7.0 THE COMBINED EFFECTS OF ALKALI PROMOTERS AND SUPPORTS ON
THE SYNTHESIS OF OXYGENATED COMPOUNDS OVER RHODIUM CATALYSTS

7.1 Background

The syutﬁesis of oxygenated compounds over supported Rh catalysts
is very sensitive to the presence of alkall promters. Previous
studies on alkali-promoted Rh/’l‘ioz and Rh/La203 have suggested that
alkali promtéx:s may distribute themselves on both the metal and
sugport surfaces resulting in a modification in the properties of the
catalysts. The observed effect of alkali promotion on.oxygenate
synthesis over gupported Rh catalysts appears to result from a
combined effect of promeoter and support. This complex effect can be
described schema'tically in Figure 7-1. Alkali spgqies may interact
directly with surface reactive intermediates to provide special sites

for adsorption.( 139)

It may locate on metal surface resulting in
modification of the states and properties of that surface. Another
possible effect is that promoters may alter the properties of the
support., This alteration could, in turn, change the catalytic
behavior of the metal.

The presént chapter considered the combined effects of alkali

promoters and supports on the catalytic behavior of Rh catalysts. The

catalysts utilized for this study included both unpromoted and alkali-

promoted Rh black, Rh/A1,05, Rh/TiO,, Rh/Si0,, Rh/Lay04, and Rh/Mgo.
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Figure 7-1 Schematic Diagram of Effect of Alkali Promotion on
Supported Rh
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7.2 Results

7.2,1 Rh and Li-Rh

In order to understand the complexity of metal-promoter-support
interactions, it is important to consider first Li-promoted Rh black
as reference catalyst. Table 7-1 shows product distributions from CO
hydrogenation over these two catalysts. Li-promoted Rh exhibited a
higher activicy and selectivity for the formation of €4 oxygenated
compounds. Li-promotion appears to enhance the Cformation of C,,
oxygenates at the expense of the format;on of C,, hydrocarbons. Table
7-2 1ists reéults of the addition of probe reactants to CO/Hz. Li~-
promoted catélysc showad a lower rate of ethylene conversion and a
lower selectivity for the formation of ethane in comparison with
unpromoted catalyst. An increase in selectivity to C3 oxygenated

compounds over the Li-promoted catalyst appears to be due to the

_suppression of hydrogenation rather than an enhancement of CO

insertion activity. Ethanol addition to CO/HZ over Rh black resulted
in the formation of C, hydrocarbons. The doping of Li on Rh black
promoted the éonversion of ethanol to methane and the incorporation of
ethanol into C; oxygenated compounds but inhibited the dehydration of
ethanol to Cy hydrocarbons. In the case of acetaldehyde addition,
ethanol and Co hydrocarbons were observed to be major products. Li
promoters partly suppressed conversion of acetaldehyde to Cy

hydrocarbons.
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7.2.2 Alkali-Promoted Rh Catalysts

Figurey7-2 shows the dependence of activiﬁy for CO conversion
on the types of alkall promoter and support, The activity for CO
conversion decreased in the order: unpromoted > Li > K > Cs for Ti0,,
5102, and MgO-supported Rh catalysts. In contrast, alkali promotion
seemed to have little  effect on CO conversion over Al ,043-supported Rh
catalysts. The combined effects of alkali promoters and supports on
Cz oxygenate selectivity and CH, and Cos hydrocarbon selectivity are
represented in F@gure 7-3 and Table 7-3, respectively. The effgct of
alkali promotion is strougly depgndent on the type of support used.
In the case of Rh/Tioz, alkali promotion enhapced the selectivity to
c2 oxygenated compounds whilg reverse effect was observed for
Rh/SiOz. For Rh/La203 and Rh/Mg0, the trend of alkali promotion is
less obvious. |

Results of eth&lene addition to CO/HZ over these promoted and
unpromoted catalysts are shown in Figure 7-4 and Figure 7-5. Excépt
in the case of Rh/A1203, alkali promotion uniformly decreased the rate
of conversion of ethylene. The selectivity to C3 oxygenated compounds
was somewhat enhanced by the presence Qf alkali promoters.. This
increase in C3 oxygenated compounds appears to be due to a strong
suppression of hydrogenation rather than an increase in CO insertion
activity. l

Ethanol addition to CO/H, was studied over Rh/Al,04, Rh/S10, and
Rh/Lazo3 (Table 7~4, Table 7-5, and Table 6~7). The suppression of

ethanol dehydrafion was ldentified as major effect of alkali promotion

t
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Figure 7-2 Effects of Alkali Promoters and Supports on the Actlivity
of CO Conversion
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Figure 7-3 Effects of Alkali Promoters and Supports on C 2 Oxygenate
Selectivity during CO Hydrogenation



Table 7-3 Effect of Alkali Promoters and Supports on CH, and

02+HC Selectivities during CO Hydrogenmation

Selectivity (moleX)

Catalysts - Li X Cs
Rh/AL,0;  CH, 86.9 81.7 83.4 86
CyHC 6.4 12.7 8.5 8.5
Rh/’l'iOz CH, 74.8 71.9 65.6 42.4
CyHC - 17.0 17.3 10.5 30.5
C,,HC 7.8 13.5 25.0 45.8
Rh/Ia,05  CH, © 42.5 22.68 29.0  45.6
Cp,HC 14.1 19.8 18.9 23.9
' Gy HC 27.3 32.9 45.9 27.2

HC = Hydrocarbons
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Effects of Alkali Promoters and Supports on the Rate of
Conversion of Ethylene Added during CO Hydrogenation
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Figure 7-5 Effects of Alkall Promoters and Supports on Cj Oxygenate
Selactivity from £thylene Reaction during CO Hydrogenation




Table 7-4 Product Selectivity from Ethanol Reaction during
CO Hydrogemation over Rh/Si0, and Alkali-Promoted

Rh/sm2

CGatalysts Rh/S510, Li-Rh/S10, K~Rh/8i0,
Amounts of EtOH
Added in CO/Hz mol% 0.65 0.45 0.48
Rate of EtOH
conversion
mole/kg/hc 0.28 0.41 0.26
Selectivity
mole %
C,y 2.1 8.6 2.6
93+ 3.0 4.6 3.8
MeOH 6 6 0
MeCHO 20.8 14 21.6
C3 Oxgyo 38.6 3805 l
EtOAc 14 8.3 17.8

300°C, 10 atm, CO/H, = 1
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on ethanol reaction over Rh/A1,05 and Rh/La,03. This effect was not
observaed for Rh/SiOz since this catalysf is not active for ethanol
dehydration.

The incorporation of ethanol into C3 oxygenated products took
place on Rh/8102 and Li—Rh/Sin catalysts. As discussed in Chapter 3,
several mechanisms have been proposed to expiain: this specific
reaction step. ' At . present, it 1s still not clear what is the

predominant route for the incorporation of ethanol to C3 oxygenated

compounds.

7.3 Discussion

Due to the complexity of the combined effects of alkali promoters
and supports, it is important to study the effect of alkali ﬁromotion
on Rh metal and thé effect of supports omn Rh metaliéepérately. The
effects of the alkali promwoter, Li, on CO hydrogenation over Rh metals
were identified to _ cause the foliowing: éa) increased CO
hydrogenation activity, (b) decreased ethylene hydrogenation activity,
(c) increased selectivity for CO insertion, (d) enhanced incoréoration
of ethanol iato C3 oxygenated compounds, and (e) decreased activity
for dehydration of ethanol. The effect of the support oﬁ 02 oxXygenate
selectivity essentially parallels to that of the support on the CO
insertion selectivity. It increased in the order: A1205 < 1102 <
Mg0, Lay0y < S10,. It is apparent that the combined effects of alkali
promoters and supports are not the superpositiony of both effects.

This may be due to the Ffact that both effects are chemical in
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nature. In addition, other effects, such as the creation of active

siteg(62,139)

and effects brought about by modification of support by
alkali promoters, may play an important role in this complex effect,
The most obvious common effects of alkali promotion on supported

Rh catalysts are suppression of ethylene hydrogenation and ethanol
dehydration. These two effects may be attributed to a direct
interaction between metal and alkali promoters since these effects
were ldentified as major effects of alkali promotion on Rh black. The
suppression of ethanol dehydration suggests that alkali promoters
decrease the acidity of the catalyst. Comparing ethanol dehydration
activity (Table 6-7, 7-4 and 7-5) with CO hydrogenation selectivity
(Figure 7-3 and Table 7-3), it appears that there is no direct
correlation between acidity/basicity of supported Rh catalysts and CO

hydrogenation selectivity. A similar observation has also been
(29)

reported by van den Berg.

