. 269

£
‘9
£
-

Plug Wire

ding

A Schematic Cross-Sectional Diagram of
a Solenoid Usad to Actuate the S1

Plug.

Figure 6.6.



270

The solenoid consists of a 187.3-mm long piece of 1/2-inch 0.D.

316- stainless-steel (non-magnetizable) tubing with a 0.049-inch wall

thickness. The winding is 111 mm in length and it starts 44 mm fram the
bottom end of the tube. It contains 2,880 turns of 23 AWG cooper-

solenoid-winding wire, producing a force of 1.33 N at the start

of the plunger stroke. The solenoid is connected at the base to a

1/2-inch to 1/4-inch Swagelok reducing union. This union serves as the

resting point of the plunger when the solenoid is de~energized. When
the plunger is in this position, approximately the top 22 mm is in the

winding area.
At the top of the solenoid, an adjustable plunger stop extends down
into the solenoid winding. The stop consists of a 10.0-mm diameter piece

of 416- stainless steel (non-magnetizable) threaded into a 6.35-mm 0.D.

piece of 315~ stainless steel. The stop serves to redirect the flux

1ines of the magnetic field so that the magnetic force at the end of the

plunger stroke is greatly increased. This serves, in turn, to pull the
s1iding plug in the microreactor firmly against its seat. Tne plunger
stop is fixed to the solenoid by a 1/2-inch stainless-steel Swagelok

union. In this way, the solenoid can be used at high pressure with no

gas leakage and the stop can still be adjusted.

The plunger itself is a piece of 416- stainless-steel rod, 76.2-mm
long and 10.0 mm in diameter. Two groovas, 3.18-mm wide and L.27-mm
deep, run the length of the plunger. These grooves keep gas from

building up in front of the plunger as it moves. The lower ead of the

plunger has a nipple to allow for attachment of the wire From the
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sliding plug. The wire connecting the plungers to the siiding plug runs
down from the pluager, around a 90-degree bend and through the flexible
stainless-steel hose. After passing through the flexible hose, the wirz
goes through two more 90-degree bends and finally attaches to the plug.

The feed gas enters the tubing just below the solenoid at a tee union.

Therefore, the wira does not go around any sharp corners, but only
90-degree tubing bends. "Flexing" of the flexibole hose during vibration
causes no i1l effects and the plug remains sealed.

As in the cold-flow mcdel, the solenoids are powerad by a 24-YDC
supply and are conencted to a relay. The latter acts to alternately

enargize the solenoids. Therafore, one solenoid is energized while the

other is de-cnergized. The relay is controllad via the computer

interface and the H-8% microcomputer.

6.1.1.4 Associated Systems

Tne product-gas sampling system and the gas-chromatographic system,
used in conjunction with the sliding-plug vibrofluidized-bed

microreactor system are identical to the systems described in Sections

3.1.1.3 and 4.1,1.4,

6.1.2 Materials

The sliding-plug vibrofluidized=-bad microreactor system for
unsteady-state F-T synthesis was designed with the use of -150+300C 4
fused-iron ammonia-synthasis catalyst as described in Section 4.1.2.1.
However, this system does not oreclude the use of other size fractions

or new types of catalysts.
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Gases being used with this microreactor system are similarly

described in Section 4.,1.2.2.

6.1.3 Experimental Procedures

6.1.3.1 Microreactor Cleaning and Catalyst Loading

The procedure to be followed when cleaning and loading the
sliding-plug vibrofluidized-bed microrsactor is very similar to the
procedure used for the steady-state vibrofluidized-bed microreactor.

First, howaver, the sliding plug had to be removed from the plenum

zone. This was accomplished by removing the two Swagelok male
connectors that screw into the base section of the microreactor and

serve as plug seats. The mating surface of the three microreactor
sections were then polished with number 500 emury cloth on a surfacing
table. The entire interior surface of the microreactor was flushed with

acetaone and wiped with Kimwipes.
After the microreactor was thoroughly cleaned, the base section was

placed in the wooden support apparatus and clamped in the vise.

Appoximately 1 meter of the 0.356-mm diameter stainless-steel wire was
then attached to each end of the sliding plug. The plug was slid into
the plenum zone; and the wire was threaded through the washers and the

Swagelok male connectors. A small amount of "Silver Goop" thread

lubricant was applied to the threads of the connectors to prevent

seizing and to facilitate later removal. The male conenctors wera then

tightened, comprassing the copper washer.
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The wire was threaded through the 1/4-inch 0.0. stainless-steel
tubing that is used to connect the microreactor to the flexible
stainless-steel hose. Each piece of tubing has two 90-degree bends and
is attached to the Swagelok fitting-end of the male connectaor in the
base of the microreactur. Thread lubricant is also applied to the
fitting threads which are exposed to the high temperature ia the

constant temperature bath.
Following the installation of the sliding plug, a new 2-micron
sintered stainless-steel plate was made and positioned into the

distributor plate recess in the base section. A thin, oval-shaped,
Grafoil gasket was then placed on top of the distributor plate. This

gasket prevents any gas from bypassing the distributor plate by sealing

between the edges of the plate and the microrector base-saction.

A silver-plated stainless-steel 0-riny was then inserted into the
0-ring arpove and the reaction section of the microreactor was
installed. One gram of -150+300 micron fused-iron catalyst was
Weighted and carafully poured into the reaction zone. The
thermocoupies were typically left in glace in the reaction section
between experiments.

A 20-micron, sintered stainless-steel catalyst retention plate was
fitted to the gas-exit section as was a silver plated O-ring. The
gas-exit section was placed on top of the reaction section. Thread
lubricant was used on the bolts that clamp the threae sactions (i.e.,
base section, reaction section, and gas-exit section) together and these

bolts were torqued in sequence to 27 H-m.
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6.1.3.2 Mounting the Microreactor

Once the microreactor was cleaned and loaded with fresh catalyst,
it was ready for attachment to the rest of the system. Four threaded

rods were screwed into the tapped holes in the base section.
The microreactor was lowered intoe the cool fluidized-bed constant-
temperature bath. These rods were, in turn, bolted to the leaf=-spring

supports. The two stainless-steel plug wires, eminating from the
microreactor feed tubes, were then carafully threaded up through the
flexible metal hose and tubing to the solenoid mounting position. In
order to do this, guide wires had to be used. The compression fittings

between the flexible metal hose and the microreactor feed and gas-exit

lines wera then tightened. The thermocouples from the microreactor were

then connected to the panel meter.
At this point, the vibrator itself was mounted to the underside of

the I-beam support and connected to the microreactor support system.
The frequency generator was then adjusted te the point where the

microreactor was vibrating at the maximum amplitude. This usually
corresponded to a resonance frequency of 13-24 Hz with a peak-to-peak
amplitude of 4 mm. The solenoid plungers were next attached to the plug
wires. The plug was first drawn up tight against the left-hand plug
stop by pulling on the plug wirs.

The plunger was next attached to the plug wire 57.2 mm up from the

point where the reducing union expands from 1/4- to 1/2-iach. HNote that
the raducing union serves as the resting point of the plunger when the

salenoid is de-energized. In addition, the stroke of the plug in the
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plenum is 50.8 mm., Consaquently, when the solenoid is de-energized,
there shoeld be approximately 6.4 mm of stack in the plug wire. This

provides enough slack so that the plunger in the de-energized solenoid
does not keep the plug from resting on the opposite plug-seat.
After attaching the left plunger, the left solenoid was slipped

down over that plunger and attached to the reducing union. The
right-hand plunger and solenoiu were then installed in a similar fashion

and the solenqid cooling fans were turned on.

The final step in the installation involved optimizing the pulling
force at the ends of the plug stroke. This was done by adjusting the

length of the plunger stops in the solencids. These stops were
constructed so that they could be adjusted to make up for any difference

in plug-wire length between experiments.

6,1.3.3 System Startup and Catalyst Reduction
Before an experiment, the mass-flow meters as well as the pressure

transducers were calibrated. The system was then pressure-tested at
3,446 kPa for possible leaks. The portion of the system Tocated
dawnstream of needle valves 1-4 {Figure 6.2) was thoroughly flushed with

helium. This was dona by diracting three-way valves V5, Y9 and Vi0, so
that helium could flow through them, Shut-off valve Vil was opened so

as to keep the pressure on either side of the sliding plugs squilized.
Valves Y3 and V12, and solenoid valve 5 were opened, allowing helium to

flew. The solenaids were then alternately switched moving the plug
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nack and forth. Valve V12, paraliel to the back-pressure regulator, was

closed and the system pressure downstream of solenoid valves 1-4 was
brought up to 2,220 kPa using helium.
The F-gas feed line located upstream of solenoid valves 1 and 2 was

pressurized to 4,807 kPa, as was the S-gas feed-1ine located upstream of
solenoid valves 3 and 4. During an experiment, three-way valves V7 and

V8 were always turned so that the downstream pressure was monitored. If

these valves are turned from their upstream position to the downstream
position during an experiment, a burst of gas will be transmitted

through the microreacor.

