Therefore, it is convenient to view tﬁe bubble-slug flow pattern
for an idealized geometry, as presented in Figure 1, which shows a
bubble-slug unit as 'frozen' for an instant in time. The results of this
model can be considered as giving time-area averaged values for the
parameters involved.

The bubble-slug unit, as depicted in Figure 1, consists of two
segregated sections, referred to as the large bubble region, and the
1iquid slug region. The large bubble region consists of the large

spherical cap shaped bubble, formed by coalescence and agglomeration of

Il
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the smaller spherical bubbles, and the surrounding liquid which contains
some of the small spherical bubbles. The liquid slug region also
contains these small spherical bubbles.

Paralleling the development of Fernandes et. al., (36) this model
development begins with defining the volume average void of the

bubble-slug unit as follows:
G (M

where YG is thg total volume'of the gas phase present in the'bubbTe-s1ug
unit, and VBSU is the volume of the bubble-slug unit itseIf, which is

equal to:
=Lysy A - (Lip +£,5) A (2)

The total voiume of the gas present in the bubble-slug unit is equal to

the following:

VG = VGLB + VGSB + VGLS (3)

where VGLB is the volume of gas in the large bubble, VGSB is the volume

of gas present as small bubbles in. the large bubble region, and VGLS is
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the volume of gas present as small bubbles in the Tiquid slug region.
If it can safely be assumed that the small spherical bubbles are
uniformly distributed throughout both the large bubble and liquid slug

regions, one can write:

Vos = Rip AoLp (4a)
Vess =g Agse (4b)
YaLs = Lis AgLs (4c)

where these areas are the effective fractional cross-sections occupied by
the gas 1in each designated region. Substituting these relations into

equation (3) results in the following expression:

Vo =Ayg Agp +21p Agsp * dLs AgLs

Returning to the definition of the total void fraction of the

bubble-siug unit, and utilizing the above relations gives:

o =5 Z1pAcip *#1p Agsp *Lys Agrs (6)
BSU VBSII ‘5BSIJ'A

Let us define the relative length of the large bubble region to the
length of the bubble~siug unit as follows:

£1p

ol {(7)
° BSU
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Following our assumption of uniformly axial distribution of the small

spherical bubbles, one can approximately equate volume void fractions

with area average void fractions, per bubble-siug unit length, as follows:

Y
a. = —v& - _AGLB (83)

L8 BSU A

v A
- _'GSB GSB

a T e RV « Y

SB VBSU ry (8b)
VY

aps = S . Agrs
BSU A (8¢)

Substituting equations (7) and (8a,b,c) into (6) and slightly

rearranging, gives the expression for the total bubble-slug unit void

fraction from the relative contribution of each region.

UBSy " @1p B + ag, B +ayq (1 -p) (9)

CONTINUITY BALANCES
Restricting our attention to a single bubble-slug unit, the time
required for the bubble-slug unit to pass a fixed reference plane can be

expressed as:
£ ' (10)

at =—EU_

BSU UBSll

Likewise, the time intervals for the separate large bubble and tiquid

slug portions to pass the reference plane can be expressed, respectively,
as:
sz
= LB (11a)
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Atis = 3 (11b)

During the same time interval for the Tlarge bubble region, the
surrounding dispersed small spherical bubbles also pass the refefénce

plane, such that:

AtSB T (11¢)

In each case, UBSU is the average translational velocity of the
bubble-slug unit (which can be viewed as the average rise velocity of all
the gas bubbles present in the unit).

On the basis of assuming an 1incompressibie 1liquid and negligible
expansion of the large gas bubble for the rise distance of one
bubble-slug unit length, one can safely assume that volume balances are
equivaient to mass balances (i.e. constant density). The volume of gas
transported past this reference plane in the large bubble is thhs:

Yors = Usrp ®1p A Atrp = Ugpp a5 A Tper (12)
The volume of gas trénsported as small spherical bubbles associated with

the large bubble region is:

Voon = U.ow a ---——=--£I“13
GSB = “Gsp Usp 4 Atyp = Uyoo Asp A )
BSU

And the volume of gas transported as small spherical bubbles associated

with the liquid slug region is:
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| Lis
Vo1s * Uors %1s A A%s * Tg1s %1s A T (18)

The total gas volumetric throughput can therefore be expressed by:

- Y (L:p +£..)
Q, at = U.. A 22U U A LB LS (15)
BU - Tse T Uy T Use Ugsy
or alternately
y A
BSU
Use * Tag, ~ Yezs * Vass * Vois (16)