On the basis of the reaction (Figure 3—1). -scheme proposed in
" Chapter 3, the suppression of hydrogenation would result in an
enhancement of selectivity for éo insertion to form C,, oxygenated
compounds and CH, insertion to form higher hydrocarboas, and it may
also cause a decrease ian CO hydrogenation activity. It is important
to note that alkali promoters suppress the rate of formation of all
the products, except in the cases of Li-Rh and Li-Rh/La203
catalysts. The selectivity for CO insertion or CH, insertion is
strongly dependent on the type of support and alkali promoter. In the

case of Rh/TiOz which demonstrated a higher selectivity Ffor the
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formation of higher hydrocarboné than that of C, oxygenated compoun&s,
the addition of alkéli promoters enhanced the selectivity for C,
oxygenate formation. On the other hand, Rh/8102 exhibited a high
selectivity for C, oxygenate formation. Alkali promotion shifted the
selectivity to Gy, hydrocarbons. This shift in selectivity from one
product to another product is mainly due to a stronger suppression of
formation of one product over that of another.

The absence of an effect of alkali promotion on CO hydrogenation
over Rh/A1203 catlaysts would seem to be due to a strong affinity of
the basic alkall promoters with the acidic support resulting in most
of added alkali promoter being situated on the  support. The
difference in the effect of alkali promotion on CO conversion activity
between Rh black and supported Rh is possibly related to their CO
-dissociation activity. Rh metal itself is not very active for CO
dissociation(ZI) while supports(68) and alkali promoters(56) are known
to promote CO dissociation. Promotion of CO dissociation on Rh metal
may result in a high activity for CO conversion while enhancenent of
C0 dissociation over a supported Rh catalyst, which is active for CO
dissociation, may cause an excess of surface carbon leading to
decrease in activity. In addition, Rh black and supported Rh
catalysts have a dramatic difference in met#l particle size., This
could be another factor contributing to this difference.

1i promotiomn results in an increase in the activity for
incorporation of ethanol into C4 oxygenated coupounds on Rh black.

This promotion was also observed to occur om RR/Si03. Since the
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mechanism for this incorporation reaction is not cleat, the effect of
alkali promotion on this reaction is far from being understood and it

nust await further investigation.

7.4 Conclusions

Suppression of Thydrogemtion and ethanol dehydration was
identified as na;-jor effects of alkali promotion. CO insertion was
found to be dependent upon both the alkali promoter and the support.

The combined effects of promoters and supports are not simply the
superposition of these two effects. TFactors such as metal particle
gize, distribution of alkali ptomo(;.ers "on the support and metal
surfaces, and modification of the support by alkali promoters my

complicate this meta l-promoter-support interaction.



8.0 EFFECT OF POTASSIUM PROMOTERS ON METHANOL SYNTHESIS
OVER Pd/SiOz .

é.l Background

It is well known that Pd is a good catalyst for the selective
synthesis of methanol under high pressures. Addition. of alkali
promoters to Pd caﬁalysts produced a marked modification in the
selectivity for methanol synthesis.(48) Although the effects of
alkali proﬁoters have been identified, the mechanisms of these effects
are unclear. In the present wprk, a geries of K~promoted Pd/SiOZ have
been studied to help elucidate the role of potassium on methanol

synthesis,

8.2 Results

The metal particle sizes of these supported metal catalysts were
determined by static hydrogen chemisorptlon at 25°C(146) and X-ray
diffraction using a MoKt radiation source. The fesults are shown in
Table 8-1. Due to suppression of hydrogen chemisorption brought about
by potassium promoti&n, hydrogen chemisorption appeafs to be
inappropriate Ffor measuring average metal particle size in these

alkali-promoted catalysts.(laﬁ)'

Due to uncertainty in méasuring the number of surface atoms for

alkali-promoted catalysts<l462 and to the fact that selectivity is the




Table

8-1 The Average Metal Particle Sizes
of Pd/SiOZ, K~Pd/Si0,

142

Catalysts Average Metal Particle Size

&)
Pd/si0 41(2)
2 < 40(b)

K-Pd/$10, (K/Pd = 0.6) 87,3¢)
< 40tP)

K-Pd/S10, (K/Pd = 1.8) 140€@)
2 < 40tP)

(2) Determined by static hydrogen chemisorption at 25°C, H;../Pd = I.

(b) Estimted by X~ray diffraction using Mok
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property of interest, the activity of these catalysts FEor methanol
synthesis 1Is expressed in mole/kg/hr. The product distribution for CO
hydrogenation over Pd/Si0,, K~Pd/Si0, is shown in Table 8-2. Pd/Si0,
demonstrated a very high selectivity for methanol formation. The
addition of K promoters to Pd/8102 resulted in decreases in both the
selectivity and the activity for methanol formation while it increased

-the activity and selectivity for the formtion of methane and higher

hydrocarbons.

8.2.2 Addition of Ethyleme to CO/Hj-

In order to determine the effect of potassium promoters on the
hydrogenation ability of these catalysts, a small amount of an
unsaturated hydrocarbon (ethylene) was added to the CO/Hz reactant
streams The added ethylene, CO, and H, may compete with one another
for the same active sites. In addition, the added ethylene may
interact with intermediates produced from CO hydrogenat‘ion.(as) The
product distributions from reaction of the added ethylene over Pd/SiOz
and: K—Pd/SiOz is shown in Tables 8-3. Tt is interesting to‘ note that
the addition of ethylene results in a decrease in methanol formation
for Pd/SiOz'and K—Pd/SiOz. The extent of suppression of methanol
formtion seems to parallel the activity of methanol formation of
these catalysts (Tables 8-2 and 8-3). '

The addition of potassium promoters to Pd/SiOz resulted in a
decreas'e in rate of ethylene hydrogenmation while it slightly increased

the rate of formtion of Cq oxygenated compounds.
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Table 8-2 Product Selectivity during CO Hydrogemation
over Pd/Si0, and K—Pd/SiOz

Atom Ratio of K to Pd 0 0.6 1.8
Teo (moles/kg/hr) 2.7 0.534 0.38
Selectivity (wtX)
CH, 0.4 3.9 12.5
Cpy HC 2.3 36.0 42.0
MeOH 97.3 60.1 40.7
C, OX 0 0 4.8
Activity (mole/kg/hr)
CH, 0.023 0.028 0.056
Cy HC 0.051 0.092 0.091
MeOH 2.5 0.216 0.09
C,0X 0 0 0.008

300°C, 10 atm., CO/Hy = 1, 2.3 wtX Pd/5i0,



Table 8-3 Product Selectivity from Ethylene
Reaction During CO Hydrogenation over
Pd/SiOz and KrPd/SiOz

Atom Ratio of K to Pd ‘ 0 0.6 1.8
reo during CO/H,(2) | 2.7 0.53 0.38
Rgo during CO/Hy/C,H,(2) 1.75 0.66 " 0.55
rc:(a) 36.17 350 5.8
Conversion of C,~ % 99 90 16.1

Selectivity (mole Z)

CH, 0 0 0

C,Hg 99.5 95.5 96.5

Cy 0.3 0.1 0.5

C5 OX 0.2 0.4 3.0
during ada1 8430 n, - -1.1 -0.032 -0.005
(2) 57  14.8 5

3.3~ 3.5 mole % in CO/H, = 1, 300%, 10 atm.
(a) All rates are expressed in mole/kg/hr
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8.3 DISCUSSION

fJ;he most interesting point of this study 1s the product
distribution from reaction of ethylene added during CO hydrogenmation
obtained for Pd/Si0, and K-Pd/8i0y (Table 8-3). The results of adding
ethylene were a significant suppression of the -formtion of methanol
dufing €0 hydrogenmation over thése catalysts while there was little
effect on methane formation.  This clearly suggests that (aj part of
the adsorbed ethylene competed with CO for the same hydrogenation
sites, (b) active sites for the formtion of methanol are different
from those for the’ formtion of methane. Similiar suppresslion in
methanol formtion during the addition of Il-hexene to CO/H2 over
Cu/Zn0 has been reported by Vedage and Kiier.(147) They suggested
that CO and l-~hexene compete for the same active sites resulting in
this suppression.

