APPENDIX I-D
REPORT OF SCHNEIDER CONSULTING ENGINEERS

COMPUTER SIMULATION OF PREHEATER AND REACTOR IN DIRECT COAL LIQUEFACTION

Department of Chemical Engineering University of Pittsburgh Pittsburgh, Pennsylvania 15261

Prepared By:

Schneider Consulting Engineers 98 Vanadium Road Bridgeville, Pennsylvania 15017

TABLE OF CONTENTS

	Page No.
Abstract	1.1
Introduction	2.1
Model Development	3.1
Simulation Techniques	4.1
Use of Simulator .	5.1
Simulator Modification	6.1
Conclusions and Recommendations	7.1
Nomenclature	8.1
References	9.1

Appendix A - Program Listing
Appendix B - Sample Problem

ABSTRACT

This report describes a comprehensive computer simulation program that predicts the performance of coal liquefaction preheater and reactor. The simulator is interactive and allows the user to input any linear kinetic network by specifying the reaction paths. The user must also specify the operating conditions and the physical dimensions of the units. The simulator will then provide detailed information on the performance of each unit, the characteristics of each flow stream, and an overall summary of the products leaving each unit. The simulator also provides graphical (pictorial) outputs of the results. The input/output results are stored in a database for any future processing.

Included in this report are model development, descriptions of the mathematical procedures used to predict the performance of the units, source code of the program, instructions for its use, and a sample problem showing both the input data and the resulting output, both in tabular and graphical form.

INTRODUCTION

Various processes are used for direct coal liquefaction (Whitehurst, et al., 1980; Shah, 1981). A typical coal liquefaction unit consists of a preheater and a reactor. Coal is mixed with recycle solvent and fed with hydrogen into a preheater, where the temperature of the mixture is raised to around 673 K. It is then fed into a reactor (dissolver), wherein the reaction is allowed to proceed. Recently, Albal et al., 1983, have qualitatively examined the performance of such preheaters and reactors.

This report describes a comprehensive computer program that allows the user to simulate the performance of coal liquefaction preheater and reactor units. The program is flexible in the sense that it can accommodate any reaction network as long as the reactions follow first order kinetics. The program is interactive and allows the user to execute it either in batch or time sharing mode.

The simulation program is written in modular form using the FORTRAN It can be implemented on virtually any large, scientific computer, though some customization may be required to machine/language compatibility. The code has been developed on a DEC System-10 computer at the University of Pittsburgh. The programs necessary to convert the output from this simulator into a graphical form and to store it in a database, have been developed on a PDP-11/70 computer at Schneider Consulting Engineers, Bridgeville. These programs require the use of IGDS (Interactive Graphics Design System) and DMRS (Data software packages, developed by Management and Retrieval System) Intergraph Corporation, Huntsville, Alabama. The programs to display graphical outputs can only be used on computers supported by the Intergraph software.

Included in this report are a listing of the computer programs, instructions for its use and representative sample output, in addition to the general description of the methods used to carry out the simulation.

MODEL DEVELOPMENT

The direct coal liquefaction involves a three phase reaction mixture, wherein the hydrogen from the gas phase is absorbed into the liquid phase and reacts to form various products. The liquid phase consists of a mixture of coal and the solvent. The necessary equations to predict the thermal behavior of the preheater and reactor, include the material balance for hydrogen in the gas and liquid phases and the heat balances for both preheater and reactor. The heat generation in the dissolver is assumed to be proportional to the hydrogen consumption.

The mass and heat balance equations for the preheater can be derived with the assumption of plug flow condition. This assumption is justified considering that preheaters employed for coal liquefaction are usually in the form of coils with a length to diameter ratio of more than 100. In the reactor, the gas phase is assumed to flow in a plug flow, while standard axial dispersion model, with closed-closed boundary conditions is used to model liquid phase hydrogen balance and the energy balance equations. Other simplifying assumptions made in development are as follows:

- Reactions occur in the bulk slurry phase only.
- Mass transfer of hydrogen from gas phase to liquid phase is controlled by the liquid side mass transfer resistance.
- 3. The reactor operates under isobaric conditions. This assumption is justified since the pressure drop is not significant as compared to the actual pressure anywhere in the reactor.
- 4. The three phases are at the same temperature at any axial position.
- The gas holdup is constant all along the preheater, and all along the reactor.

- 6. The physical and thermal properties of the gas and the slurry (except the viscosity of the slurry), the mass transfer coefficient, gas liquid interfacial area, and the heats of reaction and dissolution are independent of the temperature and conversion.
- 7. Henry's law is applicable. The rate constant for hydrogen consumption and the Henry's constant are temperature dependent according to

$$k = \overline{k} \exp\left(-E/RT\right) \tag{1}$$

and

$$H = \overline{H} \exp\left(-\Delta H_i/RT\right) \tag{2}$$

8. As a consequence of assumption (6), the heat transfer coefficient can be obtained as a function of viscosity as

$$h = \beta \ \mu(\theta)^{-0.4667} \tag{3}$$

where h = heat transfer coefficient; β = constant depending on the coal, type of solvent and the coal to solvent ratio; $\mu(\theta)$ = viscosity, a function of temperature.

The exponent of the viscosity is in accordance with the Sieder-Tate equation (Shah, 1981) for heat transfer.

Based on the above assumptions, the following equations can be derived.

A. PREHEATER

- Hydrogen Balance
 - (a) Gas Phase

$$\frac{da_z^i}{dx^i} + R_i^i \left(\frac{H}{H_i^i} a_z^i - a_i^i \right) = 0 \tag{4}$$

where

$$R_i^{\scriptscriptstyle I} = \frac{k_i^{\scriptscriptstyle I} a L^{\scriptscriptstyle I} H_i^{\scriptscriptstyle I}}{v_s^{\scriptscriptstyle I}} \tag{5}$$

$$H = \overline{H} \exp\left(-\Delta H_S^2/(1+\theta)\right) \tag{6}$$

and

$$\Delta H_S^* = \Delta H_S / RT_i^1 \tag{7}$$

$$a_x^1 - 1$$
 at $x^1 - 0$ (8)

(b) Slurry Phase

$$\frac{da_{t}^{1}}{dx^{1}} - \frac{R_{t}^{1}}{H_{t}^{1}\gamma^{1}} \left(\frac{H}{H_{t}^{1}} a_{z}^{1} - a_{t}^{1} \right) + \frac{R_{P}}{\gamma^{1}} \exp\left(-E^{\alpha}/(1+\theta^{1})\right) a_{t}^{1} = 0$$
 (9)

where

$$\gamma^{\scriptscriptstyle \rm I} - \frac{\nu_{\scriptscriptstyle \rm I}^{\scriptscriptstyle \rm I}}{\nu_{\scriptscriptstyle \rm Z}^{\scriptscriptstyle \rm I}} \tag{10}$$

$$R_{\rho} = \frac{\overline{k}(1 - \epsilon_{\rho}^{i})L^{i}}{v_{\rho}^{i}} \tag{11}$$

and

$$E^{\circ} = E/RT'_{\circ} \tag{12}$$

Equation (9) is subject to the boundary condition

$$a_i^1 = 0$$
 at $x^1 = 0$ (13)

