APPENDICES

APPENDIX-A

Appendix-A represents variou§ data obtained from the experimental
work, Figures 1 and 2 are the calibration curves for air and water
rotameters. Figure 3 compares Axial holdup with total holdup. Figures 4
through 7 represent holdup variation with height at increasing
superficial gas velocities for porous and sieve plates. Figures 8
through 12 are the gas disengagement curves for different CMC
concentrations. Figure 13 is a parity plot for CMC solutions for a
porous plate distributor in bubble flow. It compares the calculated

holdup from the empirical correlation with the observed holdup.
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APPENDIX- A

Holdup correlation for superficial gas velocity at gas

inlet (E;vs vGSO) .
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Sieve Plate

Eg= 0.8034(VGSO0)

Correlation

Table for Sieve Plate-I

P, P, Ve
psi psi kg/s
24.70 21.49 0.036E-02
24.70 21.31 0.063E-02
24.70 21,15 O0.082E~02
24.707 21.06 0.101E-02
24,70 20.98 O0.120E=-02
24.70 20.87 0.148E=-02
24.70 20.76 O0.177E-02
25.20 20.54  0.237E-02
25.20 20.34 0.294E-02
26.70 20.01 0.391E-02

0:-53%5

R
kg/md

1.768
1.754
1.741
1.733
1.727
1.717
1.708
1.690
1.674
1.647

VGSD
m/s

0.0111
0.0196
0.0261
0.0320
0.0380
0.0474
0.0568
0.0769
0.0962
0.1302
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Es

0.068
0.092
0.115
0.126
0.137
0.153
0.169
0.199
0.225
0.271
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APPENDIX A:

Maximum in interfacial area

A major contribution of this study is the indicdtion of a maximum in
interfacial area in the bubble pattern. Interfacial area is important in
determining rates of heat and mass transfer.

The justification of the presence of this maximum is depicted in the
sketches of figure 14. Sketch 14(a) indicates linearly increasing bubble
diameters with superficial gas velocity. Gas holdup increases and
reaches a maximum as superficial gas velocity is increased. See figure
14(b}. The exception to this, as shown, is at high concentration of
CMC. The solution becomes viscous enough to promote coalescence and
retard break-up thus reducing gas holdup and eliminating the maximum. If
we use the standard relation, that interfacial area i{s directly
proportional to gas holdup and inversely related to bubble diameter, we
obtain a maximum in interfacial area. See sketch 14(c). Thus, operation
of bubble columns, with porous plates, in the bubble pattern, at low

enough viscosities, should result in maximum interfacial area.
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expected in this study.
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APPENDIX B:

Direct Coal Hydroliquefaction-Process Conditions

and System Properties

A typical coal hydroliquefaction process {SRC-I,II) {4,81) is carried
out at about 2000 psi (130atms.) and 450°. Coal sturry, composed of
fine coal powder (30 wt.%) suspended in coai derived 1liquids, and
hydrogen is passed through a preheater, into the reactor-dissolver. Low
residence time and high turbulence is maintained in the preheater to heat
the three phase mixture at high heat transfer rates, to avoid coking.
But the upper 1imit of the velocity of the three phase mixture is
dictated by erosion considerations of the furnace tubes, due to the flow
of coal slurry (41). The solvent and the heating are used to facilitate
the thermal degradation of coal, resulting in the formation of free
radicals of relatively low molecular weight. These free radicals are
then stabilized by hydrogen transfer from the hydroaromatic solvent
{(41). High pressure of hydrogen and the inorganic matter "ash" present
as residue, acts as a catalyst, to rehydrogenate the vehicle solvent.
The role of such cata]ysts is important in the desulfurization,
denitrogenation and other reactions leading to the formation of lighter
products. This is in essence the SRC-II process.

The Tiquified product is generally aromatic in nature. Typical model
compounds chosen as a representative of the product, used for determining

the liquid phase physical properties, are illustrated on the next page.
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Model Compounds Wt.% of Compound

OO‘ CHy

1-Methyl Phenantherene 90-95%
Sul
Dibenzothiophene 3-5%
LD
Acridine 2-5%

Physical properties of the coal slurry-hydrogen system will be
evaluated on the basis of products and the earlier specified operating

conditions. The various physical properties required, to draw the flow

maps, are listed below.

1. Gas density
2. Liquid density
3. Liquid viscosity

4, Interfacial tension
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1. The gas density is calculated by assuming that the gas f1s
almost pure hydrogen with traces of hydrogen sulfide, methane and other
organic vapors. A generalized compressibility chart corrected for
hydrogen (110), is used to calculate the density at 2000 psia, 450°.
See Table I.