Addition of a potassium promoter to Pd/8102 caused a mrked
decrease in activity and selectivity for methanol formation while it
increased the activity and selectivity for the formation of both
methane and higher hydrocarbons. The presence of this potassium
promoter also caused a suppression of ethylene hydrogenmation during
the addition of C,H, to the CO/H, reactant stream. It seems to
suggest that potassium promoters may .preferentially block the active
gites for methanol synthesis and et;hylene hydrogenation over
Pd/SiOz. However, the effect of alkali promotioﬁ is generally
congidered to be electronic in nature.(“-"s) If the electromic

factor play a mjor role in the effect of alkalli promotion, such



similar suppression of activities for these two reactions suggests
that some steps of these two reactions take place on the same active
sites or at least on sites which have similar chemical'pro;erties.
These active sites are subject to modification brought about by alkali
premotion. This 1s somewhat confirmed by the fact that the rate of
methanol formation decreases so significantly upon the addition of
ethyiene, suggesting competition for the same sites. It also suggests
that not only CO hydrogenation to methanol but alse at least most of
ethylene hydrogenation take place oﬁ different active sites thaq
methane formation.

There still exists controversy concerning the nature of active
sites responsible for the formation of methanol. The formation of
methanol has been suggested to take place (a) on Pd 1ons(62), (b) on
small s;zed crystallites of Pd metal(laé),'(c) more actively on Pd
(100) than ou Pd (111)(81), (d) at the interface of Pd metal and the
support.<48) |
. While we are still not able to differemtiate what type of active

sites is responsible for the methanol formation, it can be suggested
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that active sites for methanol formation are different from those fer_

methane formation. Fajula‘ et al}(144) have observed ‘that the
formation of methane aver supported Pd catalysts is directly related
to the density of acidic sites at the surface of the support.
Accordingly, the addition of potassium to Pd/8102 should decrease the
acidity of the catalystsclkz) so that. the formation of methane would

alsa decrease, On the contrary, an enhancement of methane and




hydrocarbon formation was observed for potassium promoted pa/5102.

Fajula et al.(144) have also polnted out that the formation of methane
via €O dissoclation followed by hydrogenation of resulting surface
carbon can not definitely be ruled out for Pd catalysts. They have
further noted that, if this is the case, the reasons for their
observed correlation is not apparent, K promoters are known to be
effective 1in promoting €O dissociation.(43) In contrast, Mori et
al.(ﬁg) have‘ observed that the addition of alkall promoters to
Pd/Al,04 cauéeg a shift in the wave number of adsorbed CO to a iower
value in IR épectroscopy. They have suggested that alkali promoters,
mostly locatéd on the A1203 support, decrease the dissociation
probability of CO on Pd/Alzos. It is therefore not clear how alkall
promoters modifi C0 dissociation activity of supported Pd catalysts.
A further study on this issue would provide a better understanding of
the alkali promotion effect on CO hydrogenation over Pd catalysts.

The major effect of alkall promoter on methanol synthesis over

Pd/Si0, catalysts have been suggested to be

(a) a modification of active sites (interface of the metal and
the support) by alkali promoters(As),

{b) stabilization of some iong (assumed to be active sites for
methanol formation) by the alkali promoters against reduction
in a hydrogen atmosphere(62),

(e¢) creation of a defect structure which is improve the activity

for the catalyst.(ﬁz)
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All these propositions appear to indicate that alkali promoters are
effective in promoting methanol formation. Kikuzono et a;.(48) have
observed that L1 and MNa cations promote methanol formtion over
Pd/S10, while K and Cs catlons decrease it. K11er{%?) has found that
Cs promoters suppress the methanol synthesis activity of Pd/SiOz but
increase its activity for the water-gas-shift reaction. In contrast,
Tatsuml et al.(145) have reported that methanol synthesis over‘Pd/Sioz
was promoted when Li, Ma, K, Rb, and Cs were.used as promoters.

In this study, we Ffound K" promotion (alkali promotion) to be
effective 1in deéreasing the hydrogenation abilitynfbf Pd/5102
(suppressing CO hydrogenation to methanol and ethylene hydrogenation
to ethane). Thus, alkali promoters appear to have two mjor effects
on methanol synthesis which are opposite to each other. One effect is
hydrogenation suppression which can decrease the activity of methanol
synthesis. The other one is beneficial to the activity of active
sites to activate CO or stabilize precursors to methanol.(48’62)
Hence, the observed effect of alkali promotion on methanol synthesis
m;y be due to the net effect of these two factors. A quantitative
study of the effects of these two factors would be important for

gaining a better understanding of alkali promotion on methanol

synthesis.




8.4 Conclusions

The results of this study have suggested that the active sites
for methanol formation are different from those for methane formation
over Pd/SiOz. Pd/SiOz, which 1is active in methanol synthesis, showed
a decrease in methanol formation during the addition of ethylene to
the CO/Hz‘reactant stream. The major effects of potassium promoters
were identified to be (a) suppression of ethylene hydro'genation over
Pd/SiOz and (b) suppression of hydrogenation of CO to methanol over

Pd/5105.
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9.0 THE SYNTHESIS OF METHANOL ON Pd AND Rh CATALYSTS: A COMPARISON

9.1 Background

pd, Pt, Ir, and Rh catalysts have been found to be active for
methanol synthesis.(6’7’12’62’114’144’145) Although the mechanism for
methanol synthesis over these catalysts.is still not clear, the good
methanol synthesis activities of these catalysts have been identified

to be due to their high hydrogenation ability coupled with their

(7,71) Several

ability to activate adsorbed CO nondissoclatively.
recent studies have revealed that the selectivities and activities of
Pd and Rh catalysts are greatly affected by the composition of the
support(6’7) and the presence of promoters.(48) Pd supported on
certain types of silica(laa) exhibits high activity and selectivity
for methanol formation., For Rh, even more basic supports(7’12) such
as Mg0 and 2Zn0 than those for Pd catalysts afe required to promote the
.production of high yields of methanol while Rh on moderately basic
supports (8102 and La203) leads to good seléctivity to ethanol. Some
fundamental questions concerning methanol synthesis over these two
metal catalysts still remain unanswered. Is the mechanism of methanol
synthesis over Pd catalysts the same as that of methgnol synthesis
over Rh catalysts? What are the basic factors controlling the
formation of methanol as opposed to the formation of ethanol?

This reports the results of a study of CO hydrogenation and the

addition of probe molecules (ethylene and ethanol) to the CO/HZ

reactant stream over Pd/SiOz, -Rh  black, Rh/Si0,, Rh/LaZO3, and




152

Rh/Mg0. The objective was to compare the catalytic properties of Pd

(which is active for methanol synthesis) and Rh catalysts (which are
active for both methanol and ethanol synthesis) in order to better

understand these syntheses.

9.2 Results
9.2.1 CO Hydrogenation

The metal particle sizes of these supported metal catalysts
were determined by static hydrogen chemisorption at 25°C(146), H, TPD,
and X-ray diffraction using a MoKn radiation ’source‘ The results are
shc;wn in Table 9-1. @ With the exc;zptidn of Rh black, all these
catalysts have comparablg dispersions. Table 9-2 give;l results for CO
hydrogenation over Pd/ $10,, Rh black, Rh/SiOz, Rh/L8203, Rh/Mg0
(reduced at 250°C) and Rh/MgO0 (reduced at 400°C). Activities are
reported on a weight of catalyst basis due to the lack of knowledge of
the fractions of Fhe metal surfaces actually active and to the fact
that selectivity in the ;;arameter of concern for this study. As shown
ia Table 9-2, ‘pd/smz was very selective and active for methanol
synthesis but :ix,:lactive for C, oxygenate synthesis while Rh/8102 was
active for Cé.,, oxygenate synthesis but essentially inactive for
methanol synthesis. In contrast, Rh biack, Rh/LaZO3, and Rh/MgO
(reduced at 250°C?) showed fair selectivities for both methanol and c,
oxygenate aynthesris. " The product distributions over Rh/MgO appeared

to be greatly affected by reduction temperature. Rh/Mg0 reduced at



Table 9-1 The Average Metal Particle Size of
Pd and Rh Catalysts

Metal Particle Diameter (A)

Catalyst BET HZ TPD HZ G.V. XRD
2.3% Pd/si0, - - 41 < 40
Rh Black 352 - . - -

3% Rh/S10, - 46 - 40
2.6% Rh/Lay0, - 27.5 - < 30
2.3% Rh/Mg0 - - 52.9

< 30
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250°C produced higher yields of methanol than that reduced at 400°cC.
The increase in reduction temperature, however, increased the rate of

Cz oxygenate (0X) formatiom.
9.2.2 Addition of Ethylene to CO/HZ

A small amount of ethylene (2.3 - 3% in CO)HZ) was added to the
CO/HZ reactant stream over these catalysts to probe their catalytic
properties. Figure 9-1 and Table 9-3 show results of ethylene
.addition over these catalysts. All of these catalysts exhibited
relatively high activity and selectivity for ethylene hydrogenation
compared with the selectivities for CO insertion and incorporation
into higher hydrocarbons. In fact, both Rh and Pd have long been
known to be good catalysts for hyd’rogenation of olefins.(ll3) The
selectivity for CO.insertion to form Cq o;;ygenates decreased in the
orde . Rh black, Rh/SiOz > Rh/La203 > Rh/Mg0 > Pd/SiOz.