Substituting equations (12), (13), (14) into (16) will give:

2 2
s A Upsy  GLB %1B A T . Ussp %sp A -
5SU BSu (17)
Lis
+ U a A

Simplifying, remembering the relation given by equation (7), results in

the following:

Usc " Yotp®rn B * Ugspusp B+ Ugrgapg (1 -p) (18)

Similarly, for the liquid phase, the volume of liquid associated with

the large bubble region which passes the reference plane is given by:

Vip = Upgp (1 - g - asp) A Aty

zIB (19)
= U (1 -« -Qaen) A
118
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And for the volume of 1iquid in the liquid stug region:

s (20)

The total volumetric liquid rate is thus

Q At = U . Xesy |, (frp *21s) 21)
or alternately:
S =V (22)
L™ Upgy L8 * Virs

Substituting equations (19} and (20) into (22) gives:

U ‘BSU -

A U 1 - -
SL 7 Upgy us (1 = app ~ag) A5

BSU (23)

£1s

+ U (1 ~a..)A
LLS ,
Ls UBsy

Simplifying, again remembering equation (7), gives:

Ugp = Uppp (1 =app =agg) B + Uppg (1 ~apgd(l -8)  (24)
Equations (18) and (24) give the expressions for the continuity

balances of each phase, relative to their respective superficial
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velocity. A second pair of continuity relations can be derived, relative
" to the average rise velocity of the bubble-slug unit as a whole. For the

gas phase, it can be shown that:

(Yssu = Ygs) %18 * (Yssu = Ugsa’ %sp (25)
" (Ugsy ~ Ugrs) ays

And similarly, for the liquid phase:

U - -
(Uggy = Uppg) (2 Ay = agp) ® (Uggy - 12s) (1 - agg)  (26)

AVERAGE LIQUID VELOCITY PROFILE

Walter and Blanch {135) reported on the liquid circulation patterns
and their effect upon the gas holdup using both microscopic and
macroscopi¢ balances. They began their development with deriving two
forms of the average liquid velocity profiles from microscopic momentum
balances. The first form was for what they termed 'turbulent flow,
which provided for an assumed slippage at the column wall, while the
second form of 1iquid velocity profile was for a no stip condition at the
column wall which they termed 'slow flow.

They began with the equation of motion for axially symmetric two

phase flow in a cylinder as follows:

s J 130

) P
o=(rT) = g; + (1L-a538 & (27)
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where is indicative of the liquid rheology. The integrated form of

this equation over the column cross-section is

Ap
Cr

£ . 2 -
dz * ﬁqq + (1 - %A & (28)

At this point, Walter and Blanch (135) substituted the gas holdup
radial profile obtained by Ueyama and Miyauchi (163}, which is given

below, into the above equation

a4 = a&(“ﬁ'ﬁ"g")[l ‘(%)ﬁ} (29)

The parameter N is a constant to account for the shape of 'the gas holdup
profile. Ueyama and Miyauchi (163) reported this value falls within the
range from 1.8 to 2.0 for the air-water system.

walter and Blanch (135) stated that if the eddy or bulk viscosity can

be assumed constant, the resultant liquid velocity profile has the form:

U
Um:; ) A'{ﬁlz‘ 3'(§)N*2+ c* In(f+ D* (30)

or in dimensionless form:

U = A'r® - B'g"’z +C'"1lnr + D (31)
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Upon integrating the above expression, Walter and Blanch (135) used
boundary conditions corresponding to no net flow of the liquid. This
study, however, will incorporate a provision for a flowing liquid phase
whose net flow 1is equivalent to the area average velocity (i.e.
superficial velocity). Also, of primary interest is the case of 'slow
flow' with no slip at the column wall. This is because it is believed
that in columns of large diameter, the diameter will be of such a
magnitude relative to the thickness of the down flowing 1iquid annular
region, that laminar boundary layers will prevail and therefore no slip
will occur at the wall. The boundary conditions for this integration are

l1isted below.