2. Energy Balance

In the preheater, the heat input is largely by the external heating and some by heat of reaction and heat of dissolution. The governing heat balance equation can be expressed as $\frac{d\theta^{I}}{dx^{I}} =$

$$\alpha\mu(\theta^{l})^{-0.4467}(\theta_{w}-\theta^{l}) + R_{p}\Gamma_{R}^{l}H_{l}^{l}\exp(-E^{*}/(1+\theta^{l}))a_{l}^{l} + G_{1}^{l}\Gamma_{S}^{l}\left(\frac{H}{H_{l}^{l}}a_{z}^{l} - a_{l}^{l}\right)$$
(14)

where

$$\alpha = \frac{\prod \cdot \beta \cdot L^{1}}{\Upsilon^{F}(v_{z}^{1} \rho_{z} C_{\rho z} + v_{i}^{1} \overline{\rho}_{i} \overline{C}_{\rho i})}$$
(15)

$$\Gamma_R^i = \frac{C_P^i \cdot v_s^i \cdot \Delta H_R}{T_i^i (v_s^i \rho_s C_{\rho_x} + v_l^i \overline{\rho_i} \overline{C}_{\rho_i})}$$
(16)

and

$$\Gamma_S^i = \frac{C_B^i \cdot v_s^i \cdot \Delta H_S}{T_c^i (v_s^i \rho_s C_{\rho_s} + v_s^i \bar{\rho}_i C_{\rho_s})}$$
(17)

Here $\mu(\theta)$, viscosity is obtained from a fitted equation that accounts for the change in viscosity as a function of the temperature. Equation (14) is subject to the boundary condition

$$\theta^1 = 0 \qquad \text{at } x^1 = 0 \tag{18}$$

3. Chemical Species Balance

$$\frac{dc_j}{dx^2} - R\alpha_j^2 = 0 \quad ; \quad j = 1.11_0 \tag{19}$$

where

$$Ra_{j}^{\mathbf{L}} = \overline{R}_{j} \frac{1}{\sqrt{r}} (-ij \cdot j = 1, N_{s}$$
 (20)

The boundary condition for Equation (19) is

$$C_j = C_j$$
: at $x^z = 0$: $y = 1, N_s$ (21)

B. REACTOR

- 1. Hydrogen Balance
 - (a) Gas Phase

$$\frac{da_{z}^{II}}{dx^{II}} + R_{I}^{II} \left(\frac{H}{H_{I}^{I}} a_{z}^{II} - a_{I}^{II} \right) = 0$$
 (22)

where

$$R_{i}^{ii} = \frac{k_{i}aL^{ii}H_{i}^{i}}{v_{i}^{ii}} \tag{23}$$

The boundary condition for Equation (22) is

$$a_{\varepsilon}^{ii}|_{x^{ii}=0^{-}} = a_{\varepsilon}^{ii}|_{x^{ii}=0^{-}} \tag{24}$$

(b) Slurry Phase

$$\frac{1}{Pe_{l}}\frac{d^{2}a_{l}^{II}}{(dx^{II})^{2}} - \frac{da_{l}^{II}}{dx^{II}} + \frac{R_{l}^{II}}{\gamma^{II} \cdot H_{l}^{I}} \left(\frac{H}{H_{l}^{I}} a_{z}^{II} - a_{l}^{II} \right) - \frac{Da}{\gamma^{II}} \exp\left(-E^{\bullet}/(1 + \theta^{II})\right) a_{l} = 0$$
 (25)

where

$$\gamma'' = \frac{v_I''}{v_g''} \tag{26}$$

$$Pe_{l} = \frac{v_{l}^{\mathrm{H}} \cdot L^{\mathrm{H}}}{D_{l}} \tag{27}$$

(28)

$$Da = \frac{\overline{k}(1 - \epsilon_t^{li})L^{li}}{v_t^{li}}$$

The boundary conditions for Equation (25) are

$$a_{t}^{11}|_{z^{0}=0} - a_{t}^{11}|_{z^{0}=0} - \frac{1}{Pe_{t}} \frac{da_{t}^{11}}{dx^{11}}|_{z^{0}=0}$$
 (29)

and

$$\left. \frac{da_t^{i1}}{dx^{i1}} \right|_{x^n=1} = 0 \tag{30}$$

2. Energy Balance

$$\frac{1}{Pe_{h}}\frac{d^{2}\theta^{11}}{(dx^{11})^{2}} - \frac{d\theta^{11}}{dx^{11}} + R_{I}^{11}\Gamma_{S}^{11}\left(\frac{H}{H_{I}^{1}}a_{I}^{11} - a_{I}^{11}\right) + Da\Gamma_{K}^{11}H_{I}^{\prime}\in\mathcal{A}_{F}^{\prime}\left(E^{*}/(1+\theta^{11}))a_{I}^{11} = 0$$
 (31)

where

$$Pe_{k} = \frac{(v_{\varepsilon}^{\mathrm{H}} \rho_{\varepsilon} C_{\rho_{\varepsilon}} + v_{\varepsilon}^{\mathrm{H}} \overline{\rho_{\varepsilon}} \overline{C_{\rho_{\varepsilon}}) \cdot L^{\mathrm{H}}}}{D_{H}}$$
(32)

$$\Gamma_S^{II} = \frac{C_{rs}^I \cdot \nu_t^{II} \cdot \Delta H_S}{T_i^I (\nu_t^{II} \rho_t C_{p_t} + \nu_t^{II} \overline{\rho}_i \overline{C}_{p_t})}$$
(33)

$$\Gamma_R^{ii} = \frac{C_F^i \cdot v_F^{ii} \cdot \Delta H_R}{T_i^i (v_F^i \rho_F C_{\sigma_F} + v_I^{ii} \overline{\rho_F} \overline{C}_{\sigma_F})}$$
(34)