2. Liquid density: It 1s assumed the coal solvent slurry behaves
1ike an ideal homogeneous mixture (pseudo homogeneous dispersion,
discussed earlier). On this basis weighted average slurry density is

calculated.

Density of coai-average of these reported values {105).

Bulk- Density of: Lb/Cu-Ft Gms/cc
Anthracite 50-58 0.80-0.93
Bituminous 42-57 0.67-0,91
Lignite 40-54 0.64-0.86

Average density.of coal-0.80 gms/cc

Density of solvent-average value of the reported densities (105) of
the above described constituents of 1iquified coal. See Table III.

Average density-1.16 agms/cc |

Concentration of coal in slurry, the commonly reported values lie
between-25 to 35 wt.%.

Average concentration of coal in slurry- 30 wt.%

Average density of coai slurry- 1.067 gms/cc

3. The 1iquid viscosities cannot be evaluated accurately for lack

of required data, thus the various values obtained from the l{terature

are reported (92,132), See Table II.
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4. Surface tension is calculated by assuming that the solid coal
particles are small in size and‘light enough not to affect the surface
tension. But the calculated surface tension is for room temperature and
standard atmospheric pressure. Effect of temperature, pressure and
hydrogen dissolution, cannot be accounted for, using the available simple
theoretical equations (105}, The calculated and reported values (69,132)
of all of the four properties, are included in Tables I and II.

Before going directly to the study of the reactor hydrodynamics it
would be worth looking into the reactor and preheater configurations, the
reported sizes and estimated scale ups. Fig. 15 illustrates the
reactor, The typical size of the preheater and reactor for the
Wilsonville, SRC-I pilot plant are given below (85).

Preheater diameter: 1.5"

Preheater length: 130'

Transfer line diameter: 1.5"

Transfer line length: 123'

Reactor-dissolver diameter: 12"

Reactor-dissolver length: 23'

Stoichiometric requirement indicates that per unit volume of the
slurry, about seven unit volumes of hydrogen would be reduired (69), at
the desired operating conditions. This means that the superficial gas
velocity should be somewhere between five to ten times that of_ the
superficial velocity of the c¢oal slurry, for the system to operate
without appreciable recycling of either the gas or liquid phase. Table I
reports the ranges of the velocities, experimented with, in SRC-II, EDS
and H-Coal processes. The reported values of superficial velocities, for
the SRC-I plant at Wilsonville are given below.

Ugs = 1.8 cm/sec
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Uls = 0.335 cm/sec

On the basis of these values and the expected turn over of the SRC-II
process plant utilizing about 333,500 tons of coal/day (138), the
estimated size of a single coal liquefaction unit, is something 1ike 9 to
12 feet in diameter and 200 feet long. The L/D ratio is not more than 23
in this case, as discussed eariier, and hence the entrance region
problems are anticipated.

With this brief description of coal liquefaction processes and the
various parameters involved, we go over to evaluation of reported flow
maps and generation of suitable flow maps, based on the available models.

By these techniques the properties used at 450°C and 2000 psi
pressure for operating direct coal liquefaction reactor are

Density of Hydrogen = 0.0045 gms/c.c

Density of coal slurry = 1.15 gms/c.¢
1.0 - 100 cp

Viscosity of coal slurry

Surface tension 20-30 dynes/cm
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Tzble 1

Pnysical prohnrties of coal slurry hydrogen system
Operating conditions- 2000 psi(130 atams.), 4s0 e

Property Calcu.at .. keport=d in Values used for
Values [iterature tnis study
bensity of 0.207 1b/ftL G.eo7-C.3 1b/ft 0.257 lb/tt
hyarozen 0.CC0LS gns/el 0.0045 gns/cc
Density of 1,067 gns/cc 1.0-1.15 gms/cc 1.15 gms/cc
Coal Slurry
Viscosity of —_— 0.6-1.0 cp 1.0-10C ¢cp
Coal Slurry
i Surface 54,2c dynas/em 2.0=30 dynes/cm 20-30 dynes/ca
Tension at hoom Temp. & Frocess
Cor. - tions
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APPENDIX C:

The derivation for interfacial area for bimodal distribution is given
below:

Interfacial Area for bimoda) distribution:

In any moment there are N1 small bubbles and N2 large bubbles present
in the column for bimodal distribution. Large bubbles rise faster than
small bubbles, then in any time interval t, N1 small bubbles contacted
the liquid in the column and N2V2/Y1 large bubbles did too so, the total
interfacial area is defined by:

AT = Al + A2

where Al and A2 are the contributions for interfacial from small and
large bubbles respectively.