At this point, the nitrogen ballast-gas fiow was started by

opening valve V1 and adjusting the associated nzedie valve. The back-

pressure regulator was adjusted so that a downstream system-pressure of
2,220 kPa was maintained. The helium flow was stdpped by shutting

valve Y3 and solenoid valve 5.
The next inajor step involved setting the F-gas, S-gas,
percarburizing and reducing gas flow rates through the microreactor.

The S-gas flow rate was set first. Three-way valves V9 and V19 wers
directed toward the F-gas and S-gas feed-lines and shut-off valve Vil
remained open. The right solenoid, R, was activated, causing the plug
to rest against the right-hand stop. Solenoid valves 3, 4, and 5 were

then simultaneoulsy opened, purging the reactor with S5-gas at 6.67 = 104

standard mm3/s for one minute. S3o0lenoid valve 3 was closed and the

system pressure was aliowed to stabilize for several minutes with a Tow
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flow of S-gas. Valve Vil was then shut, isoiating the F-gas and S-gas
feed lines.

The needle valve associated with solenoid valve 4 was adjusted so
that the mass-flow meter was reading the desired value for the S-gas

flow rate. Solenoid valve 4 was closed and three-way valves V6 and V10

were turned so that the Hp:CO:Ar precarburizing-gas mixture was

flowing through the microreactor. Valve V1l was temporarliy opened to

assure pressure equilization across the sliding plug and then closed.
The flow rate of precarburizing gas was then set using the

appropriate needle valve and the mass-flow meter. The pressure upstream

of the precarburizarion needle valve was kept at 4,807 kPa in order to
maintain a critical pressure drop. The precarburization flow was
stopped by directing three-way valve V10 toward the S-gas feed line.

The reducing-gas flow rate was set in a similar fashion to the
$-gas flow rate. Hydrogen was used as both F-gas and the raducing gas.

Ditferant flow rates of hydrogen were usad during reduction and
unsteady-state synthesis. Consequently, the needle valve associated
with solenoid valve 2 had to be adjusted accordingly after the catalyst
reduction period.

After the downstream system was purged with hydrogen and the

reduction flow was set to 3,670 standard mm3/s, the fluidized constant-
temperature bath was heatad to 450°C and the heating tapes were turned
on. The bath-heating period took approximately two and one-half hours.

The actual reduction period consisted of six hours of isothermal

reduction of the catalyst at 450°C. At the end of the reduction period,
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the hydrogen flow rate had to be adjusted. Hydrogen was used as F-gas
in the later stages of the unsteady-state experiment. Its flow rate,
however, must be set during a period when it is flowing steadily. As
the final step in the reduction period, the temperature of the

fluidized constant-temperature bath was Towered to that desired for the

precarburization and unsteady-state synthesis experiments.

6.1.3.4 Precarburization and Unsteady-State Jynthesis

Precarburization of the reduced fused-iron catalyst was used as a

means of creating a bulk carbide structure before unsteady-state
synthesis began. In this way, different unsteady-state experiments could

be performed from a camnon starting composition of catalyst, and the
rate of carbon deposition could be more easily determination. After the
fused-iron catalyst had been reduced, precarburization was initiated
simply by closing solenoid valve 2 and then simultaneously activating

the right solenoid and turning three-way valve V10 toward the

precarburization stream.

The precarburization gas typically used was a synthesis gas of a 4:1
Ho/CU ratio with a small percentage of argon. Argon was used as an
internal standard for gas-chromatographic analysis.

At the start of precarburization, the microcomputer grogram, which
contains the sampling-valve timing loops, was started., After the first
twenty minutes of precarburization, a light gas sample was automatically
flushed into the gas chromatograph. Saventeen minutes later, all light
gas compounds of interest had eluted and the microcomputer switched the

sampiing valve, backflushing the packed column. This process was
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repeated every 37 minutes throughout the precarburization and

unsteady-state synthesis portions of the experiment.

After two hours of catalyst precarburization with the 4:1 Hy/CO

synthesis gas, the unsteady-state synthesis was started. The flow rates

of F-gas and S-gas had been previously set to their desired valves for
unsteady-state synthesis. Hence, the only steps required to start

unsteady-state synthesis were to switch three-way valve V10 toward the

S-gas feed-iine and-to rum the solenoid-switching microcomputer program.
The program, used to slide the plug and switch between solenoid vaives 2

and 4, is presented in Appendix C.
When solencid valve 2 was opened, the plug was simultaneousiy

pulled to the left. When solenoid valve 4 was opened, the sliding plug

was pulled to the right. The program allowed control of the sliding
plug and solencid valves to within hundredths of a second. The response

times of the solenoid valves, however, were only on the order of

one-tenth of a second. As statad earlier, 1ight gas samples were taken
every 37 minutes during the unsteady-state gas pulsing. The volume of

the tubing between the reaction zone and the sampling point is
approximately 30 times the volume of the reaction zone itself.
Therefore, the exit-gases should be well mixed by the time they reach
the sampling valves. As in the steady-state experiments, gas samples to

be separated using the capillary column were taken only at the end of an

experiment. The gas chromatograph oven was coolad to -20°C and a sample

was then flushed onto the capillary column., The column was held at

-20°C for 2 minutes and then temperature programed to 150°C at 4°C/min.
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6.1.3.5 System Shut-Down

At the completion of the unsteady-state reaction period, it was
desirable to rapidly stop the reaction by flushing the sliding-plug
microreactor and feed-gas lines with helium. This was done by first
stopping the computei program and making certain that solenoid valves 2
and 4 were closed and 5 was open. Valve V1l was then rapidly opened and

three-way valves V6, V9 and V10 were switched so that helium was flowing

through the microreactor.

As he]iﬁm flowed through the microrsactor, the nitrogen ballast-gas
was shut off. Valve V12, parallel to the back-pressure regulator, was
stowly opened over the course of several minutes. During this period,
the plug was siid back and forth several times to insure purging of both
feed lines by helium.

Once the system had reached atmospheric pressure, the constant-
temperature bath was shut off and the microreactor was allowed to

cool., The catalyst was still vibrofiuidized as the microreactor

cooled. Cooling took place over five to six hours under a maximum
helium flow rate of 2,200 standard mu3/s. The heating tapes were
maintained at 200°C during the cool-down period to keep any residual
F-T products from condensing in the heated portion of the equipment,

iacluding the sampling valves.

6.1.3.6 Catalyst Collection and Analysis

Once the sliding-plug wicroreactor had been cooled to ambient

temperatures, it could be removed from the constant-temperature bath.

in order to so this, the solenoids were disconnected Trom the reducing
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unions, and the plug wires were cut, releasing the solenoid plungers.

The compression fittings between the flexible hose and the microreactor
were disconnected, and the plug wires were removed froin these hoses.

The vibraticnal support apparatus for the microreactor was then

unbolted and the microreactor was clamped in the vise. All eight bolts
holding the three sections of the microreactor together were removed.

The gas-exit section was 1ifted off with care and the spent catalyst and
any bugdust present were removed using¢ the suction-filter apparatus.

This procedure was previously described in Section 4.1.3.6.
After the spent catalyst had been meticulously removed and weighed,
the sliding plug was removed from the pienum zone. Spent catalyst was

stored in vials under nitrogen until being sent for total carbon and

iron analyses along with MEssbauer spectroscapic determination of iron-

containing phases.



CHAPTER 7

CONCLUSIONS, SIGNIFICANCE AND RECOMMENDATIONS

7.1 Conclusions

Following a review of relevant literature on F-T synthesis,
vibrofluidized-beds, and unsteady-state methods for kinetic studies, an

experimental investigation into the development of a microreactor system
for unsteady-state F-T synthesis was carried out, Steady-state F-T
synthesis experiments using a commercial fused-iron catalyst produced

jnformation on catalyst defluidization, hydrocarbon product distribution
and baseline carbon deposition. Investigations in a cold-Tlow
vibrofluidized-bed microreactor model ravealed information on gas mixing
in the unsteady-state syétem. In addition, the cold-flow model allowed
obsarvation of characteristics of the vibrofluidized catalyst in the
microreactor. In the final stages of the studies, a vibrofluidized-bed
microreactor system for unsteady-state F-T synthesis at commercially
jmportant reaction conditions was designed and constructed.

The following conclusions ¢an be drawn basad on the experimental
studies.

1. In a vibrofluidized microreactor system for F-T synthesis under
steady-state conditions using a commercial promoted fused-iron

catalyst:

a. Catalyst defluidization occurs within several hours at
temperatures below 395°C when using a feed-gas Hp/CO ratio of
2:1 or less.

b. Catalyst defluidization can be detected through observation of
thermocouple tewmperature fluctuations in the reaction zone.
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A shift in the probability of chain growth of hydrocarbon
products to lower values occurs, as the reaction tamperature is
increased and as the feed-gas Hz/CO ratio is increased.