N _ a
B. Ce 1z a—E'° e r=0 (32)
B. C. 2: UL = Uma.x e r=20 {33)
R
0 U(r) r dr
b. C. 3: =
R Usy, (34)
r dr
0
B. C. 43 UL-O € r =R (35)

The third boundary condition provides for net flow of the liquid
equal to the superficial velocfty, while the fourth is the case for no
slip at the column wall. Upon integrating equation (31), boundary
condition 1 stipulates that C' must equal zero, which with boundary
condition 2, determines that D' is equal to one. The integrated form of

boundary condition 3 results in:
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N-t-LL

max[ % B (IJ Usy, (36)

Since it is known 0'=1, the above relation, with boundary condition

:Ul"i
b S

4, can be used to solve for the coefficients A' and B', whose resultant

expressions are given below.

o [N+ b Y/ 2Ysy
A ( : )( et (37)
2u
v N+ i SL -
pr=(E3 )( T ) | (38)

Substituting these expressions for the coefficients into equation
(30) and rearranging gives the expression for the average 1iquid velocity

. profile with a net flow equivalent to the superficial velocity:

U

T G e [ S

Which for the air-water system (i.e. N=2) is:

U, _ é
Upax " (“' U:::)(ﬁ}z* (3- 3:2)(%}“ ~ (40)

The above equation can be treated as a quadratic by Tletting

X={r/R)2, to solve for the transiton point where the 1liquid axial
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velocity is equal to zero. Also, ome can determine from the quadratic
solution expression, the limitation for the quotient USL/Umax. The lower
1imit on this relation is that Umax must be greater than three times USL.

Upon setting USL equal to zero in equation (39), one quadratic
solution results at r/R=0.577, which is the exact root of Walter and
Blanch's velocity profile for the case of no net Tiquid flow. Liquid
velocity profiles for both the cases of no net liquid flow and a positive
net flow equal to the superficial velocity of 0.05 m/sec are shown in
Figure 2 for comparison. It can readily be seen that with increasing
superficial liquid velocity, the transition point progresses outward,
radially toward the wall, and thus the down flowing 1iquid annular region
decreases.

0f specific interest, is the average axial liquid velocity in the
annular area of the large bubble region. This Tiquid velocity value can
be determined by performing an area aveﬁaging integration on equation
(40}, for the air-water system, within the appropriate limits. The

general form of this type of integration is given below:

ry (41)
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where ry is the radius of the large bubble, and R is the column

radius. ‘Perfor-ming the above integration results in the following:

U 1.
U = max I:l - (r R)z- l(# - —EL)(I -(r R)u)
ws T r/m? L] v/ 2 U ax v/

6U
1 SL 6
"’3{3 - Um )(1 -(rb/R) J

(43)

ax

However, the large bubble radius which would prevail for a given flow
condition is not generally known. Returning to the definition of the
volumetric void fraction, one can show the following holds true for

either a spherical or a hemi-spherical shaped bubble.

2
s - (2
A | (44)
or
> (g o )1/2 (45)
R 3 LB

Substituting the above relation into equation (43) gives:

U
u = max 1 - 2
LLB (2 a )
- (% arg) [ L8 (46)
6U 6U
1 SL 3 2 1 ST ,
- (4 - —>=)(1 - . - 1 - (2 3
2 Umax (2 uw) ) j(j Umax)( (2 aLB) j
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The above expression contains the variable, Umax, which is the center
Tine liquid velocity value. This quantity depends, to a great extent,
upon the 1liquid circulation strength, which is induced by the rapidly

rising large gas bubbles. Since the size and frequency of these large

bubbles is dependent upon the gas rate, then the gas rate has a direct
influence upon the 1iquid circulation strength, and thus an effect upon
Umax.

In large diameter columns, it is believed one can roughly approximate
the liquid center line velocity by the difference between the average
translational velocity of the bubble-slug unit and the average slip

velocity as follows:

qnax = Uggy - U's (47)

where the slip velocity, Us', is based on the average total gas void

fraction of the bubble-slug unit, as given by:

U‘ = -P&— - ——ES-L—_
S aggy L= agqy (48)

SMALL BUBBLE RISE VELOCITY

It was assumed the small spherical bubbles present in both the Tiquid

slug and the region surrounding the large bubble were uniformly
distributed. This distribution can be approximated by cross-sectional

average values such that one can write:
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u {49)

GSB = YLLB * Ypes

UsLs = ULLs * Ubee (50)

where Uba,is the Fise velocity of the gas bubble due to the bouyancy.
Zuber and Hench (166) modified the relation for the rise velocity of
a single bubble by Harmathy to account for the influence of the
neighboring bubbles. The hinderance on the rise velocity of the single
bubble by the swarm of bubbles, as correlated by Zuber and Hench, is

given by the following expression.

g O ( - )1/“
Uy = 1.41[ £L ’ai-] (1 - a)f (51)

where K takes on values from 3.0 for very minute bubbles to 1.5 for
somewhat Targer bubbles. For the size bubbles relevant to this study, K
is equal to 1.5,