Substituting Al and A2 by their geometric definitions {per unit of

total volume):

2
= §1¥o01° + w2 v2Wp2°
VT V1 VT

In the other hand, gas holdup for each of the sizes becomes:

3
£t =W p1 m
6 VT

o 3
kG2 =1l p2" N2
6 VT

Substituting for VT in AT:

AT = 6 EG1 + 6 EG2 V2
D1 D2 ¥ ;

Where V2/V1 is found as the ratio of slopes for gas disengagement between
0 to 5 sec and 5 to 60 sec, representing large and small bubbles

respectively (48). D2 is determined as a visual estimate of the average
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equivalent diameter of large bubbles. D1 is determined from evaluating

photos using the mean Sauter diameter for small bubbies. Gas holdup EG2

can be taken from Gas Disengagement figures at 5 sec and gas holdup EGI

the difference between total holdup and EG2.
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BUBBIE SLUG MODEL PREDICTED VELOCITY

APPENDIX "D

0.6

MODELLING CA LTION

Pigure 16.
COMPARISON OF GAS BUBBLE VELOCITIES

BUBBLE SLUG MOLEL PREDICTED VERSUS EXPERIMENTAL

|- - /
e e —_——— —— - N

0.2 0.6

0.4
BXPERIMENTAL GAS BUBBLE VELOCITY M/SEC
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FLOW FATTERN TRANSITION CORRELATIONS

Bubble to Bubble-Slug:

4
USL = 3.0 USG - 1.15 [ _‘-"2l e ——
./OL
(A -2 1"
Ug, = 2.2 Ugg - 1.128 [ §a ’—Q-LZ o ]
2
L

Bubble to Finely Dispersed 3ubble:

st * “sg T " 0.072 ©
vy A

Pinely Dispersed t5 Slug or Churn:

L
s (P -p) 1Y
L

Slug to Churnas

L Uy + U
-ﬁﬁ-uo.e{ SLEDS +o.22:l

Slug or Churn to Annular:
g (P, -P) |M/*
USG-B'I[ PL’ Q__]
s .

Bubble-Slug te Slug or Churn:

D - p.) |1/*
Ugy = 1.79 Ugg =~ 0.286 [g oo ’afi._]

L
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NOMENCLATURE

A Cross sectional area of the pipe
a Interfacial area

B,n Constants

D Column diameter

db diameter of the bubble

de Equivalent diameter

dh Orifice or hole diameter

D¥s Volume-surface mean diameter

a Energy dissipation

Eg,Ega Average (overall) gas holdup
Eq(z) Local gas holdup

g Acceleration due to gravity

H Height of column or bubbled bed
Hs Liquid height without gas flow
KL Liquid mass transfer coefficient
L Length of the pipe

Le Entrance length for the formation of slug flow
m Reaction order

n Power law index

NBo Bond number (g D2 €, 4}

NFr Froude number (VG/ §g D)

NGa Galilei mumber (g D3 /v L2)
NWe Weber number (€D VG62/g.)

NEo Eotvos number (gDeZaejir)

P Pressure

Q Volumetric flow rate at operating conditions
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Ra2 Miller's adjusted multiple correlation coefficient

r* Dimensionless radius

Re Radius of curvature

Reb Reynolds for the bubble

Reh Reynolds in the hole or sparger

Uo velocity of a single targe gas bubble
Vbf ' Average bubble rise velocity

VGS Superficial gas phase velocity

YGSO Superficial gas velocity at gas iniet
Vh Yelocity in the hole

VLS Superficial Tiquid phase velocity

Vs Slip velocity

W Mass flow rate

WO Maximum vorticity

z Height (position)

Greek Symbols

¢ density
o surface tension
M viscosity
hm difference in manometer reading
" hw pressure drop in units of water
z difference in height
v Kinematic viscosity
App Apparent viscosity
¥ Shear rate
Porous size
c Apparent viscosity at dV/dy=0

-8
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a Apparent viscosity at dV/dy=

A Time constant in rheological characterization
ot Liquid-Gas densitites difference

Si Partial cross sectional area
X Parameter in Kato's correlation (=1-e-02 yg2)

Subscri pts

a air

b bubble

e entrance

G gas

L 11quid

m manometer fluid
M mixture

0 orifice

w water
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