It is interesting to note that the addition of ethylene to CO/H2
over Pd/3102 and Rh/Mg0 (reduced at 250°C) resulted in significant
decreases in the formation of methanol. A decrease in CO conversion
was also observed for Pd/SiOZ during addition of ethylene to CO/HZ.
In contrast, an .increase in CO conversion was found for Rh black,
Rh/SiOz, Rh/LaZO3, ‘and Rh/Mg0 during the addition of ethylene to

CO/H,.
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Figure 9-1 Product Selectivity from Ethylene Reaction during CO

Hydrogenation over Pd and Rh Catalysts
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9.2.3 Addition of Ethanol to CO/HZ

The product distributions resulting from the added ethanol are
shown in Thbie 9-4 and Figure 9-2 and 9-3. Pd/5i0, exhibited a very
high selectivity for the dehydrogenation of ethanol while Rh/SiOz
showed a mﬁch lower selectivity for this reaction but a high
selectivity for the incorporation of ethanol into Cy oxygenated
compounds. This incorporation of ethanol into C3 oxygenated compounds
was also observed for Rh/Mg0 (R400). In contrast, Rh black and
Rh/La203 were essentially inactive for this incorporation. Rh black
demonstrated a high selectivity for the dehydrogenation of ethanol
while Rh/La203 showed a high selectivity for conversion of ethanol to
methane (dehydroxymethylation). 1In addition to the conversion of the
added ethanol to this variety of hydrocarbon and oxygenated products,
it {is important to note that the added ethanol resulted in a
suppression of methanol formation over Rh/LaZO3. The promotion of
methanol synthesis or coanversion of ethanol to methanol over Rh/SiOz

is not really significant gilven the low rate of formation.

9.3 Discussion

Pd/Si0,, Rh black, Rh/SiOz, Rh/pa203, and Rh/Mg0 exhibited not
only differences 1in CO hydrogenation selectivity but also variations
In selectivities for reactions resulting from added ethylene and from
added ethanol. Rh black, Rh/SiOz, Rh/La203, and Rh/MgO, which were

active for catalyzing the formation of C, oxygenated compounds during
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CO hydrogenation, were active for catalyzing the format'ion of Cs
" oxygenated compounds during the addition of ethylene to CO/HZ. As
stated in Chapter 3, C, oxygenates have been shown to form from the
insertion of GO into‘ adsofbed CH# which 1s generated by CO
dissociation followed by hydrogenation during CO hydrogenation.
Formation of C3 oxygenates during the addition of ethyleme to CO/HZ
has been suggested to result from the insertiom of CO into adsorbed
CoH, which i1s produced by ethylene.(136) It appears that the | co
insertion step 1is an essential step for the gynthesis of Cos
oxygenated coinpounds. In contrast to Rh catalysts, Pd/8102 is
essentially inactive for catalyzing the formation of C3' oxygenated
compounds during addition of ethylene to CO/HZ. Pd is known to be not
very active for CO dissociation. There should be an abundance of
nondissociatively adsorbed CO for insertion into adsorbed CZHx during
the addition of ethylene to CO/HZ. Thus, thé inability of Pd/S:1.02 to
catalyze the formation of C5 oxygénated from ethylene must be
attributed to either its poor CO insertion capability or its very high
hydrogenation ability. This suggests that not only the concentration
of nondissociatively adsorbed CO but also the relative capability for
CO "insertion is an important factor for the formation of Cos
oxygenated compounds.

‘ It 1is interesting to note that Rh black is able to produce a
significant ‘amount: of oxygenated compounds. In contrast, several
previous studies on Rh single crystal(123'124) have shown that clean

elemental Rh produce only hydrocarbons while preoxidation of Rh
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metallic crystal results in the formation of oxygenated compounds
during Co hydrogenation. Several factors may contribute to the
difference in product selectivity between Rh black and Rh metallic
single crystal, These include different crystalline :surfaces and
possible contamination of impurities. Rh" black (from Alfa) used for
this study consists of 600 ppm of Co and 50 ppm of silica. It is not
clear how this trace amount of Impurities affect the active sites for
product formation.

It has been proposed that Rh cations are responsible for the

(29) Thus, methanol would be formed

formation of. oxygenated products.
by direct hydrogenation of CO coordinated to Rh* while Cy oxygenated
compounds would be formed by the inseécion of CO into CH, omn Rht., If
direct hydrogenation of CO to methanol and CO insertion are assumed to
occur on the same active sites, the selectivity to eithe; methanol or
CZ oxygenates should be dependent on the surface concentration of CH,
for CO 1insertion and the surface concentration pf adsorbed H for
' hydrogenation. However, there is some. eviéence' against this
proposal, - Results, K for Rh/MgO (Table 9-~2) show that there is a
significant different dependence of the formation of»cz oxygenates and
methanol on the reduction temperatures. For Rh/Mg0 it would appear
that the active sites for CO insertion into adsorbed Cny are
different from those for methanol formation.

Addition of ethylene to CO/HZ over Rh black, Rh/LaZOB, and Rh/MgO

(reduced at 250°C), which are active for both methanol synthesis and

Cz oxygenate synthesis, resulted in a decrease in methanol formation
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over Rh/Mg0 (reduced at 250°C) but 1in essentially no effect on
methanol formation over Rh black and Rh/Lay03. This 1s an indication
that either mechanisms or active sites are responsible for methanol
synthesis over Rh/Mg0 (reduced at 250°C) are different as opposed to
methanol synthesis over Rh black and Rh/Lazo3. This suppression of
methanol formation during ethylene addition has also ‘been observed for
Pd/SiOz. This suggests that the active sites for methanol formation
on Rh/Mg0 (reduced at 250°C) may have certain characteristics similar
to those on Pd/SiOz. Similar suppression of methanol formatlon during
the additioa of an olefin (l-hexene) to Co/H2 over a Cu/Zn0 catalyst
has been reported by Vedage and Klier.(147) Ponec and
coworkers(ao’laa) have suggested that Pdn; is an active site for
methanol synthesis and plays a role similar to that of cut in the
Cu/Zn0 catalyst for methanol synthesis. Poels(ez) found that Rh/Mg0
reduced at 215°C, which was active for methanol synthesis, exhibited
an ESR signal for Rh*2, He suggested that the presence of upreduced
positive ions is an important factor in the production of oxygenated
products,

It has Been suggested that adsorption of hydrocarbous, especlally
olefins, on metals may be associated with a transfer of electrons from
hydrocarbons to the metal.(141) If this is the case for the added
ethylene, the added ethylene will be preferentially adsorbed on metal
ion sites such as Pd"", Rh®*, or Cu* to block methanol formation.

The suppression of methanol formation was not observed for

Rh/La203 which is also active for methanol synthesis. This could be
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due to different active sites of precursors involved in methanol
'synthesis over these Rh ;atalysts, Rh/Mg0 (reduced at 250°C) and
Rh/Lazo3. It has been reported that La,05 itself can participate in
the methanol synthesis.(75) Kuznetzov et al.(75) have suggested,
based on their NMR results, that CHO and CHO, may ‘be formed on Lay04
and then hydrogenated to methanol on Rh.

The distinct characteristics of the active sites for methanol
synthesis over Rh/LaZO3 can also be discerned from results of ethanol
addition. Addition of ethanol to CO/H, over Rh/La,0; resulted in a
_decrease in methanol formatian but this decrease was not observed for
other catalysts such as Rh black and Pd/S1i0,.