The average gas void fraction of the small bubbles in the large
bubble region is assumed to be equivalent to the average void fraction of
the small bubbles in the liquid slug region, however, one must account
for the void volume occupied by the large bubble. Therefore, for the
void fraction of the small bubbles in the large bubble region, it can be

shown that the following is true:

-
- -

-z = apg (1 - apg) (52)
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Siﬁce these small spherical bubbles have been identified and
associated with segregated regions, each average bubble rise velocity
must reflect their respective average regional void fractions.
Therefore, the absolute average rise velocity of the small spherical
bubbles, present in a swarm of bubbles, in both the large bubble and
Tiquid slug regions are, respectively, given by the following two

equations:

i 1/4
8T (P, -p)
Ugsp = Ugzp + 1.41 L LS ) - c‘SB);«/Q (53)
i ~L
-
ga (P, -p.) |1/
Ugrs = Upps + 1.41 L6 - a'I.S)B/Z (54)

AL

AVERAGE BUBBLE-SLUG UNIT VELOCITY

At moderate superficial gas rates, within the bubble-slug fliow
pattern range, both bubble coalescence and breakage are prevalent, and
two average bubble sizes coexist. The smaller bubbles are generally
spherical to ellipsoidal in shape and rise vertically in a spiraling,
Zig-zag path. The agglomerated larger, spherical cap shaped bubbles tend
to rise almost in a rectiliﬁear fashion, at a velocity independent of
bubbie size.

The larger spherical cap shaped bubbles rise at a velocity much
greater than that of the smaller spherical bubbies. They tend to sweep
through this dispersion, causing turbulent eddies by their wakes,

resulting in a recirculation of the iquid phase. This recirculation of
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the liquid can entrain some of the small spherical bubbles, if the liquid
velocity is greater than the rise velocity of the small bubbles.
The relation recommended by Zuber et al. (167) for the rise velocity

of bubbles, for the case of bubble size independence, is given by:

8T (P~ /%) M
2 (55)

cho' l.bl{ >
AL

To account for a flowing liquid system, Govier and Aziz proposed addition
of the following termm to the above relation, with an appropriate

coefficient.

U (56)

w = Usg * Ust
The resultant combined expression can be used to approximate the average

translational velocity for a bubble-slug unit, as given below:

gqa
UBSU = 1325 UM + 13“1 (;Lé
: L

- 1/4
re) (57)

MODEL SOLUTICN
At present, the model for the bubble-slug flow pattern consists of 12

basic equations with 13 uncnowns. These unknowns represent the major

variables and parameters of interest and are listed below.
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Bsu, LB, SB, LS,
UGLB, UGSB, UGLS
ULLB, ULLS, UBSU

Umax, Us

Like the slug flow model of Fernandes et. al., this equation network
can be closed for solution by assuming a value for the average gas void
fraction of the liquid slug region which corresponds to the void fraction
‘at the bubble to bubble-slug transition. A solution algorithm similar to
that used for the siug flow model can then be followed:

The value of the average liquid slug void fraction which corresponds
to the transitional bubble to slug flow void fraction has been reported
to be approximately 0.25 (162). However, Beinhauer (19) who used x-ray
absorption techniques to measure the relative gas holdup 1in bubble
columns, was able to differentiate the relative contributions between the
small and larger gas bubbles to the overall total gas holdup present in
the column. He presented his results graphically which is reproduced and
shown as Figure 3.

This figure indicates that the relative gas holdup of the small
bubbles increases with increasing gas rate to a maximum of approximately
0.22 at a superficial gas vieocity of 0.06 m/sec. The total gas holdup
is about 0.25 for the range of 0.055 to 0.08 m/sec. The small bubbles
gas holdup then decreases to a somewhat constant value of approximatey
0.19 for USG 0.09 m/sec.

From the results of Beinhauer (9) for the gas range of interest (i.e.
the transition from bubble flow to bubble-slug flow, US6=0.04-0.12
m/sec), the average relative gas holdup contribution from the small

bubbles is taken to equal 0.20. This study will assume this value for
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the average gas void fraction from the small bubbles in the liquid slug
portion and use it throughout the testing and evaluation of the proposed
bubble-slug fliow model.

An auxillary equation is now introduced to facilitate the convergence
to a solution. This auxillary equation will aid in determining the
average total gas void fraction of the bubble-siug unit for use 1in
estimating the average slip velocity determined by equation (48). It can
be shown that the following relation holds true and it was found to

correlate well upon convergence.