Bugdust is a fine, black powder produced due to excessive carbon
formation which in turn causes physical degradation of the
catalyst. Its structure is highly porous and bugdust contains
18-30 weight percent carbon and 50-64 waight percent iron.

Discrete fractions of free-flowing catalyst and bugdust
(powdery, low-density carbon-rich particles).can be easily
collected under conditions where 1iquid praducts and waxes do
not condense in the reaction zone.

The rate of free carbon formation (mainly in the form of
bugdust) is much greater when a feed-gas Hp/CO ratio of 1:l
was used than when a higher ratio of 2:1 is used.

In a cold-flow vibrofluidized-bed microreactor model for

unsteady-state gas feeding:

d.

b.

d.

f.

Experiments with a manual 3-way ball valve substituting for the
s1iding-plug microreactor show quantitative gas replacement
after 2.4 seconds at all flow rates investigated.

A 20-micron distributor plate induces feed-gas mixing by
allowing gas to backflow from the roaction zone to the plenum
zone during the sliding-plug movement.

The use of a 2-micron distributor plate eliminates the backflow
of gas from the reaction zone to the plenum zone during the
s1iding-plug movement.

The geometry of the microreactor induces some mixing of the
feed gases, particularly when the gases pass from the reaction
zone to the gas-exit zone.

Mora gas-mixing occurs during the transition from argon to
helium feeding than during the transition from helium to argon
feeding. This is thought to be due to the density differences
between the two gases.

Vibrofluidization of the cataiyst in the reaction zone induces
only a small amount of gas backmixing at low feed-gas
velocities.

The use of high gas flow rates and feed-gas staggering
significantly reduces undesirable gas miking in the
micrareactor.
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3. Experimental characterizations of a vibrofluidized-bed of
fused=-iron catalyst in a cold-flow microreactor model show that:
a. The solid mixing is intense, even at very low gas
velocities.

b. At feed-gas valocities somewhat below those for normal
gas-fluidization (below the minimum gas-fluidization velocity,

Ung) the surface of the vibrofluidized catalyst-bed Tevels out
and begins to oscitlate.

4. A vibrofiluidized-bed microreactor system for unsteady-state F-T

synthesis:

a. Has been designed and constructed, and it can be operated at
commercially important reaction conditions.

b. Allows for rapid switching of feed gases on the order of several
seconds.

5. In order to simulate the catalyst behavior in the freeboard
region and the shallow=-bed region of a “heat-tray" reactor (Figure 1.1)

using the unsteady-state vibrofluidized-bed microractor systam:

a. A flow rate of approximately 1,650 actual mm3/s should be used.
This wiil permit rapid switching of feed gases over the catalyst
in the reactiln zone of the microreactor.

b. A reaction temperature of 395°C is necessary to prevent
defluidization of the fused-iron catalyst. This temperature
is higher than that desired for operation of a "heat-tray"
reactor. Therefore, a means should be developed for reducing
the operating temperature in the microreactor, while maintaining
a fluidized catalyst.

7.2 Significance of the Results

Tne development of a vibrofiuidized-bed microreactor for both
steady-state and unsteady-state catalytic gas-solid reactions has
far-reaching significance. Before this development, there was nao =asy
way of accurately determining integral fluid-bed kinetics in a Taboratory

reactor.
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Fixed-bad reactors rely on changes in gas composition aver static

catalyst particles. Laboratory gas-fluidized-bed reactors require large
flow rates of feed gas and therefore deep catalyst beds (requiring large
quantities of catalyst) in order to obtain integral conversions.

The unique ability of the new microreactor system to rapidly switch

feed-gas flows over an intensely-mixed solid makes this development an
even more significant contribution to the arszas of chemical kinetics and

reaction, engineering.

7.3 Recommendations for Further Studies

Based on the results of this work, the following recommendations are

forwarded for future studies:

1. Repeat the steady-state carbon-deposition experiments utilizing

a bifunctional catalyst, such as synthetic zeolite Fe-HISM-5, in order to
eliminate catalyst defluidization caused by accumulation of high
molecular-weight products. This will allow for use of lower operating

tenperatures.
2. Determine the vibrofluidization characteristics of new catalysts

in the cold-flow microreactor model,

3. Further expigre effective means of improving feed-gas
transitions in the unsteady-state cold-flow vibrofiuidized-bed

microreactor model.
4. Undertake modal-reaction studies in the vidvrofluidized-bed

microreactor system. By examining some simple reactions with well-

characterized kinatics, quantitative mixing tests can be performad. Some

candidates for such model-reaction studies include hydrogenation of



286

ethylene (Wynkoop and Wilhelm, 1950) and ethanel dehydration (Bock et
al., 1984). These reaction studies could be used to determine heat- and
mass-transfer effects in the reaction zone of the microreactor.

5. Exparimentally determine the mass-transfer coefficient in the
vibrofluidized-bed microreactor. This could be done by studying the
sublimation of napthalene in nitrogen as a function of flow rate and
particle size.

6. Perform feed-gas-cycling F-T synthesis experiments in the
unsteady-state vibrofluidized-bed microreactor system in order to
determine carbon deposition rates on: (a) a fused-iron catalyst; and

(b) different formulations of Fe=-HZSM-5.
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APPENDIX A

Calculations for (1) Minimum Fluidization Velocity of the Fused-Iron

Catalyst in the Microreactor, (2) Pressure Drop Across the Distributor

Plates and (3) Changes in Feed-Line Volume tpon Switching the Sliding
Plenum Acrass the Plenum Zone
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A.l. Minimum Fluidization Velocity of the Fused-Iron Catalyst in the
Microreactor

For the calculation, the smoothed correlation of particulate
fluidization as given by Zenz and Othmer (1960) was used. The minimum

fluidization velocity v, under actual conditions was read from Figure

A.l after Tirst calculating o and a. A void fraction of 0.5 was assuned.

3 2
Pf
2
3 uf 1/3

A S » wuwmcamame

% orlopas)y

where:
ve = superficial velocity (fz)
Dp = partical diameter (ft)
pf = Fluid viscosity (1b/ft-s)

pp = apparent particle density (1b/Ft3)

pf = fluid density (1b/ft3)
g = 32.2 ft/s

An average particle diameter of 225y was assumed as well,
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Figure A.1. The Smoothed Correlation of Particulate Fluidi-

zation Used to Calculate the Minimum Gas-Fluidi-
zation Velocity (V.) of a Fused-Iron Catalyst
(Taken from Zenz and Othmer, 1960). D  is the
Particle Diameter, g and A are Definedpin

Section A.1.
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A.2 Pressure Drop Across Different Micron-Grade Sintered Stainless-
Steel Distributor Plates

The following equation relating the fluid flow to pressure drop across

porous plates has been provided by Mott Metallurgical Corporation for their

products:
P2 = p2 p2 SuRT SH[1 + oo2q1Q
A - [ - - - o um
upstream downstream W30 60ay
P = pressure (psi)
e = viscous resistance coefficient (in-2)
g = inertial resistance coefficient (in'l)

os = density of gas at S.T.P. (slugs/ft3)

R = gas constant = 1.71 x 103 (ft.Tb/slug °R)
‘T = temperature (°R)

t = porous wall thickness (in)

Q = flow {SCFM/in2)

p = viscosity of flow (slugs/in.sec.)

For 1/1o-inch thick pordus stainless steel the following coefficients are

specified:
Micron Grade a_(in=2) g_(in-1)
2 8.41 x 108 1.25 = 105
20 3.55 x 107 6.02 = 103

An approximation to the volume of gas backflowing across the distributor

plate can be made. This is dore by measuring the magnitude and duration
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of the pressure inversion with a rapid-response differential-pressure
transducer. The pressure drop across the distributor plate for the same
gas at a typical flow rate is then calculated. By ratioing the measured
pressure inversion and the calculated pressure drop, the volume of gas
baskflowing can be approximated. For example:

Given a 20-y distributor plate and argon flowing at 400 actual mm3/s

and conditions of 25°C and 101 kPa, what is the pressure dropr

AP = 1.42 x 10-2 kPa

If a pressura inversion of 0.346 kPa is observed for a duration of 0.013

seconds after.the feed gas is switched from argon to helium, what is the
volume of gas backflowing across the distributor plater
0.346 kPa mm3

---------- - 400 -=- -+ O, = 127 mmd
ooolaz kpa 0 5T 001 | 127 mn



324

A.3 Changes in Feed-Line Volume Upon Switching the Sliding Plug
Across the Plenum Zone.