Boundary conditions for Equation (31) are

$$|\theta^{II}|_{x^{0}=0} = |\theta^{II}|_{x^{0}=0}, -\frac{1}{Pe_{5}} \left(\frac{d\theta^{II}}{dx^{II}} \right) \Big|_{x^{0}=0}.$$
 (35)

and

$$\left. \frac{d\theta^{11}}{dx^{11}} \right|_{x^{n}=0} = 0 \tag{36}$$

3. Chemical Species Balance

$$\frac{1}{P_{e_{j}}} \frac{d^{2}C_{j}^{T}}{dx^{2}} - \frac{dC_{j}^{T}}{dx^{T}} + 2a_{j}^{T} = 0 ; j = 1.Ns$$
 (37)

where

$$\mathcal{L}_{aj}^{\underline{\underline{u}}} = \overline{\mathcal{L}}_{j}^{\underline{\underline{v}}} - \overline{\mathcal{L}}_{i}^{\underline{u}} - \overline{\mathcal{L}}_{i}^{\underline{u}} - \overline{\mathcal{L}}_{i}^{\underline{u}}$$
 (38)

3.7

MODEL DEVELOPMENT (Continued)

The boundary conditions for Equation (37) are

$$C_{j}^{II}\Big|_{x^{I}=0} = C_{j}^{II}\Big|_{x^{I}=\frac{1}{2}} - \frac{1}{f_{2}} \frac{1}{dx^{I}} \Big|_{x^{I}=\frac{1}{2}}$$
 (39)

$$\frac{dC^{-}}{dC^{-}}$$

$$(40)$$

SIMULATION TECHNIQUES

The hydroprocessing of coal involves a series of reactions, both homogeneous and heterogeneous. The consumption of hydrogen gas and coal conversion to soluble products occur simultaneously. Hence the equations described in the earlier section (plug flow equations for the preheater and axial dispersion equations for the reactor) are coupled and have to be solved simultaneously. The consumption of hydrogen is, however, generally used as a measure of the heat generation. This allows the uncoupling of the hydrogen balance equations (both gas and liquid phases) and energy balance equation from the chemical species balance equation. simulator, therefore, the hydrogen and energy balance equations are first solved simultaneously and the resulting temperature profile superimposed on the chemical species balance equation.

The program code is written in a modular form for easy modification. For example, separate modules have been set up to calculate the gas holdups and viscosity (as function of temperature) in the preheater and reactor. Procedure for modification of these modules is explained in Section 6.

1. Numerical Solution of Hydrogen and Energy balance equations:

The preheater is assumed to be plug flow and therefore the equations are coupled first order differential equations [Equations (4), (9) and (14)] with initial conditions [Equations (8), (13) and (18)]. These equations are solved simultaneously by using fourth-order Runge-Kutta method of integration (Carnahan et al., 1969).

The gas in the reactor is assumed to be plug flow. This results in one first order differential equation [Equation (22)] with an initial condition [Equation (24)]. The axial dispersion model is used to model the slurry phase in the reactor. This results in two second order differential equations [Equations (25) and (31)], with four boundary conditions [Equations (29), (30), (35) and (36)]. Again all the reactor model equations are coupled. The second order equations are also non-linear. A shooting technique is required to solve this boundary value problem. The problem is first converted to an initial

SIMULATION TECHNIQUES (Continued)

value problem by guessing the concentration of hydrogen and the temperature in the phase at the reactor entrance. Again the Runge-Kutta fourth-order technique is used to intergrate the equations. The method of interval-halving is used to refine the guesses at the reactor inlet so as to satisfy the exit boundary conditions.

2. Numerical solution of chemical species balance equations:

Equation (19) describes a set of equations for the chemical species balances in the preheater. These equations along with the set of boundary conditions [Equation (21)] are solved by the same technique as used above.

Equation (37) with boundary conditions (39) and (40) are a set of equations for chemical species balance in the reactor. Initially a computer code similar to the one used to solve the hydrogen and temperature balance equations, was developed to solve these equations. The computation time required to arrive at the final solution increased exponentially with the number of species. Computation time of the order of one hour was required to solve the equations for three (3) species, on the DEC-10 computer at the University of Pittsburgh. As the computation time was prohibitively high, it was decided to develop a code for solving coal liquefaction reaction networks involving only first order reactions. This code is used for simultaneous solution of coupled linear equations.

The code takes advantage of the fact that a linear combination of several solutions of a differential equation, obtained for different initial conditions, is also a solution of the differential equation, if the differential equation is linear in the dependant variable. For example, if C_1 and C_2 are two independent solutions of a second order linear differential equation, then $C = \mathcal{S}_1 C_1 + \mathcal{S}_2 C_2$ is also a solution of the differential equation. The coefficients \mathcal{S}_1 and \mathcal{S}_2 can be calculated so as to satisfy the boundary conditions.

SIMULATION TECHNIQUES (Continued)

The computer code developed makes $2N_{\rm S}$ ($N_{\rm S}$ = number of species) independent guesses, at the reactor inlet, and performs the integration using Runge-Kutta fourth-order technique. The independent guesses are made by using a random number generation routine. The coefficients C_i are calculated by matrix inversion (Gerald, 1978), so as to satisfy the required initial and boundary conditions.

Computer programs to generate graphical outputs were developed on the PDP-11/70 computer at Schneider Consulting Engineers, Bridgeville, Pennsylvania. IDGS and DMRS software developed by Intergraph Corporation, Huntsville, Alabama was used in these programs.

USE OF SIMULATOR

To use the simulator, the following information must be provided:

```
Flow rate of gas to preheater, (cm^3/s)
 Flow rate of slurry to preheater, (cm^3/s)
 Length of preheater, (cm)
 Length of reactor, (cm)
 Diameter of preheater, (cm)
 Diameter of reactor, (cm)
 Inlet temperature of slurry to preheater, (°C)
 Operating Pressure, (atm)
 Mole fraction of hydrogen in gas to preheater, (dimensionless)
 Temperature of furnace, (°C)
Heat capacity of gas, (cal/gm°C)
Heat capacity of slurry, (cal/gm°C)
Arrhenius frequency factor for hydrogen consumption kinetics, (s^{-1})
Activation energy for hydrogen consumption kinetics, (cal/gmol)
Heat of reaction of hydrogen, (cal/gm)
Heat of dissolution of hydrogen, (cal/gm)
Solubility constant, [(gm/cm<sup>3</sup>])/(gm/cm<sup>3</sup>g)]
Diffusivity of the gas, (cm^2/s)^2
Surface tension of the slurry, (gm/cm<sup>3</sup>)
Total number of chemical species
Name and code number of each species
Total number of non-zero rate constants
For each rate constant:
     Code of reacting species
     Code of product species
     Arrhenius frequency factor, (s^{-1})
     Activation energy, (cal/gmol)
For each species:
     Initial concentration, (gm/gmtotal)
```

USE OF SIMULATOR (Continued)

The input data is entered interactively by executing a program "SIMDAT.FOR". This program prompts the user for the input information. The data are stored in a file 'SIM.DAT'. The main simulator program 'SIM.FOR' can next be executed either in batch or time sharing mode.