The results of ethanol addition appear to be complex.,. The added
ethanol 1s known to be able to react on both metal and oxide
surfaces. It has been suggested that adsorbed ethanol exists as
ethoxy on metal s;rfaces.(117) Ethanol can undergo dehydrogenation to
acetaldehyde, conversion ’'to methane and Cz hydrocarboqs,' and
incorporation into higher oxygenated and hydrocarbon products. It can
also be dehydrogenated to acetaldehyde on basic sites. of an oxide
support and be dehydrated'to C, hydrocarbons on acidic sites of an
oxide support. Since dehydration and dehydrogenation iqvolve acidic
and basic sites, the acidity/basicity of catalysts may be determined
by their dehydration/dehydrogenation selectivities. Comparing the
selectivities of CO hydrogenation (Table 9-2) with selectivities of

reactioﬁs resulting from added ethanol (Table 9-4), it appears that
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there 1is no apparent correlation of 'direct €O hydrogenation
selectivity with the acidity/basicity of the catalysts.

Rh/S10, and Rh/MgO (reduced at 400°C) which were active for the
synthesis of CZ+ oxygenates during CO hydrogenation showed a high
gelectivity for the incorporation of ethanol into C3 oxygenates during
the addition of ethanol to CO/HZ. However, this incorporation was not
observed for Rh black which was also active for the synthesis of ¢,
oxygenates, This suggests that this incorporation may require the
participation of the support either by furnishing active sites or in
modifying the properties of Rh.

Pd/SiOz exhibited mainly dehydrogenation activity for the added
ethanol suggesting that the ethoxy intermediates may be stablized on
Pd surfaces may then undergo dehydration to acetaldehyde. Pd/SiOZ
(which is able to form Pd-ethoxy intermediates) may also be able to
coordinate methoxy (suggested as methanol precursors)(7’81) leading to
high selectivity for methanol formation. In contrast, Rh black,
Rh/SiOz, Rh/La203, and Rh/Mg0 which are active not only for oxygenate
synthesis but also for hydrocarbon synthesis exhibited relatively high
selectivities for the conversion of ethanol to methane and C,
hydrocarbons. This suggests that part of the ethoxy intermediates
produced during CO hydrogenation may undergo secondary reactions
leading to the productilon of hydrocarbons.

Although Qariously supported Rh catalysts, Rh black, and Pd/SiOZ
are active for methanol synthesis, different mechanisms for methanol

formation may be followed on the different catalysts. It is therefore
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extremely difficult to propose a single mechanism to explain methanol
synthesis on these various catalysts. In spite of this complexity, on
the basis of the above discussion, it .appears there are some
correlations of the selectivities of CO hydrogenation with the
selectivitlies of these probe molecule reactions as shown in Table 9-5

and 9-6.

9,4 Conclusions

In addition to the well known difference in CO dissociation
activity among these catalysts, one of the major differences between
Pd/SiOZ and Rh based catalysts 1s the'CO.insertion capability. Poor
CO insertion capability of Pd/SiOZ leads to the poor activity for
catalyzing C,, oxygenate formation during CO hydrogenation.

It appears that the active sites for methanol formation are
different from those for C, oxygenate formation. Differgnt mechanisms
for methanol synthesis may occur on different supported metal

catalysts.



Table 9-5 Some Correlations between CQ Hydrogenation
Selectivity and Product Selectivity from

Ethylene Reaction During CO Hydrogenation =

Co + Hy

C2H4 + CO + H2

Synthesis of CZ+OX

Lack of ability to
Synthesis MeOH

Moderate-Strong Selec.
+
Moderate-Poor Selec.
for HC Synthesis

skk

*%

Ability to imsert CO
in absorbed C2H4

Ability to form C3+ HC
from Czﬁa

Effect Of C2H4
Addition on TMeOH

*%% Strong Correlation
*% Moderation Correlation
* Weak Correlation
0 No Apparent Correlation



Tahle 9-6 Some Correlation between CO Hydrogenationm
Selectivity and Product Selectivity from
Ethanol Reaction During CO Hydrogenation

CO + Hy

EtOH + CO + Hy

Lack of ability to
Syn. MeOH

Lack of ability to
syn. MeOH

Synthesls of Hydrocarbons

Incorp. of EtOH into
03+0X

Dehydroxymethylation/
decarbonylation of
EtOH _
(Exception: Rh/La203)

Conversion of EtQH

- to CHy, G,

hydrocarbons

Incorp. of EtOH
into C3+ hydrocarbons

Effect of EtOH
addition on I'MeOH

%*%% Strong Correlation

%% Mpderation Correlation

* Weak Correlation

0 No Apparent Correlation
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.10.0 FINAL DISCUSSION

This study was aimed at establishing a better understanding of
the effects of alkali promoters and supports on the synthesis of
oxygenated compounds, especially of higher alcohols and aldehydes over
rhodium catalysts. A probe molecule technique'has been developed to
investigate the reaction pathways for oxygenate formation and the
effects of promotion and of supports on the catalytic properties of
rhodium catalysts. This technique has been demonst£ated to be an
effective way to (a) identify possible reaction networks occurring on
these catalysts, (b) study interrelationships between oxygenate and
hydrocarbon synthesis, (c¢) determine the chemical properties of the
catalyst surfaces, and (d) investig;te the effect of supports and of
alkali promotion on the reaction pathways to oxygenates and
hydrocarbons. Chapter 3 reports results of an investigation on the
reaction pathways to oxygenated compounds and hydrocarbons. The
effects of alkali promoters and supports on oxygénate synthesis have
been treated in detail in chapters 4-~9., In this chapter, the relevant

results of all these investigations will be brought together.

10.1 Reaction Mechanisms

Reaction pathways for the formation of oxygenated compounds and
hydrocarbons from synthesis gas as shown in Figure 10-1 were proposed
on the basis of results reported in Chapter 3 as well as of

suggestions reported in the literature. Group VIII metals, such as



*CH, 0 —— *CZHXO —_— *C3HXO

;| *H *H
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Figure 10~1 Possible Reaction Network for. CO Hydrogenation
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Ni, Ru, Rh, and Pd, exhibit not only different CO dissociation
activities(2l) but also variations in catalytic ability - for

hydrogenation, dehydrogenation, CO  insertion, CH, insertion,
dehydration, and hydrogenolysis. These differences in catalytic
ability for specific reaction steps lead to different product
distributions during CO hydrogenation. Thus, Ni/SiOZ, a methanation
catalyst, showed a strong catalytic activity for ethylene
hydrogenation, ethylene hydrogenolysis, ethanol dehydrog;nation, and
acetaldehyde hydrogenation but ﬁoor catalytic activity for CO
insertion and incorporation of ethylene, ethanol, or acetaldehyde into
higher hydrocarbons and oxygenated compounds. The catalytic
activities displayed by Ni/SiOz appear to be unfavorable for the
formation of significant amounts of higher hydrocarbons and oxygenated
compounds. The most probable reaction pathway to meﬁhane from
synthesis gas over Ni/Sioz is hydrogenation of diss&ciated co.
Ru/SiOz, a good higher hydrocarbon synthesis catalyst, demonstrated in
the presence of CO and Hy) strong catalytic aétivity for ethylene
hydrogenation, dehydréxymethylation of ethanol, decarbonylation of
acetaldehyde, and incorporation of ethanol and acetaldehyde into
higher hydrocarbons but weak catalytic activity for h&drogenolysis of
ethylene and CO insertion. A poor CO insertion capability and a -
strong decarbonylation activity prevent the formation of Coy
oxygenated compounds, and they exclude oxygenates as major

Intermediates for hydrocarbon chain growth over Ru/SiOz. The
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insertion, of CH, - into Cny appears to be a major route for the
formation of higher hydrocarbons over Ru/SiOz.