When the sliding plug is drawn across the plenum zone, gas is
compresséd into the feed line ahead of the plug. By measuring the increase
in pressure in the appropriate feed 1ine, the amount of gas emtering that
feed line by compression can be calculated. The remainder of the gas
originally in the plenum is either compressed through the distributor plate

or flows anularly around the plug.-

Volume of Feed Line = 26,383 mm3

= AP upon switching from Ar to He = 3.175 kPa

P
A ArsHe

AP
HesAr

AP upon switching from He to Ar = 2.864 kPa

P_. = fipal feed-line pressure upon switching from Ar to He
final Ar+de 141,000 kPa P i :

p = final feed-line pressura upon switching from He to Ar
final de+Ar  140.685 kPa P p g

Absolute System Pressure = 137,825 kPa

AV, . = change in volume of the fzed line upon plug switching
reed Line

_ APVreed Line

S esceumcecowasmoe

Feed Line Pfinal

Y
For the transition from argon-to-helium flow how much argon is compressad
into the faed linex Expariment 1-4)

AV = 594 mm3 or 37% of the gas in the plenum
feed line, Ar+He ? g pieny
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For the transition from helium-to-argon flow how much helium is compressed

jnto the feed liner

AV g line Heshr - 537 mm3 or 33% of the gas ‘in the plenum.



APPENDIX B

Steady~-State Analysis Results Including Definitions of Input Parameters and
Output Labels on Gas-Chromatographic Data Tables for (1) Light &as Analyses
and Mass Balances and (2) Hydrocarbon Product Distribution and Rate of
Production from Capillary Analyses. In Addition (3) Temperature-
Fluctuation Plots are Presented for Steady-State Experiments.

326
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B.1 Light Gas Analysis--Qutput from the Microcowmputer Data Compilation

1.

Program "MASSBAL. BAS."

Input

A. Number of moles of CO fed per mole of Ar fed
i. obtained by GC analysis of S-gas.

8. Hz/CO ratio of feed gas

i. As specified by AIRCO.

C. Temperature

D. Number of data points.

E. Peak areas from light gas chromatogram for Co, Ar, CHg and COg.

Qutput

A. CO CONV: Fractional molar conversion of CO fed to the
microraactor.

B. CO0/C0 CONV: The number of moles of CO2 produced per mole of CO
converted (fraction of C from CO converted that goes to COz).

C. CHg/CO CONV: The number of moles of CHs produced per mole of £O
converted (fraction of CO converted that goes to CHy).

D. CO/Ar FED; The number of moles of CO fed per mole of Ar fed.
An input parameter.

E. Hz/CO RATIO: Molar ratio of feed gases. An input parameter.

F. Hz0 IMPLIED: An approximation of water production. Calculation of
this value assumes the following:

i. A1l oxygen produced from the reacted amount of CO and not as
as C02 is present as HpU.

ii. No oxygenates are produced. Huff (1982) states that with the
same catalyst in a slurry reactor, less than 1.1% of oxygen is
present as oxygenates.

(1]

~CHp=-IMPLIED: Carbon which is not produced as CO0, CO2, or CH is
assumed to be in the form of -CHz-, This is the mole fraction

of C fed converted to -CHg-.
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Hp CONV IMPLIED: An approximation based on actual CHq production
and the above approximations for Hp0 and -CH2- praduction.

o USED IMPLIED: Estimate of the number of inoles of Hz used.
The maximum number of moles of Hp that can be used is the Hp/CO
ratio of the feed gas. .

H2/C0 USAGE: An estimate of the number of moles of Hz used divided
by the number of moles of CO used, the Hp/C) usage ratio.

=CHp-/C0 CONV: The mole fraction of converted carbon that went
into makiag -CHp-.

CALC KEQ: The calculated equilibrium constant for the water-gas
shift reaction -at the temperature of the reaction.

Keq = 0.0102e4730/T

EXPT KEQ: The estimated experimental value of the equilibrium
constant for the water-gas Mshi ft reaction.

SUM = la: The sum of the moles of C0Op, CHj and -CHp~ produced per
mole of CUO converted should add up to 1. This is an internal
check on the calculation.

SAMPLE NUMBER: The light-gas sample didentification listed
chronologically. The first sample is taken 17 minutas after the
start of the reaction. Subsequent samples are taken every 37
minutes.
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Table B-1

The Light Gas Analysis .and implied Mass Balance
from Steady-State Experiment B-1.

DATE OF EXFERIMENT 873784 STEADY STATE SXFERIMENT E-1
THIS EXPERIMENT USES 2.0311 S-GAS FOR A 10 HOUR RUN.

TEMPERATURE= &33 # DATA PTS.= 16

SAMPLE O CONV /G0 CH3/CO COZAR H2AS0
NOMBER € Y I FED RATIO
1 « 966922 276263 . 138923 3,636 2.0
2 -211641 524802 .03038617 3.536 3.08
3 « 500233 382171 L 102271 3635 3.0%
& 891807 336604 S9OSR0 ppe2 SouE
2 .395311 « 340445 08514627 3.46356 - D
& 354242 « Q42975 « 087382 4,35 S.DE
T <303511 243945 NI5898 4,534 .08
S « 723492 391233 OG- T eciod a,636 e id3
£ « 7645561 . 353335 . 0972375 4,835 2.0%
1Q « 784733 247915 JOR6P2072 §0 625 e IF
i1 o 234333 . 290057 09704324 §, 58246 a3
12 7122 «3TSIES «QRTISTA 4,434 208
i3 16066795 «33H60T7 - Q97286Y 3.6346 -
14 «HAI251 S2S01S - O95898S LIy L. NE
1% W HLD6EA 323272 « 0992530 3,426 Z.0%
13 L E939E2 3550038 0223536 4.63% TS
SAMFLE H2_CONV CH2= H2

NUMBER TMPLIED IMFLIED IMPLCIED

1 « &06E73 «S6P42 . 33243

3 1331336 132387 1330588

2 o i S <

4 .351:01 L S0Q063 57537

b » 437913 . 91426 » 235704

& . 33572 » 437752 . 63303

7 « 304027 443727 - 82777,

2 « IP2952 « 336422 « 27 W

2 . 381432 3 195AL g1 . 77

10 « 378679 315193 - an G233  7R7

11 .370875 .407322 355951 L771

12 - 35316462 SHeIS9 . SDEOZ] . 724

13 « 329909 « 363503 191262 «OSA

14 326036 . 35952 « 12446, &73

1S 206167 . 235405 179753 - 534

1& 394331 L 323603 s 173421 L51ld

TAMPL —-oH2— h 5 SUM=(™

FemeLE i CALC KEQ EXPT KEQ UM

1 - L S2P213 17,9392 1S.0482 1

2 . §632§7 ’1'7' >223 ;13 1. g.:-'-':J {

& PE=tel sors ¢ PRI - =

3 = 560995 1;. 392 1 1.353 1

) « 378392 17.9392 11,4905 l

& 2 8869645 17.9392 2.9l \

7 « 552444 17,9292 T e IT0T 1

] . 58350 17 9393 7.5:207:2 {

= .54387¢3 17,9392 6.53835 1

w .593814 17.9292 S.8a322 1

11 . SE2e99¢ 17.9392 5.205e72 1

12 -5a7188 17.95%3 5.74333 i

L3 . S36a55 17,9392 S.17351 )

13 - 373335 %z;—a;:‘: i.?“é.tsg i

.S . 24746 To 2 - $ES 20

i. N g-:és = 17.5393 e 3733-7 }
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Table B-2

from Steady-State Experiment B-2.

DATE OF EXFERIMENT

THIS EXPERIMENT USES .08311 S-GAS FOR A

TEMRERATURES

633
CO COnv

8/8/2348

# DATA PTS.=a

&b
.36314"

-G H2=
IMPLIED

«696341
-515004
« 4085357

CALC KE®

17.93
17,5552
17:9372

STEADY STATE EXFERIMENT B-2

3
CHE /2
CONV

EXPT KEQ

2:382
'ls s-’\

2 HOUR AND 2 MIN RUN.

SuM=1?

H2/5N0
RATLO

=8
JF

a0l

[F18]
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) Table B-3

The Light Gas Analysis and Implied Mass Balance
from Steady-State Experiment B-3.

DATE OF EXPERIMENT 2710/34 STEADY STATE EXFERIMENT B~3
THIS EXPERIMENT USES 4.0:1 S-GAS FOR A 10 HOURS AND O MIN RUN.