Output is contained in the following files:

Output Summary SUMRY	
Preheater:	
Temperature Profile	PTEMP.DAT
Hydrogen Profile (Gas Phase)	PHYGAS.DAT
Hydrogen Profile (Liquid Phase)	PHYLIQ.DAT
_ Viscosity Profile	PVISCO.DAT
Species Concentration Profile	PCONC.DAT
Reactor:	
Temperature Profile	RTEMP.DAT
Hydrogen Profile (Gas Phase)	RHYGAS.DAT
Hydrogen Profile (Liquid Phase)	RHYLIQ.DAT
Species Concentration Profile	RCONC.DAT

Graphical output can be obtained on the PDP-11/70 computer at Schneider Consulting Engineers.

The simulation program has been written in standard FORTRAN (except for programs needed to obtain the output in a graphical form).

The program typically requires about one to one and a half minutes of computation (CPU) time on a large computer.

A representative set of output data is shown in Appendix B.

SIMULATOR MODIFICATION

The simulator has been written in a modular form so as to allow easy modification.

The viscosity in the gel region is a strong function of the type of coal, type of solvent and the coal to solvent ratio. In the present simulator, the viscosity of the coal-oil slurry is calculated from a equation fitted to data reported for 35 wt % Kentucky No. 9 coal with Wilsonville recycle solvent (McNeese, 1980). A separate function subroutine VISCOS has been written to calculate the viscosity as a function of temperature. The user need only modify this function routine to incorporate different viscosity dependence on temperature.

Similarly, a separate function routine FEG has been written to calculate the gas hold up in preheater and reactor. Presently correlations suggested by Akita (Akita and Yoshida, 1973) have been incorporated in the simulator to calculate the gas hold up. If the user desires to use some other correlations, he need only modify the routine FEG.

CONCLUSIONS AND RECOMMENDATIONS

The simulation program described in this report is a convenient tool for analyzing the performance of coal liquefaction plants. It could assist a decision maker in arriving at optimum equipment sizes and operating conditions.

Additional features can be added to this simulator to enhance its value. The following additions are recommended.

- 1. The simulator in its present state is not limited to the type of process,(SRC-I, SRC-II, EDS or H-Coal), as long as the processes have only one preheater and one reactor. The simulator should be modified to include two and more stage processes.
- 2. The simulator requires the user to input data, such as hydrogen conversion and coal liquefaction kinetics, physical properties, etc. In many cases, the user will be unaware of these data. A numerical database of the required data should be developed to assist the user in selecting the input data. At least some default values for these data should be set up in case the user has no idea about the range of the input data.
- Coal conversion reactions are exothermic and they are carried out in 3. adiabatic partially backmixed bubble columns. Such reactors can exhibit multiple steady states. (Nunez et al., 1982). present state, the simulator converges to one steady state and has no way of determining whether other steady states exit. Numez et al. have presented graphs showing regions of multiple steady states for various operating conditions. This information should incorporated in the simulator and if the user input data results in the reactor operation in the multiple steady states region, appropriate messages should be relayed to the user.
- Subroutines should be developed to permit non-linear kinetics and also rate expression of other than the Arrhenius form.

CONCLUSIONS AND RECOMMENDATIONS (Continued)

5. Similar programs should be developed for other unit operations, such as coal preparation, separation units, etc. In some cases such as coal preparation, simulation programs already exist (Gottfried, et al., 1982). Software should be developed to depict the output from such simulators in pictorial/graphical form to enhance their value to the user.

NOMENCLATURE

```
dimensionless concentration of hydrogen in gas phase (C_q/C'_{qj})
aα
          dimensionless concentration of hydrogen in liquid phase
a<sub>1</sub>
            (C<sub>1</sub>/H<sub>i</sub>C'<sub>ai</sub>)
          concentration of hydrogen, g/cm<sup>3</sup>
C
          specific heat, cal/g K
          weighted average specific heat, cal/g K
          dimensionless concentration of chemical species, (gm/gm)
С
D
          diameter. cm
          Damkohler number, defined in Equation (28)
Da
DH
          thermal dispersion coefficient, cal/cm s K
          mass diffusivity, cm<sup>2</sup>/s
D_1
 Ε
          activation energy, cal/gmol K
 E*
          dimensionless activation energy, defined in Equation (12)
          Henry's law constant
Н
H
          pre-exponential factor in Equation 2
          heat transfer coefficient, cal/cm<sup>2</sup>s K
 h
\triangle H_{R}
          heat of reaction, cal/gmol
          heat of dissolution, cal/gmol
\triangle H_{\varsigma}
          dimensionless heat of dissolution, defined in Equation (7)
Δltέ
          rate constant. s<sup>-1</sup>
 k
          Arrhenius frequency factor, s<sup>-1</sup>
 k
          volumetric liquid phase mass transfer coefficient, s<sup>-1</sup>
 k<sub>1</sub>a
          length, cm
 Ns
          number of chemical species
 Peh
          Peclet number for heat, defined in Equation (32)
 Pe<sub>1</sub>
          Peclet number for mass, defined in Equation (27)
```

NOMENCLATURE (Continued)

- R gas law constant, cal/gmol K
- R_a dimensionless parameter, defined in Equations (20) and (38)
- R_1 dimensionless parameter, defined in Equations (5) and (23)
- R_{p} dimensionless parameter, defined in Equation (11)
- \overline{R} rate of generation of chemical species, s^{-1}
- T temperature, K
- v superficial velocity, cm/s
- x dimensionless axial distance, (Z/L)

axial distance, cm

Greek Symbols

- dimensionless parameter, defined in Equation (15)
- β constant in Equation (3)
- occefficients of solutions of differential equations
- Γ_{k} dimensionless parameter, defined in Equations (16) and (34)
- $l_{::}$ dimensionless parameter, defined in Equations (17) and (33)
- viscosity, g/cm s
- e density, g/cm³
- e weighted average density, g/cm³
- dimensionless temperature
- €g gas holdup
- Υ dimensionless parameter, defined in Equations (10) and (26)

Superscripts

- I in preheater
- II in reactor

NOMENCLATURE (Continued)

Subscripts

- g gas phase
- i inlet condition
- j chemical species number
- o outlet condition
- 1 liquid phase
- w wall condition

REFERENCES

Albal, R., Brainard, A., Godbole, S., Kelkar, B., Kulkarni, A., Shah, Y., Tierney, J. and Wender, I., "Investigation of Reactor Performance, Role of Catalysts, Hydrogen Donor Solvent and PCT Properties of Coal Liquids and slurries"; Final Report (Washington, D.C.: United States Department of Energy, October, 1983).

Carnaham, B., Luther, H.A. and Wiles, J.O., Applied Numerical Methods, (New York: John Wiley and Sons, 1969).

Gerald, C.F., <u>Applied Numerical Analysis</u>, (Reading, Massachusetts: Addison-Wesley Publishing Company, 1978), pp 134-136.