Rh/Sioz, a good C, oxygenate synthesis catalyst, exhibited strong
catalytic activity for the incorporation of ethylene and ethanol into
Cq oxygenated compounds but poor c;talyfic acﬁivity for
decarbonylation of acetaldehyde and hydrogenolysié of ethylene in the
presence of CO0. A strong capability in the incorpofation of ethylene
and ethanol into Cq, oxygenated compounds indicate that both
oxygenated and hydrocarbon iIntermediates could be important for
oxygenate chain growth. Both the activity of the catalyst to catalyze
CO insertion and the surface éoncenération of non-dissociatively
adsorbed CO are crucial factors f;r C, oxygenate formation. Pd/SiOz,
a methénol synthesis catalyst, showed strong catalytic activity for
hydrogenation and poor catalytic activity for CO inseréion,
dehydroxymethylation of ethanol; and the incorporation of ethylene and
ethanol into higher hydrocarbons and oxygenated 'compounds. The
activity in catalyzing probe molecule reactions exhibited by Pd/§10,
is somewhat similar to those displafed by Ni/SiOz, both do not favor
the formation of Cy4 species. Methanol is probably formed directly by
hydrdgenation of non-dissociated CO; this reaction step has been shown
to occur by a study using isotopic tracers.(22>

Table 10-~1 summarizes the proposed active sites for these
specific reaction steps. It is generally agreed that CO dissociation,
hydrogenation, and CHx insertion take place on metal sites. However,

much controversy exists concerning the active sites for CG



174

Table 10-1 Nature of Active Sites for Specific Reaction Steps

Specific Reactions

Oxidation State

Geometric Requirements

CO+ C+0

C+XH » CH

CH, + CHx > CzHy
CH, + CO » CZOX

CoO+ Hy » CH,0H

metal

metal

metal

metal,(6)
metal ion

metal(81’144)
metal iou(29,62)

(11,131

ensemble(17533,36)

a small number of(17'35)
metal surface atoms

ensemble(36)

a single atom(ll)
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ingertion. While there is no definite evidence to support Rht as an
active site for CO insertion, there are a number of arguments which
favor this proposition.

1. Addition of ethylene to the CO/H, reaction mixture results in
the formation of propionaldehyde and 1l-propanol on Rh catalysts.,
These reaction steps appear to resemble the hydroformylation
reaction.. The selectivity for C2 oxygenates during CO hydrogenation
parallels that for Cy oxygenates during addition of ethylene to
CO/HZ. This is an indication that the mechanism for C, oxygenate
formation by insertion Qf CO into CH, may be similar to that for C,
oxygenate formation by insertion of CO into CZHx‘ Baged on the
analogy with homogeneous hydroformylation, CO insertion would occur on
a Rt site.

2. The positive charge on Rh* results in a decrease in electron
back.donating capability to break the C~0 bond. Therefore, the CO
molecule may be preserved for CO insertion. ‘

3. Bh* ioms may assoclate with anions such as hydroxyl groups
leading to a decrease in hydrogenation activity. Thus, CO inmsertion
into adsorbed CHx may compete with hydrogenation of Cﬂx due to this
decrease. |

If Rh ions are active sites for CO insertion, they may not
necessarily have to be stabilized by either alkali promoters or by
supports as indicated by the fact that Rh black is active for
catalyzing CO insertion (chapter 4). Rh black used for this study

consists of 600 ppm of Co and 50 ppm of silica. It is not clear how
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these impurities affect the active sites for CO insertion. Though Rh
oxide is relatively easy’ to reduce compared with some Group VIII
metals such as Ni, gt ions may exist in an atmosphere of CO. A
recent study by Viscllo) has. suggested that Rh metal can be oxidized
*7 a dissociatively adsorbed CO.

CO + 3Rh > RhC + 2RhT + 0%~ 10-1
2Rh* + 4CO0 > zmn“(co)2 10-2

He has also suggested that Rh* may be re-reduced to the metal as

follows:
0%~ + 2Rh* + 20 > 2Rh + CO, + CO 10-3

The possibility of this oxidation~reduction process under
synthesis conditions may help explain why ru* was not observed for
Rh/T10, by Katzer et al.(6) in an ESCA study. Besides the possibility
of the formation of the metal ion Ey oxidation, the protruding atom of
a stepped surface has been suggested to have a positive charge.(139)
It is possible that oxygen ions of the supports may associate with ru*
to stabilize it.(131) Furthermore, different supports undoubtedly

exert different effects on Rh ions.
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10.2 Effect of Supports

Supports were found to have a great effect not only on the
specific reaction steps such as CO dissociation, CO insertion énd
hydrogenation but also on the secondary reactions of primary
products. The CO insertion selectivity was found to decrease in the
order: Rh/Si0, > Rh/Lay03 > Rh/Mg0 > Rh/Ti0, > Rh/A.1203 while
hydrogenation selectivity decreased in the reverse order. This
selectivity does not correlate with the acidity/basicity of the
support. It appears that these results can not be simply explained by
the electron donating or withdrawing capabilities of the support,
Factors such as effect of support on the reducibility, electronic
properties, and morphology of the metal and participation of the
support as an active site may complicate the overall observed effect
of the support.

Although these - effects are very complex, it i3 instructive to
review our results and some propositions. and 'observations in the
literature in order to gain an insight into the effect of metal-
support ‘interactions on the catalytic properties of Rh metal.

The state of Rh metal on MgO0 has been found to be strongly
dependent on the reduction temperature.(ﬁz) Rh/Mg0 reduced at 215°C
which yields a strong RhZ* signal in ESR is active for methanol
synthesis while reduction at 314°C results in high selectivity to
ethanol.(ez) A similar dependence of product distribution over Rh/Mg0
on reductlion temperature has also been reported in Chapter 9. In

contrast to Rh/Mg0O, this dependence of product distribution on



.reduction temperature has not been observed for Rh/TiOZ.(la) A

temperature programmed reduction study on supported Rh catalysts(llo)
has revealed that supports affect the reducibility of Rh metal.
Recently, Kawal et al.(131) have reported that Rh oa various oxides
(3102, Zn0, and Zroz) or T102 on 510, exists in a state between Rh
metal and Rht. These observations have led us to consider the effects
of supports on the ‘reducibility of metal as an important factor of
metal-support interactions.

Support effects on the morphology of metal catalysts are well
demonstrated by a recent study of supported Pd catalysts by Hicks and
Bell.(al) Thejr observed that the crystéllit'e morphology of Pd/S10,,
which consists of 907 of Pd (100) planes, is independent.of Pd weight
loading while the crystallite morphology of Pd/La203 changes with Pd
loading. It is possible that the crystallite morphology of Rh metal
is also subject to modification by the support. Another aspect of the
support effect on the surface of a metal is the migration of La
species(143) from Lay04 or reduced support material from SMSI supports
such as T102(150) onto the surface of ‘the metal particle. This
geometric modification of the metal surface by the support could have
a great effect on a structure sensitive reaction step.

In addition to direct effects of supports on metals, the supports
may also serve as active sites for certain specific reactions. Lay04
has been observed to be active in methanol synthesis at 250°C and 1

(75)

atm, Kuznetzov et al.(75) have suggested, based on their NMR

results, that CHO and CH02 may be precursors for the formation of



methanol, On Rh/La203, these precursors could be formed on La,05 and
then be hydrogenated to methanol on the Rh.

Depending on the nature of the éupport, one speclfic effect of
the support may overwhelm another, It 1is, therefore, extremely
difficult to correlate the catalytic propertie3'0§ supported metals
with a single property of support such as acidity, basicity, Fermi
level, and heat of formation of theboxide, etc, The current knowledge
of metal-support interactions is still not adequate to resolve these
complex effects. This deserves further investigation.

10.3 Effect of Alkali Promoters on Supported
Rh Catalysts

Due to the complexity of the combined effects of alkali promoters
and supports, it is impbrtant to consider first the alkali promotion
on Rh black. In chapter 7, we reported that the addition of Li
promoters to Rh black results in (a) suppression of hydrogenation, (b)
suppression of déhydration, (c) enhancement of the selecgivity for CO
insertion, and (d) an increase in the activity for CO conversion and
Cy oxygenate formation. Other effects of alkalli promotion oa the
catalytic properties of Rh, such as promotion of CO dissociation, has
also been reported in the literature.

The effects of additives gsuch as ‘alkali promoters on metal
catalysts can generally be classified into one of two categories: ' (a)
modification of the catalytic properties of the metal as a result of
the chemical nature of the additive and (b) blockage of surface sites

by the physical presence of the additive. Physical blockage of the
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surface active sites by alkall promoters would have a great effect on
those specific reaction steps which require large ensembles of surface
atoms, such as CO dissociation, and would only slightly affect those
steps such as hydrogenation, which do ot require such large
ensembles. Thus, the physical blockage of surface atoms could lead to
an enhancemeqt in the selectivities for those products which form on
small ensembles of surface atoms. However, alkall promoters are known
to be able to enhance adsorption energy and dissociation probability
of CO and to suppress hydrogenaticn of surface carbon and olefins.
This gseems to suggest that the chemical effect of alkali promoters on
€0 hydrogenation is more significant than just that due to physical
blockage.