TEMPERATLRE= 433 # DATA PTS.w 1
SAMPLE CO CONV cox/co CH3 /20 CO/AR HasL0
NUMBER CONV CONV FER RATIO
1 e 973567 0952734 201992 4.636 4
g .5%5313 .172731 . 156962 3,486 5
3 « 252031 . 18§357 - 150122 - 4
3 - 251305 - 132435% - 184733 3,436 3
s - 251997 175772 . 1&690R6 4.036 3
5 37 O R :
- P73 e 1Z = - &3
5 + 287586 1178312 113148s 41338 a
2 .2418 . 122995 . 12453 a.&26 3
}? 232792 .§§?§§$ .:Eﬁ?gg 2.236 3
« 229033 e 15 56356
12 < 955625 202317 L 193371 42636 4
13 . 2234632 203155 121572 6,636 4
id » 227367 » 199922 « 134752 « 536 3
15 » 926805 « 207322 «172122 636 a8
SAMPLE H2 CONV =CHO- H20 H> USED
NUMBER IMPLIED IMPLIED IMPLIED IMPLIED
1 . 465651 5831772 . 736108 1.3606
2 323151 526167 81622 1.28261
A R
=, 1285752 132355 183753 I.2585%
& . 32718 c&12a12 . 505582 1.53872
£ 351455 1837542 128481 1.5233%
-2 .- v . E, . Sq:S
b 357357 LSB3aeS TESTILS 1.53933
10 330133 565953 .§7g453 1.5207%
11 .gggg{g -§§3~ a .sg77§4 %.izggﬂ
o - D o= - o= . 2 . 23
iz 385305 555923 1334955 1.35002
14 . 367514 - 57 <] P DOLSAS 1.4700
18 » 360795 « 563647 .332511 1.44Z21s
EAMPLE =M= CALC KEQ EXPT KER =17
NUMEBER 786G CONY
1 701727 17.9290 $.5413% I
) . 565235 17,5593 15,3533
3 < 563021 17.9%393 19, 8633
1 «&EI757 170 9ims 13.
s . 655141 17,358 120 {
& V633 1709553 13 1
7 .640154 17.9292 130
2 « HAPO2D 172392 12.
< ¢ .6224%4 17.9293 122
m « &HDPPED 17,5292 il.
1t «BOVGSE 17,9303 11.
13 L SQA312 12,9395 11,
i3 CADESAT 12.2282 1i.
13 &iE7Ta 12,5393 1ie
1< « 613855 17,9392 12. 1
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* Table B-4

The Light Gas Analysis and Implied Mass Balance

from Steady-State Exper1ment B-4.

DATE UF EXPERIMENT

TEMPERATURE=> 633

SAMRLE
?UHBER

-

SAMPLE
MUMBER

€0 LCONV
« BHIBBS
- 3383091
el
1.53092
« 304436

—-OHR=

478494

8r14/33

# DATA PTS.=

S320C0
. 152279
.aZ5332

~H2=
IMELTED

ga)

10
« 1857

CALC KE®

17,9290
17.9392

STEADY STATE EXPERIMENT S-4
THIS EXPERIMENT USES 1.03:1 S-0AS FOR A ! HOURS AND

-

CH3s

CHaLSP
0953146
10931233

H20
IﬁPL!ED
g =4
.0 5u33b

EXPT KEQ

~3. 13361
3. T0199

2 MIN RUN.
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Table B-5

from Steady-State Experiment B-5.

DATE OF EXPERIMENT
THIS EXPERIMENT USES 1,0Z311 5-0A5 FOR A 2

TEMPERATURE =

SAMPLE
NUM3ER

Bwide—

i
5%
<X
mr
am

Bod 3= 24

NUMBER .

)
D
X
o
-
I

Bati] pre 20,

&23

CO CONV

H2 CONV
IMPLIED

—CHQ=
/CC_CONV
« 792938
» 333501
« 471551
« 443204

3/14/34

¥ DATA PTS.=

GO2/C0

CONV

. 152638
- 363347

. 172%65
. 152859
. 18727

CALC KEQ

3

1723
17

237
.

C s
-

17493

17. 9%

P
¢
= ae

STEADY STATE EXPERIMENT &B-S

HOURS AND 13 MIN RUN.

3
« DDIZOED
« 0350035
. 3334546

EXPT KEQ

=-2.92244
S.35037
3.8473
S.12739

[oebe o

p K

SO0~

Lalalalal ¥
wit) eI (D e
o0
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Table B-6

The Light Gas Analysis and Implied Mass Balance

from Steady-State Experiment B-6.

DATE OF EXPERIMENT
THIS EXPERIMENT WUSES 2.08:21 S-GAS FOR A 2 HOURS AND S7 MIN. RUN,

TEMPERATIIRE=

BaMPLE
NUMBER

1 bk

mr
am

MP!
LUME

z

L0 e )t e

TAMPLE
NUMBER

VY badvd o

633
CO COnv

.963713
S
15020748
1313807

HI _CONV

3/19734

# DATA PTS.=

£O2/C0

CconNv

. 103357
30D,

. 229401

CALC KEQ

P e
17.9392

D!
7.835%
17.9332

STEADY STATE EXPERIMENT &=a

35
6769928

« QAT

« 0921845

H20
IMPLIED
. 757803

- 1240Q00%

EXPT kEQ
1.50202

10, 92%7

0593237

H.
IM
1
1

SUM=1?

1 e s e
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Table B-7

The Light Gas Analysis and Implied Mass Balance
from Steady-State Experiment B-7.

DATE GOF EXPERIMENT F/21/84 STEARY 'STRTE EXPERIMENT B-7
THIZ EXFERIMENT USES 2.012:1 S~GAS FOR A = HOURS AND 4S5 MIN RINM.

TEMFERATURE= 432 3 DATA PTS.= 4

SAMPLE €0 CONV - CO2/CD CH4/0 COAR Ho/0n
FIMEER EoR( CONU #ED

1 .972877 . LO274E 127287 3.436

2 1915345 C32153E 10721721 4,535

3 ‘287079 L09£4375 4.6%

3 1235155 ‘378136 0903373 3.83

SAMPLE HQ CONY =CH2= HZO 2 USED HZ/ 20
NUMBER IMPLIED IMPLIED IMPLIED IHFL lED S RIGE

1 349411 . 247277 e 770727 1.723467 1a31659>
= P lal-Yad « 43736 226708 } 98 0204? 1.11804
2 « 349034 RIS 193 o 2255 « PGRIG2
q - 2 ~1 «TR2HRT7 1313324 . 53253 « VA301A3
ZAMPLE ~CHZ= CALC KEQ EXPT SUMn 2

NUMEER /20" con KEQ U=l

+ 7433, 17,9292 1, 4938, 1

o) =gk 17,7322 11.3315 1

3 1524434 7.0205 £.511% 1

3 +533358 12.5395 g 32004 :
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Table B-8

The Light Gas Analysis and Implied Mass Balance
from Steady-State Experiment C-1.

EXFERIMENT Brlas34 STEADY STATE EXPERIMEMT <=1

THI'Y EXFERIMENT USES 2.08:1 S~0AS FOR A 2 HOURS AND 3 MIN RUN.

TEMPERATURE= 473 # DATA PTS.= 3
SAMPLE €0 conv S02/C0 CH4/CO CR/AR H22C0
NOMBER E8RG CONU FED RATIO
! +367734 193317 175733 $-53 208
- 379722 « 3233 & A2 -2
3 1932155 <380454 V125307 3,638 3108
SAMPLE H2 Conv =CH2= Tl H2 LSE K270
NUMBER IMPLIED IMPLIED . vplen INPLIED. DEAGE
1 - 989302 -633377 « 769332 1.50724 1.3551:3
2 504374 «amaa31 31755 1.10821 1.192%53
3 « 551155 - 332899 e D7T240] 1.14¢84a 1.227:2
SAMPLE ~CH2- CALC KEQ EXPT KEQ M=
HUMBER 789, 590V 11,8089 1,053 :

- s =, - e 3 2 a
> 1574834 11.%35% 7.34472 i
3 .Z70114 11.5089 10,702 1
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Table B-9

The Light Gas Analysis and Implied Mass Balance
from Steady-State Experiment C-2.

DATE OF ZXAPERIMENT B/27734 STEADY STATE EAPERIMEMT C-2
THIS EXPERIMENT USES 1.03:1 S=GAS FOR A I HOUR AND O MIN RUN,

TEMPERATURE= &73 # DATA PTS.= 2

SAMPLE CQ CONV coZ/c0 H4 /0 CR/ER HI /20

NUMBER CONv ':co FED RATIA
9897 < 15042 Baa79 10,532 1.0

2 1539319 +3943%4 535e43s 10.88% 1.03

SAMPLE 2 CONV ~CHZ= 42 LSED H2/00

NUMBER ITPL IeD, ELTED : MPL Tep IHPLIED LERCE

2 15512 395533 1§2433% . 3457z LA8SlET

SAMPLE CHD= K| ?

SAHELE SSH CALC KEQ EXPT KEQ SUMal

|4 « 734702 11.808% ~3e 12471 b

2 - 54.3.40 cd 11.5085% &.35627 1



from Steady-State Experiment D-1.

DATE OF EXFERIMENT
THIS EXPERIMENT USES 1.0311 S-GAS FOR A 1 HOUR AND 2S5 MIN RUN.