Gottfried, B.S., Luckie, P.T. and Tierney, J.W., "Computer Simulation of Coal Preparation Plants"; Final Report (Washington, D.C.: United States Department of Energy, December, 1982).

McNeese, L.E., "Fossils Energy Program", Quarterly Program for the Period Ending June 30, 1980. Fossils Energy Program, ORNL-5671.

Nunez, P., Calimli, A., Abichandani, J. and Shah, Y. T., "Multiple Steady States in an Adiabatic Coal Liquefaction Reactor-Role of Preheater," Chem. Eng. Commun., Vol 13, pp 231-249, 1982.

Shah, Y. T., ed., Reaction Engineering in Direct Coal Liquefaction (Reading, Massachusetts: Addison-Wesley Publishing Company, 1981). pp 1-23.

Whitehurst, D.D., Mitchell, T.O. and Farcasiu, M., Coal Liquefaction (New York: Academic Press, 1980), pp. 346-370.

APPENDIX A

SUBROUTINE/FUNCTION NAME	PURPOSE
INPUT 1	Reads input data: viz. coal conversion kinetics
INPUT	Reads input data: viz. Physical dimensions of the units, physical and thermal properties and hydrogen consumption kinetics
PHEATR:	Simulates preheater performance: Thermal and hydrogen consumption only
REATEM:	Simulates reactor performance: Thermal balance only
CHEM1:	Initializes simulation of preheater: Chemical species conversion
CHEM2:	Initializes simulation of reactor: Chemical species conversion
OUTPUT:	Prints output
HYDRO:	Calculates hydrodynamic parameters
RUNGE:	Runge-Kutta fourth-order integrator
PHEATC:	Simulates preheater performance: Chemical species conversion
EQTNS:	Calculates chemical species conversion rates
REATC:	Simulates reactor performance: Chemical species conversion
INTHAL:	Interval halving program to solve implicit equations
VISCOS:	Calculates viscosity of coal slurry in preheaters
LUDCMP:	Calculates lower and upper triangular matrices
SOLVLU:	Finds solution of matrix AX=B, after finding its LU equivalent matrices
RAN:	Random numbers generator
FUNC:	Function routine that calls REACTR and FEG
REACTR:	Simulates reactor performance: Hydrogen consumption only.
APVT:	Finds largest element for pivot and performs inter- changes
FEG:	Provides equations for calculation of gas holdup

PROGRAMS TO GENERATE GRAPHICAL OUTPUT

PLOT.FTN (SOURCE PROGRAM)

```
DF-11 FORTRAN-77 V4.0-1
                                                                  10:26:40
                                                                                         14-839-84
                                                                                                                                  Page 5
 FLOT.FTN1202
                                                 /F77/TR:BLOCKS/WR
 1195
                                 ORIGIN(1)=I0-JIFIX(0.257:2000.6)
                                ORIGIN(2)=11+JIFIX(3.6%000.0)
CALL TNDFPI(GDROUP, ANGL, LEVEL, TNP, TSP, TS, ORIGIN, RTNCD, YLABEL(4), NOATT)
URITE(10,236) RTNCD
  1193
 J197
 0198
                          ORIGIN(1)=IO-JIFIX(0.267*8000.0)
ORIGIN(2)=I1+JIFIX(4.8*8000.0)
CALL THOFFI (GGROUP, ANGL, LEVEL, THP, TSP, TS, ORIGIN, RTNCD, YLABEL(5), NOATT)
199
200
 0201
                                 WRITE(10,236) RTHCD

ORIGIN(1)=10-JIFIX(0,267#8000,0)

ORIGIN(2)=11+JIFIX(6,0#8000,0)

CALL INDEPI(GEROUP, ANGL, LEVEL, TMP, TSP, TS, GRIGIN, RTHCD,
   202
203
 8205
                                YLABEL(6) + NOATT)
206
307
9208
9209
                                 WRITE(10,236) RINCD
THP(4)=3
                          ORIGIN(1)=IO-JIFIX(1.08*8000.0)
URIGIN(2)=I1+JIFIX(5.752*8000.0)
CALL THOFFI(GEROUF; AMEL, LEVEL, THP, TSP, TS, ORIGIN, RTHCD,
* CHY,NOATT)
 0212
0214
0214
0215
0216
0217
0218
                                 WRITE(10,237) RTHCD
EURHAT( RET FORM TNUFFI 2',1)
                                WALTER(19/28/) RIMED
FORMATIC RET FORM INDEPT 2',1)
TMP(4)=2
TSP(6)=1
ORIGIN(1)=10-UIFIX(1.2375*8000.0)
ORIGIN(2)=11+UIFIX(1.13*8000.0)
CALL TNDFP(06ROUP;AHEL-LEVEL,TNP,TSP,TS,ORIGIN,
RINCL-RRI,NOATT)
HDITE(1.375) RIMED
WRITE(1),238) RINCO
                                FORMATI'
                   238
                                                                RET CODE FROM TNOFPI 3'-1;
                                WRITE(10:145) A:AN
FURHAT(' N:AN :11)
                  245
                                J-0
DC 23 I=1:NN;1
                               J-GT1

WRITE(10,234) J,X(J),Y(J)

FORMAT(' J,X(J),Y(J)',I,25)

GR(I)=I0+JIFIX(5.0*X(J)*8000.0)

GR(I)=I1+JIFIX((Y(J)/10.0**HY-YTICK(1))/(YTICK(6)-YTICK(1))
                  234
                                #6.0%5000.0)
WRITE(10,*) I+OR(I)+OR(I+1)+J+X(J)+Y(J)
CONTINUE
  131
132
              25
C
0233
                                 CALL LEDFFI(GGROUP; LEVEL: SPECS; OR; N; RTNCB; NOATT)
734
.23
.236
0237
                                URLTE(10,235) RTNOD
FORMAT( RET FROM LSDFPI',I)
CLOSE (UNIT-10)
CALL DEDFPI(1)
CALL DEDFPI(1)
                  235
                                CHEL BEDFF(1)
TEKCF(1)=IBUFF(1)
TSKCI(2)=IBUFF(2)
CALL VEENDA(TEKCI,OBUFF,,1,IDS)
CALL RESUME(TEKCI,IDS)
0241
```