There have been several propositions in the recent literature for
explaining the mechanisms of alkali promotion. It is important to re-
examine these propositions in order to help draw some conclusions,
The proposed mechanisms of alkali promotion can be summarized as
follows:

- A modification of the electronic properties of the metal.
Alkali promoters are considered as "electron" donors. The
addition of an alkali promoter to a metal results im an
increase in electron density of the metal. This wechanism is
supported by the observed shift in binding energy of the
metal electron on alkali metal-promoted catalysts<44'45) or

on alkali metal ilon-promoted catalysts.<43'63)
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~  Participation as an active site.
Alkali metal ions may provide sites where CO may be U bonded
to the transitiou wetal and O~bonded to the alkali metal lous
to facilitate CO dissociation.(139) This postulation is
based on the analogy betwaen the chemistry of molecular
carbonyl complexes zad that of chémisorption complexes.

~  Stabilization of active sites.
Alkal{ promoters may be able to stabilize metal icas agalnst
reductians(sz)

-  Stabilization of reactive intermediates.

Alkalil metal ions<may be able to stabilize the coordinatively
ﬁnsaturated interpediate to promote CO insertion.(lég) This
postulation is on the basis of analogy with organometallic
chemistry.'

It has beer noted in a recent paper(lag) that in ﬁomogeneous
solutiong reactants and cataiysts are free to diffuse.to achieve an
appropriate configuration for aikali promotion while it may be
difficult to form such a configsration for alkali promotion of a
heterogeneous sgurface. Caution has to be taken to apply this type of
analogy to explain the alkali promotion of heterogeneous catalysis.

On the basis of our results, we are not able to exciude any of
these propositions, Bat these results of alkali promotion of Rh black
may be rationzlized by combinations of these propositions.
Suppression of hydrogenation bdrought about by alkall promoters has

been explained by an lncrease in electron density of the metal caused
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(40-41)

by donation from alkali species. This suggestion is based on

the assumption that adsorbed hydrogen tends to donate electrouns to the
metal. If the transfer of electronic charge from the promoter to the

metal does occur, this could result in an effective decrease in

average oxidatlion state of the metal causing {(a) a decrease in rate of
CO insertion (assuming Rh" 1s an active site) and (b) an increase in
C0 dissociation (increased electron donating ability of metal
surface). The observed suppression of hydrogenation may suggest that
the electron-donating property of alkall promoters play an important
role in alkali promotion. Thus, alkali promoters could hinder the CO
insertion resulting 1in a decrease in activity for 02 oxygenate
formation. In contrast, an enhancement of C, oxygenate activity and
C0 insertion selectivity was observed for Li-promoted Rh ﬁlack. This
may suggest that other effects of alkali promoters such as
stabilization of active sites and/or reactive intermediates for Cy
oxygenate formation overwhelm those of alkall promoters in decreasing
the oxidation state of the metal surface on these catalysts.

As stated earlier, the protruding atom on a stepped surface has
been suggested to have a positive charge.<13g) Thus, it is possible
that Rk’ is located on such a stepped surface. Alkall promoters may
be in the vicinity of Rh ion to stabilize it against reduction and to
stabilize the coordinated intermediate to Cos oxygented compounds,

The effect of alkali promoters on Gp, hydrocarbon and Gy
oxygenate selectivities over Rh black and supported Rh catalysts are

summarized in Table 10-~2. The differences 1in the effect of alkali
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Table 10-2 Effect of Alkali Promoters and Supports on G,
Oxygenate and Go, Hydrocarbon Selectivities*

Li X Cs
Rh black CZOX +
Cz+HC -
T102 620X 0 + +
La,0 C,0X + - -
273 2
CZ+HC + + +.
si0 C,0X - - -
O+ 2
C2+HC + + +
+ an increase in selectivity.

- a decrease 1in selectivity

0 no effect

0X = oxygenated compounds

HC = hydrocarbons

*Compared to the unpromoted caéalyst



promotion on product selectivity may reflect differences in the effect

of alkali proﬁotion on the specific reaction steps. Promotion of Cos
oxygenate selectivity on certain alkali-promoted catalyst suggests
that alkali promoters'modify the catalyst surface in such a way to
stablize active sites and/or intermediates for C; oxygenate
formation. The- decrease in C2 oxygenate selectivity on certain
alkali-promoted catalyst suggests that alkalli promoter may situate in
such a configuration as to decrease the average oxidation state of Rh
ion. It is also possible that alkali specieé locate mainly on metal
surfaces to enhance CO0 dissociation and to suppress hydrogenation
resu;ting in high selectivity for Co, hydrocarbons.

Since CH, species are the precursors for the formation of
hydrocarbons and C2+ oxygenated compounds, the suppression of
hydrogenation could decrease the rate of CH, formation resulting in a
decrease in overall yilelds. The decrease in overall yilelds have been
observed for all of alkali-promoted Rh catalysts .except in the cases
of Li-promoted Rh black and Rh/La203. This suggests that suppression
of hydrogenation did not play an important role during CO
hydrogenation over these two catalysts.

It appears that complex factors are involved in alkali promotion
of supported Rh catalysts. Factors, such as the distribution and
geometric location of alkali promoters on the metal surface could have
a great effect on the Cypé of alkali promotion (i.e., a modification

of the electronic properties of the metai, participation as an active



site, stabilization of active sites, and stabilization of reactive

intermediates). This deserves further investigation.

Investigation of alkali promotion on methanol synthesis was
limited to that of K-promotion of Pd/Si0,. The results of this study
suggest that the aétive sites for methanol formation are different
from those for methane formation. The major effect of K promotion was
identified to be suppression of hydrogenation resulting in a decrease
in activity for methanol synthesis. It appears that suppression of
hydrogenation 1s a common effect of alkali promotion oun CO

hydrogenation.

10.4 Concluding Remarks

This investigation has demonstrated that the addition of probe
molecules to the reactant stream not only provides a way to elucidate
reaction pathways for oxygenate and hydrocarbon synthgses but also
furnishes a wéy to probe modifications, as a result of alkali
promotion, in a number of specific reaction steps occurring during CO
hydrogenation.

This study has also shown the network characteristics of
hydrocarbon and oxygenate syntheses, A selective C, oxygenate
synthesis catalyst must have a strong CO insertion activity. However,
it seems to be inevitable that hydrocarbohs are produced during Cy
oxygenate synthesis. This 1is evidently due to the fact that C,,

oxygenated compounds and hydrocarbons share common iuntermediates.
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10

100
110
120
130
200
220
230
240
250

260

270
310
320
330
349
345
350
410
420
430
440
4435
450
Sig
920
S20
540
945
S50
410
&20
430
440
445
450
700
701
702
703
7204
705
706
708

REM FLOW SET POINT

INPUT
INPUT
INPUT
INPUT
INPUT
INFUT
INFUT
INPUT
INPUT
INPUT
INPUT
INFUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INFUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

"SAMPLING INTERVAL *;TS
"PROPORTIONAL GAIN *3;6
"PFERIQD “;Ta&U
"INTEGER TIME "3TIl
"HE FLOW 0 " 3;U0
"HZ FLOW 0 *;GO
“CO FLOW 0 " ;B0
"INITIAL TEMP ";S1
"RATE OF TEMP “;R
"PERIOD OF RAMP “;PP
"PRESS * ;RO

"HE FLOW 1 "3uUil
“H2 FLOW 1 361
"CO FLOW 1t *3B1
"TEMP {1 ;51
“PRESS 1 "Rl
"PERIOD 1 ™3Pt

“HE FLOW 2 *:U2
"HZ2 FLOW 2  *:1G2
"GO FLOW 2 "iB2
"TEMP 2 ";3;§2
"PRESE 2 "iR2
"FERIOD 2 ";P2

"HE FLOW 3 “3jU3
“H2 FLOW 3 ";G3
"CO FLOW 3 ";B3
"TEMP 3 ";S83
"PRESS 3 "3R3
“PERIOD 3 *;P3

"HE FLOW 4 "3;U4
"H2 FLOW 4 *;G4
"CO FLOW 4 “;B4
“TEMP 4 *;S4
"PRESS 4 "3R4
“PERIOD 4 *;P4

"SAMPLING TIME 1 ";3K1
"SAMPLING TIME 2 " ;K2
"SAMPLING TIME 3 ";K3
*SAMPLING TIME 4 “ ;K4
"SAMPLING TIME S ";KS
"SAMPLING TIME & *;Ké
"SAMPLING TIME 7 “iK?7
"SAMPLING TIME 8 ;K8