TEMPERATIJRE=
RORELR

=X
-

SAMPLE
TUHBER

a
-

SAMPLE
?UMBER

S

AS3
Ca Conv
» PLIZZ2

43922

H2 CONV
IMPLIED
1. 561344
V373937

- HR -
/780 cony
o 7854399
1a335ss
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Table B-10.
The Light Gas Analysis and Implied Mass Balance

2/29/34

CRILC KEQ

14.269%
14,2695

STEADY STATE EXPERIMENT 0-1

EXPT KEG

—-Je JR1D2

4.35107

SUMay®
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Table B-11

The Light Gas Analysis and Implied Mass Balance
from Stzady-State Experiment D-2.

DATE OF EXPERIMENT /4724 STEADY STATE EXPERIMENT D-2
THIS EXPERIMENT USES 2.02:1 S=~3aS FOR A 2 HOUR AND 42 MIN RUN.

TEMPERATUREa £33 # DATA PT3.a S
SAMPL "0 Sonv cRz/C SH4/C0 C0sAR
NUMBER o cano=e CONY “PED
1 .93123 0634104 S 123734 3,524
g HEET o g
3 loLPass t35233 tilois7s 3.334
H s8973%3 133332 110012 31238
SAMPLE H2 eON —~CHD - 26 H2 UZED
NUMBER IMPLIED IMPLIED IMPLIED IMFL.IED
4 I513323 : g%gggb 183533t i ?203"
3 : 2 151¢ L33693 L0AS
3 398032 1513087 +318509 138802
< « 500931 2529751 « 325954 1.04205
s Sagdean .202124 255649 977834
SAMFLE -—CH2 CALC KEQ EXPT KEQ SUMal?
NIIMBER sC0" conv .
1 - 750583 14,2695 ., S2233y 1
z L5258y 145332 19,0745 1
3 I5L35]s 14.3438 19. 7aoe 1
3 57 q 8. 605 11.32043 1
5 1557882 13.369 2,552 h
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Table B-12

The Light Gas Analysis and Imp}ied Mass Balance
from Steady-State Experiment E-1.

.

DATE OF EXPERIMENT ?/3/34 STEADY STATE EAPERIMENT E~i
THIS EXPZRIMENT USES 2,08:1 S-GAS FOR A 2 HOUR AND S0 MIN RUN,

TEMPERATURE=  &53 » DATA PTS.= 5
SAMPLE CO CONV £02/C0 CH4/C0 CAsER H2 /0
NUMBER 23R CONY FED RATID
{ .$TF778 . 153064 . 186385 a.534 2.03
3 1351081 1333085 ~144343 ER4 Y4 2 oE
2 - 1353 « 314164 »1161548 4,426 po i » 5]
3 .232193 . 313923 =.1104343 -536 .03
< « 423 PRcivinicd -] » 110432 4,424 e 02
SANPLE H2_Conv -CH2~ 2 2 USED HI/C0
NUMBER TMPLIED IMPL TED IMPLIE IMPLIED EAGE
- 77347% . 672353 5o 1.561922 1,587}
pag « 360951 . a2 v 22605 . NE2779 » 1265
3 1525504 s550357 348535 165387 1,134
S553748 E36Ar 134655 S652a4 15634
g 1535523 S EES33 Tias 1. 1592 {21838
IAMRLE -CHA= LALC KEQ EXPT rea StiMale
r;:ﬂ?wssﬁ 763 CONY iy €6 M=l
- .1 . ™
pad <514301 1307934 t
3 L8596 13,793 !
H S87€534 13.903 i
S . 589193 12.722 13

[S25TL L2IN
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Table B-13

The Light Gas Analysis and Implied Mass Balance
from Steady-State Experiment F-1.

DATE OF EXFERIMENT ° 2711238 STEADY 3TATE EXPERIMEMT F—1I
THIS EXPERIMENT USES 4.0:1 S-GAS FOR A 3 HOUR AND 30 MIN RUN,

TEMPERATURE™ &4 # DATA PTS.= &

SAMPLE 0 CONV £02/C0 £Ha/CO SI3/AR H2zo0
NUMBER CONL CONU “2ip RATTG
1 991424 Q230512 32324 4,838 3
2 982072 . 133534 235338 3,836 3
2 952104 . 143542 « 205975 8.835 4
3 .933113 . 181373 .319167 3,336 1
s «937733 « 163431 .3:98"1 d,834 4
-3 « 933073 « 166705 J2AZRS7 4.538 3
SAMPLE H2 CONV ~CH2= H20 H2 USED

NLUMEER IMPLIED IMPLIED IMFLIED IHPL[ED

1 -S38367 A7 - «D88717 2. 35547

z - 323344 5743332 55213 T 5355

3 1332013 L83555E L378ze3 1176352

: ke GmEm Hes DI

- - C (] 2 2 » OO = . - -

3 L2527 1473135 183153 1i55838

SAMELE 2= A P M=

NUMEES /€1 CONV LC KEQ EXPT vEQ "

L HS29R 121274 4,97222 1

= . 60602&2 12.1273 éo&ggr.\g

3 370333 = 127 . (

3 1525328 1501353 ey i

s 507493 12,1374 $.53713 i

& 910338 12,1274 2. SRV 1



The Light Gas Analy
from Steady-

DATE GF EXPERIMENT

THIS EXPERIMENT USES 4.0:1

TEMPERATUREw 668

SAMPLE
NUMBER

Wy

SAMPLE
HUMEER

[31F]

Gt g

.C0 CONV
F71771

258578
45301

H"\
IHPL 1 ED
. 471'.-. 73
49087

-

£ CONV
- W33 "tl) 1

» 607709
548501

342

Table B-14

P13/24

B8-6A3 FOR A 2

# DATA PTS.s

coz/co
CONV

« 10431
JDP96195

oD -

« 926124
« 842331

CALC KEQ
12.1274

12.1273
12. 1374

STEADY STATE EXPERIMENT F=2

sis and Implied Mass Balance
State Experiment F-2.

HOQUR AND O MIN RUN.

. 77"‘055

EXPT KEQ

ERRTBRD
7. 79565
7.3254

5.536
1. 036

HZ USER

1.96283

SUM=1D

-1
1
1

S HIVT

[t o
[NV
s b
2 a6}
Gy NS

o

(AT
Q

>
[ 3171}

serese INDICATES THAT THE CO2 PEAK WAS NOT INTEGRATED IN THIS JAMFLE



DATE 12F EXFERIMENT 0/19.84 STEADY STATE EXPERIMENT F-3
THIS SXPERIMENT WSES 2.03: 1,$70A3 FOR A 1 HOUR AND O MIN RUN
AFTER FIRST EXPOZING IT TO a2 1 PRECARB. GAS FOR 2 HOURS.

TEMPERATLIRES 663 # DATA PTS.= S

AMPLE CO CONV "02/C0 CHa /o0 CO/8R
NUMBES CoN eaxd CONU EED

1 . 955622 .0o61131 J312424 3,836
= «9%5101 . 132341 . 233333 3 838 iﬁ
3 . 950es4 . 135583 <DgoERR 318356
3 L PA%81w 1147303 < 318799 4,434
s 12643 L310974 . 160159 4. 534
SAMPLE HZ CORV ~CHA= HZO H2 USED
NUMEER THPL IED IMPLIED IMPLIED IMPLIED
1 - 533023 -£3205% - 313433 . 17232
3 535823 533353 1537878 1273288
<2 «B38h&61 « SOVS7S « SEB90E 173336
-3 - D3IS243 « 330841 2 BGL375 1.1148%
SAMPLE -CH2- CALC KEQ EXPT KEQ SUM=17
QlUnBER /€352y 12, 1274 a,9a773 1

A~ -291883 12.1575 272265
3 LS573175 12.1374 P.36620 1

3 532393 13,1373 1.34172 1

s . 526866 12,1274 $.3472 t

343

Table B-15

The Light Gas Analysis and Implied Mass Balance
from Steady-State Experiment F-3.

)
()



DATE OF EXPERIMENT

THIS EXPERIMENT USES 2.03:1 S~5aS FOR A 2
AFTER FIRST EXPOSING IT TR 4:1 FRECARD.

TEMPERATLIRE=

SAMPLE
NUMEER

LR XA FL

=0
cb
B3
mr
0

DU TR

£
3
am

QI

662
S0 CONV

- 239279
< D51594

«S2143

«S53753
« 369531

344

Table B-16

The Light Gas Anmalysis and Implied Mass Balance
from Steady-State Experiment F-4.

P/20734

# DATA PTS.=

« 495267
5333386

CALEC KEQ

STEADY STATE EXFERIMENT F-4
HOUR RUN

GAS FOR 2

&
CHa/co

0. 357

2 HIURS.

L)

-~

1
Oul

o

!i!J!JhJ-AJJI
Lo To LY

<
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Table B-17

The Light Gas Analysis and Implied Mass Balance
from Steady-State Experiment F-5.