.0242

END

```
FBP-11 FORTRAN-77 V4.0-1
                                                                                   10:25:40
                                                                                                                             14-Mag-34
                                                                                                                                                                                      Page 4
FLOT.FTN;202
                                                             /F77/TR:BLOCKS/WR
                                            DO 53 I=1,6

WRITE(9,501) YTICK(I)

FORMAT(F4.1)

CONTINUE

IF (RI.NE.0) WRITE(9,503) R1
0144
0145
0145
0145
0147
                          55
                                             Transco white/7300) Ri
FORMAT(12)
CLOSE (UNIT=9)
OFEN (UNIT=9)FILE='QS1:C50,153FLOT.DAT',STATUS='OLD')
READ(9,300) CNY
WRITE(10,300) CNY
0110123 43347 897 61
0110123 43347 897 61
0110123 43347 897 61
0110123 43347 897 61
                         503
                                            WEITE(10:300) CMY
FORMAT(A3)
00 56 I=1;6
READ(9:301) YLAFEL(I)
WRITE(10:301) YLAFEL(I)
FORMAT(A4)
CONTINUE
IF(R1.NE.0) REAF(9:303) RR1
FORMAT(A2)
                         300
                         301
36
                         303
                                            FORMAT(A2)

IF(R1.NE.0) WRITE(10,303) RR1

CLOSE (UNIT=7)

ANSL=90

TNF(1)=0

TNF(2)=800.0

TNF(3)=4

TNF(5)=6

TSP(1)=800.0

TSF(3)=10

TSP(6)=4

TSP(6)=0

TSP(6)=0

TS(3)=0

TS(3)=0

TS(3)=0

TS(4)=1
 0162
0163
0164
0165
 0166
0167
0168
0169
0170
0172
0173
0175
0177
0177
0177
                                               TS(4)=1
                                              TS(5)-0
                                              Ta(4)=0
Ta(7)=2
                                             GRISH(1)=10-JIFIX(0.267%8000.0)
CRISH(2)=11+JIFIX(0.0%8000.0)
 6130
 0181
                      C
                                             WRITE(10,568) IO,11; ORIGIN(1); URIGIN(2)
FORMAT(' IO,11; ORIGIN(1); ORIGIN(2)',41)
CALL TNDFP1(GGROUP, ANGL, LEVEL, TNP, TSF, TS; ORIGIN; RTNCD;
YLABEL(1); NOATT)
WRITE(10,236) RTNCD
FORMAT(' RET FROM TNDFP1 1'; I)
0182
9183
9184
                          368
                                     Ť
 0185
0186
                    23á
                                             CRIGIN(1)=10-JIFIX(0.257*8000.0)

ORIGIN(2)=114JFIX(1.2*8000.0)

CALL TAMFFI(GGROUF; ANGL; LEVEL; TAP; TSF, TS; CRIGIN; RTHCD;

(LASEL(2); NOATT)

WRITE(10;236; RTHCD

ORIGIN(1)=10-JIFIX(0.267*8000.0)

ORIGIN(2)=114JIFIX(2.4*8000.0)

CRIGIN(2)=114JIFIX(2.4*8000.0)
 0187
0188
0188
 0190
0191
0192
                                           CALL INDFF1(GGROUP, ANGL, LEVEL, TNP, TSP, TS, ORIGIN, RTNCD, YLAREL(3), NOATT)
 0194
                                              WRITE(10,236) RINCD
```

```
FDF-11 FORTRAN-77 V4.0-1
                                                                            10:26:40
                                                                                                           14-May-84
                                                                                                                                                             F349 7
                                      /F77/TR:BLOCKS/UR
FLOT.FIN;202
0045
                                       LEVEL=63
0047
0048
                                        ANGL=0.0
ORIGIN(1)=10
                                        GRIGIN(2)=11
CALL CLDFFI(LEVEL, GGROUP, ANGL, SC, CELL, ORIGIN, VIEW,
8848
                                # RTNCD, NDATT, SPECS)
                                        OPEN (UNIT=9,FILE='0S1:C50,1S1PLOT.DAT',STATUS='OLD')
0051
                    C
                                       IF(RO.EQ.1) OPEN(UNIT=8,FILE='QS1:E50,153PTEMP.DAT',STATUS='OLD')
IF(RO.EQ.2) OPEN(UNIT=8,FILE='QS1:E50,153PHYEAS.LAT',STATUS='QLD')
IF(RO.EQ.3) OPEN(UNIT=8,FILE='QS1:E50,153PHYLIQ.DAT',STATUS='QLD')
IF(RO.EQ.4) OPEN(UNIT=8,FILE='QS1:E50,153PYJSC0.DAT',STATUS='QLD')
IF(RO.EQ.5) OPEN(UNIT=8,FILE='QS1:E50,153PYJSC0.DAT',STATUS='QLD')
IF(RO.EQ.6) OPEN(UNIT=8,FILE='QS1:E50,153PYJSC0.DAT',STATUS='QLD')
IF(RO.EQ.7) OPEN(UNIT=8,FILE='QS1:E50,153PYJSC0.DAT',STATUS='QLD')
IF(RO.EQ.8) OPEN(UNIT=8,FILE='QS1:E50,153PYJSC0.DAT',STATUS='QLD')
IF(RO.EQ.8) OPEN(UNIT=8,FILE='QS1:E50,153PYJSC0.DAT',STATUS='QLD')
0052
0053
0055
0055
0055
0058
0058
0058
                    C
0041
0042
0043
                                        JMAX=R1+2
IF(R1.EQ.O) JMAX=4
IF(R0.EQ.S) JMAX=3
                                        BG 1 I=1,101
READ(8,*,ERE=26,END=2) (A(J),J=1,JMAX)
9044470142345 97789 91
9044670142345 97789 91
904697777789 91
                                       RESTON PERF 20 PERF 2)
X(1)=A(1)
Y(1)=A(JMAX)
WRITE(10,*) I,X(1),Y(1)
CONTINUE
CLOSE (UNIT=8)
R=I-1
                      12
                                        XHIN=X(1)
YMIN=Y(1)
                                         XMAX-X(1)
                                        YMAX=Y(1)
                                       300
Carolina Carolina Carolina
Carolina Carolina Carolina
Carolina Carolina Carolina
Carolina Carolina Carolina
                                        MK=0
                                        HY=0
XX=ABS(XMIN)
                                        TF(ABS:(MAX).GT.ABS(XMIN)) XX=ABS(XMAX)
IF(XX.LT.1.0) GO TO 4
XX=XX/10.0
IF(XX.LE.1.0) GO TO 6
                                        MX=NX41
GO TO S
XX=XX*IO.0
IF(XX.GE.1.0) GO TO &
                       ė
                                        NX=NX-1
60 TO 4
0093
3074
0095
                      4
                                        IXFRST=XMIN/10.0##NX
```