880
881t
8%0
200
?10
918
920
221
925
P27
928
230
31
932
933
?35
939
940
945
90
251
954
PSS
b
935°?
958
?59
240
P61
962
P43
P64
P69
970
971
972
. 973
974
979
280
81
982
983
84
990
?91
992
993
994
995

& TIME TO HR,MN,SC

& DAY TO YR,MO,DT,DA

PO = (DT * 24 + HR) * &40 + MN + (SC / 60)
Vi =0 -

Ef = 0
N = {

& TIME TO HR,MN,SC

& DAY TO YR,MO,DT,DA

P=(DT % 24 + HR) * 640 + MN + (SC / 40)
PA =P - PO -

KA = INT (P&

IF PA > P3 GOTO 980

IF PA > P2 GOTO $70

IF PA > P1 GOTO 960

IF PA > PP GOTO $54

S=PA %R+ SI

RS = RO

ES = U0

HS = GO

CS = BG

GOTO 990
RS = Ri
S = st
ES = Ut
HS = G

CS = By

60TO 990

s = §2
ES = U2
HS = G2

CS = B2

RS = R2

GOTO 990

S = 83

ES = U3

HS = G3

CS = B3

RS = R3

60TO 990

S = 84

ES = U4
G4
B4
R4
IF Ki
IF K2
IF K3
IF K4
IF KS
IF Ké

O
w
I

KA GOTO 1005
KA GOTO 1008
KA GOTO 1011
KA GOTO 1014
KA GOTO 1017
Ka GOTO 1020
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(CCCPT —= 31 % BEPPLE*Z - > # N + Z1 ~ I1 % GP4
PLZPEY # N + 6 ~ 31 » ISZ0EBL"6) #* N + Z — Il % BPZEBEP°Z) » N = L 0211
(C(CPT -~ 3T % BEPPLS°Z ~ ) % YN + Z1 - T » §P69L2
PE) * YN + & - A1 % ISZOEBL 6) *# YN + 2 - A1 % BPZEBEP'Z) % Yn = W 0011
’ (BYOZ * 1°16) / (BPOZ — YUN) * 931 % S = ©Un 0807
(8PDZ * 1°14) / (BP0OZ - N) % 931 ¥ 6 = A 0901
b = (HI)'9YN = (NLY'0 = (HAX'NIV B 501
(HAY'Z = (BM3'T = (NAY*N3ICHM B 2SO0

D =
S = (WA = (A0 = (HAX'NIV ®  0S01

ov01 0109 92101

1° = 3sn9d ® ZvDI d4d = X G101
0 = (A LMDE %  0bO1 W=1bM tI0T
0v01 0109 8Z01 oOv01 0109 €101
dd = 8X 2Z0T dd = €X Z10}

W = 8M 9201 W= €M 1101

0r0T 0109 SZ01 . ov01 0109 0101
d3d = 2X bZ01 ¥d = ZX 6001

W= 2M €201 W= ZM 800}

Ov0T 0109 2Z01 : : 0v01 0109 2001
¥d = 9X 1201 dd = IX 900%

W= %M 02071 W= 1M S00T

00T 0L09 4107 0S0T 0109 864
¥d = SX BIOT 9Z0T 0L09 WM = 8) 41 266

W= 8Mm <101 €201 0109 Wi A 41 966




1140
1140
1180
1200
1220
1240
1280
1300
1340
1340
1380
1400
1420
1440
1440
1480
1490
1500
1520
1540
1545
1344
13550
1585
1560
1580

1400°

1420
1440
1450
1840
1665
1666
1480
1685
1686
1700
1708
1704
1710
1715
1720
1730
1740
1750
1740
1770

E2 = - T
vz =

IF v2 < 0 THEN V2 = 0

IF V2 > TAU THEN V2 = TAU
Fl = V2

& BOUT,(DVY = 1
& PAUSE = F1
Fz = TAU - V2
& BQUT,(DV)Y = 0
& PAUSE = F2

Vi = y2

El = E2

REM FLOW CONTROL -

EQ = (ES / 400 + 5) % 409.6
HO = (HS / 400 + 5> % 409.4
CO = (CS / 400 + 5) * 40%9.4
RS = (RS / 100 + 35) * 409%9.¢
& AQUT (DU = EOQ,(CH) = 0
& AQUT,(DV) = HO,(CH) = |
& AOUT,(DV) = CO,(CH) = 2
& AQUT ,(DV) = RS,(CH) = 3
M= INT (<M + 0.05 % 100) /
N=N=+1 ‘

IF N > S GOTO 1400

GOTO %920

REM PRINT OQUT

& AIN,(TV) = TE,(CH) = 0

& AIN,(TVY) = IH,(CH#) = 1

& AINL(TY) = IC,(CH) = 2

& AING(TVY = PR,(CH) = 6
ER = (IE / 40%.6 - 5) % 400

ER

INT ¢CER + 0.05) * 100)

IF ER ¢ =0 THEN ER = 0

HR
HR

hu

(IH / 409.46 - S) * 400
INT ((HR + 0.05)> * 100)

IF HR ¢ =0 THEN HR = 0

CR
CR

(IC / 409.6 - S5) * 400
JINT (CCR + 0.05> * 100)

IFCRC =0 THENCR =0

PR

(PR / 409.6 - 5) * 100

PR = INT ((PR + 0.05) * 100)

PRINT "HE FLOW RATE
PRINT * 7
PRINT "H2 FLOW RATE
PRINT " ®
PRINT "CO FLOW RATE
PRINT *

":ER
ll.= HR
":CR

S ‘ .
Ul + G % ((E2 - E1) + (TS / TI1) » E2>

100

/7 100
/7 100
/7 100

7/ 100




1771

17725 T =

1780
1800
1900
2000
20095
2018
2020
2025
2030
2031
2032
2033
2034
2035
2040

PRINT

PRINT
PRINT
PRINT
PRINT
PRINT
PA =

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

INT (T + 0.05) * 100> / 100

*FURNACE TEMP ";T
*REACTOR TEMP "M

*REACOTR PRESS "3PR
INT <<PA + 0.,05> » 100> / 100
"REAL TIME ";PA -
“Ti=" Wl " Pl="X13" T2=";W2;"
*T3=" W335 P3=";X33" T4="3W4;"
"TS="WS;" Pé=";Xé3" Té=":Wés"
"T7?=" sW73" P7="3X73" T8=";W8;"
n L}

"GO0TO 915

P2="3X2
P4=" X4
Pé&="3Xé
P8=" ;X8



APPENDIX B

ERRCR ANALYSIS FOR RATE MEASUREMENTS




Page Intentionally Left Blank



191

The rate of formation of a specfic product in a differential

reactor can be calculated bf the following equation.

- V.C. 60 min/hr
1
W . Jo00 ke/s

."..'........l........l.'.....l(B-l)

where Y = the rate of formation of a specific product, mole/kg hr.

volumetric flow rate, ec/min

<
[}

concentration of the specific product in the reactant

(¢}
[

stream, mole/cc.
= welght of catalysts, g

The error in rate of product formation derived from these three

measured quantities 1s given by
Er = % + Ec + Ew.O.....‘..Ql..I.......Q..l.....'.'.(B-z)

E. are the fractional error of vy, V, C, and W,

E W

E E

r? v? c?

respectively., The Brooks 5850 flow controller used for this study can
be measured accurately to %1 cc/min and the accuracy of a Gram-Atic
Balance (Fischer Scientific) is within % 0.0001 g. The fractional

error in concentration caused by calibration and sampling 1is




192

approximately 5%. For a type rua, W is 0.75 g, V is 90 cc/min. The
fractional error in measured quantity can be determined to be E, =
1/90 = 1.1%, E, = 5%, and E_ = 0.001/0.75 = 0.013%.

Substituting these values, Ev, Ec’ and Ew into Equation B~-2, E‘Y

is obtained to be 6.08%.



APPENDIX C

Product Distribution during CO Hydrogenation and Ethylene Reaction, Ethanol
Reaction, and Acetaldehyde Reaction during CO Hydrogenation over v
Ni, Ru, Rh, Pd, and Alkali-Promoted Rh and Pd Catalysts
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