DATE OF EXPERIMENT 2/25/84 STEADY ZTATE EXFPERIMENT F-E

THIS EXFERIMENT USES 1,0311 S-5A5 FOR A 22 MINUTE RLN
AFTER FIRST EXPOSING IT TQ 41 PRECARB. GAS FOR I HOURS,

v,

1

TEMPERATURE= 463 # DATA PTS.,> 2

SAMPLE €0 Conv can/sc0 SHA/C /AR H2/C0

RUMBER CONY CHBLE° CRLp RATIO
-£37543 c262925 S171206 10.832 a

2 . s33q3253 T1%5517 10,2383 Pt

3 .9so=s* - 26163 . 178357 i0.3323 4

EE R i, ofle OB @

1 " . 338195 mESdED, gD l.SSa83 1.332%3

3 :Z3ss=e 1361525 1333915 11923 154153

3 323705 1523888 1343703 20333 39024

SAMPL ~CH2— CALC KEQ EXPT KEQ SUMa1?

HUMBER 760 Enny ® '

1 .S5%749 21274 20.05%% 1

2 TBi%e] 1301274 16.3751 1

) <852633 3.137a 21.5092 1
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B.2 Major Hydrocarbon Product Analysis--Output from the iicrocomputer
Data Compilation Program "HEAVY. BAS."

1. [Input

A.

B.
C.

D.

E.

Moles of THgq produced per mole of CO converted.

j. Obtained from light-gas analysis.

flow Rate of the syntnesis gas.

Fraction of CO in the S-gas feed.

Moles of CO convertad per mole of CO fed.

i. Obtained from the light-gas analysis.

ﬁo1es of C0p produced per mole of CO converted.
i. Obtained from the light-gas anaiysis.

F. Peak areas for 24 hydrocarbons.
2. Qutput
A. NORM AREA: Normalized peak areas of the 24 hydrocarbon.

8.

H.

Normalized to CHg.

WT FRACT: The weight fraction of each hydrocarbon peak. Assumes
FID response factors for all hydrocarbons are 1.

HC/CO COMV: The moles of hydrocarbon produced per uole of
CO consumed.

RATE PROD: The rate of production of each hydrocarbon product i.
mmoles per hour.

M.W.: The molecular weight of each hydrocarbon. For fused peaks
(C2 and C3) the avzrage molecular weight is used.

MOLE CA: The number of moles of each carbon number hydrocarbon
product produced per mole of CO converted.

MOLFRC Ca: The mole fraction of each carbon number hydrocarbon
product produced.

WT CA: The weight fraction of each carbon number 9f hydrocarbon
product.
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WTFRAC Ca: The weight fraction of each carbon number hydrocarbon
product.

RATE Ca: The rate of production of each carbon number hydrocarbon
product in mmoles per hour.
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Table B-18

The Hydrocarbon Product Distribution and Rate of
Prcduztion as Analyzed-by Gas Chromatography for
Steady-State Experiment B-1.

DATE OF EXPERIMENT 2/73/24 STERADY STATE W/D PRECARS.

EXPERIMENT B-1! THIS EXPERIMENT CONSISTS OF 10 HWOUR3Z OF
2.0B21 S-5A3S FLOW AT 53ZK.

PEAK # NORM AREA WT FRACT. HZ/C0 Comy RATE_FROD
1 1 « 62098 OIS 10,7247

2 . 572724 151692 0217747 3. 4487

3 &RALG2 . 130582% »ATS7 AL 7%E

a - dnc T 112476 AI20029 1,323%2

s 066332 0175131

3 121573%° 2378242203 2

o U s - - e

] L271563 TD7LITES 3

= « 0492735 - 2130717 7
10 01231 Z. 35FE=03 70.135
11 ‘0105180 2 756 TIE-03" 70,135
12 . aDBIRT » DSIL2I03 Sa. 160
13 0377377 PR.BPISIE=-Q3 3. 175
13 DI27213 3. 33323E~-03 2d,1AS
1% L 12515 L N32ZL17 23, 139
1& LOZ61231 6. 2451 LE~O3 Lu, 209
17 2. 370D5E~03  B.33733E-04 92,137
13 8, AONS7E-03 2, 2%5417E-03 =3, 190
19 «DP20AS ] « 0243915 112,115
a0 - D2ES44 &. 698 13E-03 114232
31 0633107 . 0157245 126,242
22 0174622 4, 574632E-02 133,059
33 0303017 2,099°77-0% 1ag, 27
Za 012953 3239 ] 182iI3s

TARBON 8 MOLES i OLFRC OB RaTz 08
1 . 3?*"43 - Tni242 10, 7247
= V317747 » 1646723 3. 43573
3 025736 . 138303 2.79%31 .
a 01505609 .07502%6 1.4

s 7.81183E=03  .0409893 .Ed

o 3.38433E-032 «02E3201 S
7 2,84473E-0% 0133779 e
. .02 =03 .37 =1 ol
[T 8,95736E=-04 2,50531E-03 LS

TOTAL PEAK SREA= 247573

YOTAL MOLE CARBON PRODUCED AS OLESPAR/MOLE C Conua R

MOGLE RATIO C1/(00-04)= 14519

WEINKT FRACTINN £17(Co=C5) .31523%

RATER AAE_IN UNITS 0OF MMOLES FER _HOUR

SUS MAL WTE ARE WSED FOR = AND ™% HYDRUCBNS OUE TQ FIWED PEAFS

TAT MOLE C PRQODUCED AT LO2 AND GLELZFARA/MOLE CO Cotva o TESIIST;
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Table B-19

The Hydrocarbon Product Distribution and Rate of
Production as Analyzed by Gas Chromatography for
Steadv-State Experiment B-2.

DATE F EXPERIMENT B/2¥543 STEADY STATE W/G PRECARE.
GF 2

EXFERIMENT B=2: THIS EXPERIMENT 30ONSISTS HOURS AND 3 pMIN
WF 2.0331 5-GAS FLOW AT &33K. :

FERL. # NORM AREA WT FRACT. HC/CO CANV RIATE PRIOOD
i 1 «262172 ] 13X, 4345
2 601214 151229 V0230062 8,3607%
3 L6R171& « 132312 «OSF3323 F.3[397
a . 415909 11153 OLIS2LT 1.533%07
S . 04D73%9 201463011 1.66353E-02 . 205ca
& 201&1E 4. RRDSLE-N2 5241 7E sR521172
rd ML TATALAD 4., 724072 g—os S OREATE=- 13 o 7"4:_&0.3
3 262424 «D7037485 S.9EITIE~GZ . 1807143
] - 22637 0113476 P, A2V4BE-NA « 12763
Ia - BIZ3O0S 2.32271E 3. 2.3 351E-04 035 103

LI035 2. 2TSIAE-D2 | 3. 33SSSE— B X
1{' el 3 « 0572 4, 0114638-1 ] « SA6274
13 034255 D.12443E-03  &.3I07ZE-03 . 03T7a23
14 .0144143 3. 266 sg—os S.7I3O2E-04 , Q2/9ESS
19 o 112433 =D21009 1.37252E=03  .2Z303&
14 «DR732474 7. 23332E=03 4,35407E~04 « OSSR272%
17 3.22E-~03 3.63512E-04 S.23215E-0G 7. 97427E~03
2 «010138% 2. 71526E-03 1.48741E-Q4 0222764
15 « D7205671 L 01222363 1.0Z444E-G2 |, | 3859)
3¢ 0175313 4. 71760E-03 ' 2,45704E-Q4 330010
21 « Q397973 .01328532 S ZITALE=-D L REINS3
S slaGy Lz ned
= . g 7.0183E- 2.97574E-0 «0QD243
=4 2.08075E-02 = 824438E-03 1.01375E-114 10137005

CAREDON # MOLES Cb MOLERC C# ur_cs WTER »
\ « Q9048 .5,°g§ 282170 TER8L,S
2 < 0530042 119:i%e -381253 CTAIZDS
E; < 0352825 - 133156 S1328717 S132ElY
3 913387 S D7EEDS T 135209 « 135500
= a29%6E-02 (0358475 « 3220200 < 0&E0200
5 8, 952062-02 0251287 G725 TE IT02675
7 2.53181E-03  ,013553% na]3aTs B IEEE
3 « 27033E=-Q3 L4 7D17SE=-03 Pl li T D404
K 2.90d4ZE-04 3, 25441E-03 . 14171701 LD171721
0 2. 990T2E-Q8 SLI0321E=-0% P,.3827ZE-03 S BA27TE-O2

TATAL FEAY AREAn 2311

TOTAL MILE CARBON PRODUCED AsésLE&FARIMQLE CO LoNvs » HITQ5

MOLE RATIQ C1/(C2=04)n 1, 15364

L
ST e, Sl
2, MMDLES HoU
SVG HGL WT5 ARE LSED FRR - EA o ARBRaH HYDROCBNS DUE TO FUSED PEAKS
TOT M3LE © PRODUCED AS O AND OLESPARA/HGLE 50 oave I varitos

19358

23 Glotlre i)t 8 3

Sed. 1,

=~

bR AT tyted

WD) a0
D Q&
()

O P g gua g et e tve o baga
(lre

AT

.‘l‘f.-l R
it
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Tab1e B-20

f

The Hydrocarbon Product Distribution and Rate o

Produztion as Analyzed by Gas Chromatography for
Steady-State Experjment B-3.