PLOT.UCM
(USER COMMAND PROGRAM)

```
CONTRL=CONTRL! 748
'RC=Q51:C50,153D0E.CEL'
                     'LV=63'
'AS=1'
'AA=0'
                                           'FT=10'
'TH=:.1'
'TW=:.1'
                      R0=0
                                          RO=O
R1=C
TXJS6
'DR=DOEMENU.DAT'
'ER'
'PREnta: Key from Henu'
'STORE TO EXIT'
P,8,7,8,K,C,C,B
NUM ER 8,EX
'ERINVALID INPUT! ENTI
 ^.4
 ₽:
                                           A
ER
   ;
                                          RO=KEY
KEY EO 4,H
   •
                                           REY EO 97H
                                         "PREnter Species Code"
"STORE TO EXIT"
PyKyRyKyKyLyCyK
HUM EQ 3/EX
"ERIMUALIE IMPUT! EN
 H:
                     ENTER AGAIN'
                                         "ENIMUSELLE LAMOT: EN
RI=KEY
UPDAT2
'PREnter Start Point'
'STCES TO EXIT'
P>F>F>F>FXYEDOPE
NUM EN SYEX
TO IMPUT: EN
L:
                                                                                               ENTER AGAIN'
                                         PERINVALID INFOTE

O EXPRODESSING'

IO=XUR

I1=YUR
'PLOT',RO,R1,IO,II
'PLOT'
'PRPLOT COMPLETE'
'ERNORMAL EXIT'
F:
                                         G 'GS1:E17,173EXIT.UCH'
G:
                     END
```

DATABASE SCHEMA

```
FR='081:150,15181H1.PRT'
'D='081:150,15181H1.DBS'
                                                                                                                                                                                                          PROCESS_CONDITIONS
1 LINE_DESIGNATION
2 FLOSE_RATE_SLURRY
3 FLOSE_RATE_SLURRY
3 FLOSE_RATE_GAS
4 TEMPERATURE
5 HYD_CONC_GAS
6 HYD_CONC_GAS
6 HYD_CONC_GAS
7 CONC_SPECIES_3
10 CONC_SPECIES_3
11 CONC_SPECIES_3
11 CONC_SPECIES_3
11 CONC_SPECIES_3
12 CONC_SPECIES_3
13 CONC_SPECIES_3
14 CONC_SPECIES_3
15 CONC_SPECIES_3
16 CONC_SPECIES_3
17 SPARE_B
18 SPARE_B
19 SPARE_B
10 SPARE_B
11 SPARE_B
12 SPARE_B
13 SPARE_B
14 SPARE_B
15 SPARE_B
16 SPARE_B
17 SPARE_B
18 SPARE_B
19 SPARE_B
19 SPARE_B
19 SPARE_B
11 SPARE_B
```

EHD

SOURCE PROGRAM TO ATTACH DATA TO GRAPHICS

```
CONTRL=CONTRL! 768
'RA=1.:.!!'
IO-9460000000
I1-9460000000
MSE='AE=1.:.1=8047Preheater Inlet8047!'
MSG
ATCPTO
I2=IO+28524
I3=I1+43712
I2-I3
I000-1000
MSG='AE=1.:.1=8047Preheater Outlet8047!'
MSG
1000,1000

MSB='AE=1.:.1=9047Freheater Outlet9047!

MSB

ATCPTO

I2=I0+36188

I3=I1+38961

I2,I3

1000,1000

MSB='AE=1.:.1=9047Reactor Outlet9047!'

MSB

ATCPTO

I2=I0+46840

I3=I1+59331

I2,I3

1000,1000

'RA=2.:.1!'

MSB='SE=2.:.1=9047Freheater9047!'

MSB='SE=2.:.1=9047Reactor9047!'

MSB='AE=2.:.1=9047Reactor9047!'

MSB='AE=2.:.1=9047Reactor9047!'

MSB='AE=2.:.1=9047Reactor9047!'

MSB=I1+42824

I2,I3

1000,1000

'PRUCH COMPLETE'

'GS1:I17,173EXIT.UCH'
```

SOURCE PROGRAM FOR DATA ENTRY INTO DATABASE

```
PDF-11 FORTRAN-77 V4.0-1 08:49:10 10-May-84 DATAIN1.FTN92 /F77/TR:BLOCKS/WR
   0001
0002
7003
7004
                                                                  IMPLICIT INTEGERS2 (A-Z)
                                                                CHARACTER#30 A
CHARACTER#30 LINE
CHARACTER#42 L
REAL X,X1,X2
LOGICAL SETCB
     J005
    0005
      1007
1074
                                                                  INCLUDE '090:514,353HOL.PAR/NOLIST' INCLUDE '090:514,353HOLCB.COM/NOLIST'
                                  C
   0150
0151
153
153
                                                                CBHIS1=0
IF(SETCB(ATTACH,0)) STOP 'ATTACH'
IF(SETCB(USECP,'DB=''081:ESQ,133SIH1.DBS''!')) STOP 'USE'
OPEN (UNIT=1,FILE='Q81:ESQ,133SIH1.DAT',STATUS='OLD')
                                  C
  DO 1 I=1,4
READ(1,2) A
WRITE(5,2) A
FORHAT(A30)
                                                               FORMAT(A30)
READ(1,3) NOSPEC
WRITE(5,3) NOSPEC
FORMAT(55X,12)
READ(1,7) X1
WRITE(5,7) X1
READ(1,7) X2
WRITE(5,7) X2
URITE(5,7) X2
READ(1,2) A
WRITE(5,2) A
                                    4
                                                           DO 100 J=1,3

READ(1,5) LINE

HRITE(5,5) LINE

FORMAT(30%, A20;

ENCODE(42,4,1; LINE

FORMAT(9H1,1,:,1=:,820,2H'!)

IF(SETCB(FINDCP,L)) STOP FINE1

FORMAT(9H1,1,:,2=',820,9,2H'!)

IF(SETCB(CHNGCF,L); STOP 'CHNGC-1'

ENCODE(42,17,L) X2

FORMAT(9H1,1,:,3=',820,9,2H'!)

IF(SETCB(CHNGCF,L)) STOP 'CHNGC-2'

READ(1,7) X

WRITE(5,7) X

FORMAT(59%,E)

ENCODE(42,3,L) X

FORMAT(7H1,1,:,3=',820,9,2H'!)

IF(SETCB(CHNGCF,L)) STOP 'CHNG1'

READ(1,7) X

WRITE(5,7) X

FORMAT(9H1,1,:,3=',820,9,2H'!)

IF(SETCB(CHNGCP,L)) STOP 'CHANG2'

READ(1,7) X

WRITE(5,7) X

WRITE(5,7) X
                                 3
ε
0189
0190
191
192
v193
```

```
PDP-11 FORTRAN-77 V4.0-1 08:49:10 10-May-84 DATAIN1.FTN:2 /F77/TR:BLOCKS/WR
                                                                                                                                                                                                                    Page 2
                                                    ENCODE(42,10,L) X
FORMAT(9H1,1.:.6=',E20,?,2H'!)
IF(SETCR(CHNGCF,L)) STOP 'CHNG3'
READ(1,2) A
HRITE(5,2) A
DO 200 K=1,NOSPEC
K1=K+6
PEAD(1,2) Y
0194 · 0195 0195 0197
                              10
READ(1,7) X

URITE(5,7) X

ENCODE(42,11,1) K1,X

FORMAT(6H1,1::,12,2H=',E19.9,2H'!)

IF(SETCB(CHNGCP,1)) STOP 'CHNG4'
                              11
                                                    CONTINUE
READ(1,2) A
WRITE(5,2) A
CONTINUE
                              200
                       100
C
                                                   RO 12 I=1,3
READ(1,2) A
WRITE(5,2) A
DO 300 J=1,2
READ(1,13) LINE
WRITE(5,13) LINE
WRITE(5,13) LINE
FORMAT(14X,A20)
ENCODE(42,14-L) LINE
FORMAT(7H1,2.: 1='.A20,CH'!)
IF(SETODEFINDOP,L)) STOP 'FIND2'
RO 400 K=1,5
K1=K+1
12
                              13
                              14
                                                   PO 400 K=1/S
K1=K+1
READ(1,7) X
ENCODE(47,15,L) K1,X
FORMAT(6H1,2.1.,12,2H=',E19.7.2H'!)
IF(SETCE(CHNSCP,L)) STOP 'CHNGS'
CONTINUE
READ(1,2) A
WEITE(5,2) A
CONTINUE
IF(SETCE(DETACH,0)) STOP 'DETACH'
CLOSE (UNIT=1)
STOP 'JOB DONE'
END
                              15
                              400
                              300
                                                     END
```