“Bsy T (1) Bagg ¢ A (58)

A1l of the egquatfons which make up this bubble-slug model are
sumarized in Table 1. The finalized solution algorithm is outlined in
Table 2. The convergence method used, was a Bisection method, also known
as the Interval Search and Half method. Using the solution a]gorithm as
outlined in Table 2, convergence usually occurred within 45 iterations
from the initial assumed value of 1.0 for the Tlarge bubble void
fraction, TB, and with an initial search intervai of 0.05.

A check on the uniqueness of solution was performed similar to that
used during the review of the slug flow model. This was accomplished by
iteration of the assumed value for the large bubble void fraction and
determining the value as calculated by the model, as per the solution
algorithm procedure. Figure 4 shows, for a particular set of parameters,
the plot of assumed large bubble void fraction values versus calcual ted
values of the large bubble void fraction from the bubble-slug flow model

and does, in fact, indicate a unique solution point for this model.
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Table 1

BUBBLE-SLUG MODEL

Equation Network
Average total void fraction of bubble-slug unit

.IU"I.I..'SI'°‘L3 (1-.)

Mass balance for gas phase

U » 9
% Gn.u"'@l':l"'cu'u (2 -9)

Mass balance for liquid bhase

Gas flow relative to average velocity of bubble-slug

(Opgw = Ugza) %23 * (%ygy = Josp) %" (Opuy - Sg13) s

Liquid fiow relative to average velocity of bubble~slug

(Opgy = Upgpl(l - ary < agy) » (Upgy = Urzs)(l - ayqh |

Rise velocity of small bubbles in large bubble region

ean + By - ;.ul@;f,:a’_]‘{; o
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n'Um {1‘.:.-.3',. .um ‘1'.:”(1‘.)

(9)

(18)

(24)

(25)

(26)

(53)



7. Rise velocity of small bubbles in liquid slug region

| oy 11
%ous * %us ° Lu[-i%—’l’—] Q - 0g)¥?

8. Average translation velocity of bubble-slug unit

Upgg = 1.25 0 » 182 LAV RY N b
4

9, Average liquid velocity in large bubble region

v 6
® L - ] (1 =32 a,n) ~ ® - 11 - Y
“ria 1 - (3/2 }( 42 §( 355_:( (3/2 @;g)%)

&
- - J
bo é:m /2 )
10. Approximate 1iquid center-1ine velocity

Tmax * Upsy - U
11. Average slip velocity between phases
“ l’ u*
- | gm

€350

12. Relative void fraction of small bubbles in large bubble region
Cgp " o (1 - ay)

13. Approximate total average void fraction of unit

"U-‘l'ﬂu}'lno.u
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(57)

(46)

(47)

(48)

(52)

(58)



Table 2

BUBBLE-SLUG MODEL
Solution Algorithm

For any given flow rate pair of superficial velocities in a column of
diameter, D, proceed as follows:

1.)

2.)

3.)
4.)

5.)

6.)
7.)
8.)

9.)

10,

12.)

13.)

14.)

15.)

16.)

It has been reported that the gas void fraction in the 1liquid slug
region, |, is approximately 0.20.

Calculate the average velocity of the bubble-slug unit, Ugsy, from
equation (57).

Assume a value for |p within the physical limits of 0.00 to 1.0.

Calcuiate the void fraction of the small bubbles in the large bubble
region, spg, by equation {52).

Approximate the average total wvoid fraction of the bubble-slug
unit, gsy, by equation (58),

Approximate the average slip velocity, Ug', by equation (48).
Estimate the center line liquid velocity, Upax, by equation (47).

Calculate the average liquid velocity in the large bubble region,
ULLe, by equation (46).

Calculate the average Tiquid velocity in the 1iquid slug region,
Upls, by equation (26).

Calculate the relative large bubble to bubble-slug unit length
fraction, , by equation (24).

Calculate the average total void fraction of the bubble-slug unit,
BSU, by equation (29)}.

Calculate the average rise velocity of the small bubbles in the
large bubble region, Ugsg, by egquation (53).

Calculate the average rise velocity of the small bubbles in the
Tiquid slug region, UgLs, by equation (54).

Calculate the average rise velocity of the large bubble, UgLe, by
equation (25).

Ca]gulate the void fraction of the large bubble, g, by equation-
(18). \

Check assumed value of g versus the calculated value, iterate,
repeating steps 3 through 15, until convergence.
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Plgure 2,

Comparison of average liquid velocity »ro<iles
A. No net liquid flow (i.e. USL = 0}
B. With Ugy = 0.05 a/sec (U, = 5Ug)
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