DATE OF EXFERIMENT 37107283 STERDY STATE W/0 FRECARE.

EXPEnIHENT B=2t _THIS EXPERIMENT CONSI'STS OF 10 HOURS
OF 3,081 S-GAS FLOW AT 433K,

FEAL » N?RH AREA uTaFR cT. HC/CO CONY R?;ESEE?D
- 8 D e
2 Wy T .155939 .047 14% 3. 95an1
3 .%79579 189718 64T 4056377
i ‘387277 s 113508 :Al7504k 1:25%12
z et W T
» ! - AQBE = . ¢ Y =1) . SN g
. BRZ2D N -3 . DR
Z 258855 Johsasre 00 L:SRRMSETIE .o7rEast
> «03TP28¢ . Q127419 1.55016E—03 . 1639
10 .010522% 3. 34384E-02  4.Z210P1E-03  .045325428
11 7.23058E-03 = STE=03- 2. 94309E-04 0311
12 112713 . 0365 £.832025-0F 404410
13 . 0241421 7.90263E-02  3.04P35E-04 . 0334375
13 7.63145E-03  2.29806E=-03  2.40537E-04  .0075952
15 .033526 - 0175533 .569265—0? « 155005
15 L0112:%S 3.687612=03  3.2300SE-04 035944
17 1. 82098E-03 5.3056‘E—04 3,7 nooe=-us 4, S272EE-92
1€ 5, Q0413E-02 1,945 FVE-03 1, 737E-04 «DiZ4755
19 . Q260785 . 0118092 < 22732E~0d LO971201
bl P, B967E=03 3V10863E-03  2.33873E-04 103Gl e
o1 . 0196077 5.313225-03 «80272E=0d  LC&P2ET
33 3258805008 L.Ssg7eE-03 "%?ﬁi%s‘§“ ST ECH
Yy o - - St 8 2O - -.' -
23 353355878 i.13008E-03 5:1883% 7. SZ5TE-uU3
ISARBON 8 MOLES C# MOLFRC Ch WT_Ca WTERAE Ci
. 1791 .S8331 - 327233
4 18331 1as ye38L7 (15595 .13=9§°
2 022443 . 138932 < 139713 . 18971
3 - 0320776 ‘071947 131753 .141753
1 S0IBTRe7 . 0352032 - 0286453 < OB&E
i 3.3]35g- LO1&018 .0872983 | <G472NES
7 " :.115425-03 6.§?567E~03 02375743 .0237374
RiESs poplew clgle o iRE
R s (Sl & - S. 371 -t e 108 -l'l.:-
10 2.63002E-04  3.37313E-=08  J.32193%E-0% 3, 21572303
;Qlét e ngaaN PRQDUfED as’ JLE PAR/HOLE 20 oMW 22302
R l LOMVI= P
MALE RATIO C1/(2- 1.4 sa3 =ON 3024
EE%EQT FE LTInNI#IIOEﬂﬂ 3 67
" )
AV T T ARE T ah F0i R EESANE 3 HODROCENS ouE -5, Fusen pEaks
TOT POLE © PROQUCED AT COS AND OLELPARAZMOLE CO CONVa -B00.

.
3

O [ e
AR G

4
4!

b
"-
X

11342332

gl )
E356)

)

Y]

=131
-t

2
IodeD rorebana

¢ 00 o (ged

e300 1]
pir3itn

i
Lo &

35gh

oo -
Hi.\\'.ﬂ
™AL )
U”
1)

-3

~g

OFO°771
SO372582
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Table B-21

The Hydrocarbon Product Distribution and Rate of
Production as Analyzed by Gas Chromatagraphy for
Steady-State Experiment c-1.

DATE OF EXPERIMENT 3724754 BTEADY STATE WD FRECARE.

r'fi-‘EFhI‘IENT =12 THIZ EXFERIMEMT CONSISTS. OF 2 HOURS AND - MIN
OF 20831 3=0A% FLOW AT 673K,

FEAE. ¥ NORM AREA WT_FRACT. WD CONV  RATE PROD MW
1 . . Vlganary J1352. L5232 13043
R . o o 1360 « QLIOUP S N £19 3
I 333059 ' 101308, 338202 5183
3 4345648 D £8.129
& JD12V489 4. A0S
7 15137511 5, S 103
E3 . 28 o——: « 04T 70.13%
& . O D715 T2 158
I 96%’%335_03 §‘5%§ 7oi13s
. L~ - e -
Iz - TaSe eEs TORE5: 531143
13 5173095 A 10S11E-03  &.0826E=0 (0714313 Ea0 172
14 ¥ S00IRE~0T . 2. 71S7GE-03  1.D=R32E-04 . 03063EP 24,16
It P Th13321 R N I £ $318%
12 10109542 3 SRAGOE-NS D, [6048E-0d . 0FA1VE2 100, 205
13 A O1R4E-03 S.ASS0BE-04 5. 4FS05E-QS 9, S1NSIE-0% Ze
15 FiR131E-03 1. I5609E-U2  A.USSAIE-5 DI L17083
h T 0330752 D116538 5:30%00E-03  10s3an
5 5. E163E-03 D SSA1AE-03  1.56441E-04  .ofaloas
2 , 02146504 G 22333603  3.553736-04  .0Eo4oeS
32 3 E208E~03  1.SB677E-03  F.47003E-05 012519
33 5134735 3188877603  1.54731E-03 253014
L 5 7084%8-08  §.371%E-03 (F0231E-05 5. 04a2E<03
CARBIN 3 MOLES Ca MOLERC C# WT_Ca WTERAC_C¥
1 o PO » SOZPAL » 3ARI77 e G377 yric]
- PR v S . 1818538 .« L8710 LISTLOS {21
< » DQ6ADS » 12Q97S » 126001 « 1 BS00 748
3 T ATdSR00 t0Rzaa72 158433 13352 75
3 5o JEEDE —"'g 031230 - S' PAOTID - \,;J QATE 1
i R s S Y T I 8373Ta% Tad2eT3 T4
2 TIAFBRIE-NT  5.33046E-03 0030345 {asTaaas e
3 7.35389E_04  5.88215E-03  .01d4303 0145503
i 430d7iE-pt  Lpod7iEaR  h.otddecos  3.apddEcos
T 2. GRT7RRE- 7933E-0%  J.BASETE-NR  JLdbAATR~OR
TOTAL PEAK ARESs LR TE -l
TETAC_MOLE CASEON _PRODUCED Ag OLhkPQn/HOLE CO CONVs, L3077
MOLE RATIN 51, (LA-l&1= 1.54535
WETSHT EEALTION. :1/ S2-cm_ LBe7LE
REIEZ SRS M DNIT 18 HEbLES SER HOlR
SUE-MOL WD ARE 193 ED rop AND 3 HYDROCENS DUE To SLESED EEKS
TAT MOLE C PRQDUCED L.O mND QOLEXFARAS/MOLE CQ DINVE -
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APPENDIX C

Microcomputer Programs for: (1) Feed-Gas Cycling and Product Analysis
During Unsteady-State Fischer-Tropsch Synthesis; (2) Data Compilation
for Light-Gas Products (MASSBAL.BAS); and (3) Data Compilation for the
Hydrocarbon Product Distribution from Capillary Analysis (HEAVY.BAS).
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10 ISUR_S40
20 REM  THIZS SECTION SWITCHES S= AND F-0AF SILENDID VALVES
30 REM A% WELL A% THE SLIDING FLLIG.
313 CN=Q
T QT 215,132
A0 QUT 212416
7O QUT 2159 .
20 CN=CN-1
S GREUR 230
1) iF CNarlin THEN GDEUB 1590 ELSE
11e i CN=23_ THEN . COSUR 2020 EL3E .
1o FOGR_T=1 TG 15O
130 NEXT 1
I3 GUT 2156128
1=0 30T 12,3
160 QUT 213:6
170 GOSLE 32Q .
120 FOR_I=1 TOQ 7T0
190 NERV I
2% 32TQ S0
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Figure C.1 A Microcomputer Prcgram for Control of Feed-Gas Cycling
and Product Samplina Juring Unsteady-State Fisher-
Tropsch Synthesis Experiments.
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