PROGRAMS TO GENERATE GRAPHICAL REPORT

SIMREPORT.UCM
(USER COMMAND PROGRAM)

SET CONTRL=CONTRL ! 768
MSG 'CF GRAPHICAL REPORT'
MSG 'ST CBS TO EXIT'
SET MSG='QS1:E50,153SIMREPORT.RPT'
CHD REPORT
KEY ''
KEY ''
KEY MSG
MSG 'ST NORMAL EXIT'
UCM 'QS1:E17,173EXIT.UCM'
END

SIMREPORT.RPT
(OUTPUT FORMATING PROGRAM)

```
ORDER 11,2,2,:.6!
REPORT
   =U(2)
 U=50,131,,'091:E50,15391HREPORT.OUT'
C'T
L=2,1
V='COMPREHENSIVE GRAPHICAL-REPORT',0(45)
    0
"='CAPITAL',0(30)
"='OPERATING',0(45)
"='HAINTENENCE',0(46)
"='FIXED',0(75)
"='VARIABLE',0(90)
L=0,0
                   V='COST',0(31)
V='COST',0(47)
V='COST',0(43)
V='COST',8(75)
                    V='COST',0(92)
1=0+0
                  V='($)',0(31)
V='($/YR)',0(46)
V='($/YR)',0(42)
V='($/YR)',0(75)
V='($/YR)',0(91)
   :0,2
                  V='-----',0(30)
V='-----',0(45)
V='----',0(75)
V='----',0(90)
C=D
L=2,0
                  V=E(2)A(1),O(10)
V=E(2)A(2),O(30),'E10.4'
V=E(2)A(3),O(45),'E10.4'
V=E(2)A(4),O(60),'E10.4'
V=E(2)A(5),O(75),'E10.4'
V=E(2)A(6),O(90),'E10.4'
 =F
L=1,0
V='----',0(30)
V='----',0(45)
V='----',0(75)
V='----',0(70)
```

GRAPHICAL OUTPUT

DISTANCE ALCAS PREMEATER (DISPOSICALES)

PREHEATER TEMPERATURE PROFILE

DISTANCE ALONG PREHEATER (DIMENSIONLESS)

PREHEATER HYDROGEN PROFILE (GAS PHASE)

DISTANCE ALGED PREMIATER (DIPENSIONLESS)

PREHEATER HYDROGEN PROFILE (LIGUID PHASE)

PREHEATER CONCENTRATION PROFILE

DISTANCE ALCON PREMEATER (DIRECTORLESS)

PREHEATER CONCENTRATION PROFILE

DISTANCE ALONG PREHEATER (DIMENSIONLESS)

PREHEATER VISCOSITY PROFILE

DISTANCE ALGED REACTER (DISENSICALESS)

REACTOR TEMPERATURE PROFILE

DISTANCE ALONG REACTOR (DIMENSIONLESS)

REACTOR HYDROGEN PROFILE (GAS PHASE)

DISTANCE ALCHO REACTOR

REACTOR HYDROGEN PROFILE (LIGUID PHASE)

DISTANCE ALONG REACTOR (DIMENSIONLESS)

REACTOR CONCENTRATION PROFILE

DISTANCE ALGNO REACTER (DISENSICALESS)

REACTOR CONCENTRATION PROFILE

REACTOR CONCENTRATION PROFILE

PROCESS FLOWSHEET AND GRAPHICAL REPORT

SRC-II PROCESS

COMPREHENSIVE GRAPHICAL-REPORT

DATE: 5/07/84

PAGE 1

	CAPITAL COST (\$)	OPERATING COST (\$/YR)	MAINTENENCE COST (\$/YR)	FIXED COST (\$/YR)	VARIABLE COST (3/YR)
Resctor	0.6361D+08	0.1738D 1 07	0.17380+07	0.9541D÷06	0.78420+06
Prehester	0.66790108	0.4368D+09	0.1831D+07	0.1005D+07	0.4358D+09
Total	C.1306D+09	0.4385D+09	0.3569D+07	0.1959B+07	0.4366D+09

SATISFACTION GUARANTEED

Please contact us for a replacement within 30 days if the item you receive NTIS strives to provide quality products, reliable service, and fast delivery. Phone: 1-888-584-8332 or if we have made an error in E-mail: info@ntis.gov

Reproduced by NTIS

National Technical Information Service Springfield, VA 22161

This report was printed specifically for your order from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast collection of technical reports. Rather, most documents are custom reproduced for each order. Documents that are not in electronic format are reproduced from master archival copies and are the best possible reproductions available.

Occasionally, older master materials may reproduce portions of documents that are not fully legible. If you have questions concerning this document or any order you have placed with NTIS, please call our Customer Service Department at (703) 605-6050.

About NTIS

NTIS collects scientific, technical, engineering, and related business information – then organizes, maintains, and disseminates that information in a variety of formats – including electronic download, online access, CD-ROM, magnetic tape, diskette, multimedia, microfiche and paper.

The NTIS collection of nearly 3 million titles includes reports describing research conducted or sponsored by federal agencies and their contractors; statistical and business information; U.S. military publications; multimedia training products; computer software and electronic databases developed by federal agencies; and technical reports prepared by research organizations worldwide.

For more information about NTIS, visit our Web site at http://www.ntis.gov.

Ensuring Permanent, Easy Access to U.S. Government Information Assets

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161 (703) 605-6000