TABLE OF CONTENT

													Page
ACKNO	OLEDGE	EMENTS					•. •			•			ii
ABSTI	RACT									•			iii
LIST	OF F	IGURES				• • ,				•			iх
LIST	OF TA	ABLES											xiv
1.0	INTRO	DUCTIO	N										1
2.0	BACK	GROUND							• •	•	•		6
	2.1	CO Hyd	rogena	tion									6
		2.1.1	Natur F-	e of t T Synt				ity :		oler	n i:	n 	6
		2.1.2	Produ	ct Se	lect:	ivity	Cor	ntro	1 .				10
	2.2	Zeolit	e-Supp	orted	Meta	als	•		•				10
	2.3	Zeolit	e Cata	lyzed	Read	ction	ıs.						16
	2.4	Diffus	ion in	Zeol	ites								20
3.0	EXPE	RIMENTA	L						•				21
	3.1	Materi	als .						•				21
		3.1.1	_	ration olite							lka	li 	21
		3.1.2		ration talys		Zeol		-Sup	por	ted 		Ru 	21
		3.1.3	Prepa	ratio	n of	RuSi	102		•		•		22
		3.1.4	Prepa Al	ratio kali									. 23
	3.2	Cataly	st Cha	racte	riza [.]	tion			•		• .		24
		3.2.1	Atomi	c Abs	orpt	ion	• •		•				24
		3.2.2	Chemi	sorpt	ion				. •				26
		3.2.3	X-Ray	Diff	ract	ion							. 29

			Page
	3.3	Reaction Studies	29
		3.3.1 Experimental Setups and Procedures	29
		3.3.1.1 CO Hydrogenation	29
		3.3.1.2 Hydrocarbon Reactions	31
		3.3.2 Product Analysis	33
÷		3.3.3 Activity and Selectivity Determination	34
		3.3.3.1 CO Hydrogenation	34
		3.3.3.2 Olefin Reactions	35
4.0		ACTERIZATION OF ZEOLITE-SUPPORTED RU	37
	4.1	Chemical Composition and Structural Character of the Zeolites	37
	4.2	H ₂ and CO Chemisorption	40
	4.3	Effect of Decomposition/Reduction Conditions	48
		4.3.1 Introduction	48
	J	4.3.2 Experimental	49
		4.3.3 Results and Discussion	50
i	· ·	4.2.4 Conclusion	55
5.0		CT OF GROUP IA CATIONS ON CO HYDROGENATION OVER RU/Y-ZEOLITES	58
	5.1	Introduction	58
	5.2	Experimental	59
	5.3	Results and Discussion	59
		5.3.1 Catalytic Activity	59
		5.3.2 Methane Selectivity and Chain Growth	69

																Page
		5.3.3	Olefi	n Fra	ction											73
		5.3.4	Struc	tural	Isom	eri:	zat	ion								83
	5.4	Conclu	sions				•		•	•	•				•	85
6.0		NDARY R ON ZEOL INFLUEN	ITE-SU	PPORT:	ED ME	TAL	CA	TAL	YS?	(S:				٠.		87
	6.1	Introd	uction				•				•				•	87
	6.2	Experi	mental				•.						•			89
		6.2.1	Mater	ials				•		•					•	89
		6.2.2	React	ion S	tudie	s .	•					•	•		•	89
	6.3	Result	s and	Discu	ssion	ı ,	•				•		•		•	91
		6.3.1	CO Hy	droge	natio	n, .	•									91
		6.3.2		n Rea Zeoli												96
		6.3.3		n Rea chang												99
	6.4	Conclu	sion				•		•		•				•	116
7.0		ndary R on Zeol Effect	ITE-SU	PPORT	ED ME	CTAL		TAI	YS'	rs:						118
	7.1	Introd	uction						•		٠				•	118
	7.2	Experi	mental				•						•		•	119
		7.2.1	Mater	ials												119
		7.2.2	React	ion S	tudie	es .	•	•			•				•	119
	7.3	Result	s and	Discu	ssion	ı.	•						•	٠.		120
		7.3.1	Catal Hy	yst A droge	ctivi natio	itie on .	s f	or	CO							120
		7.3.2	Catal Hv	yst S droge					in	co						124

																								Page
		•	7.3	. 3		01	ef W	ir 7it	R ho	ea ut	ct R	io u	ns	01	n 1	the	e ;	Zeo	ol:	it	9 5	•	٠	134
		H	7.3	. 4		De																-	•	137
																								141
8.0	SUM	1A.	RY		•		•		•							•			į					142
APPE	NDIX	A											- 1 -											147
APPE	NDIX	В																						186
APPE	NDIX	C																						197
BIBL	IOGRA	\PI	Y																				,	208

LIST OF FIGURES

Figure No.		Page
2.1	Selectivity Limitations on F-T Synthesis as Determined by the ASF Distribution Function	9
2.2	Reduction Scheme of Ion-Exchanged Ru/Zeolites	12
3.1	Chemisorption System	27
3.2	Schematic Diagram of Reactor System for CO Hydrogenation	30
3.3	Schematic Diagram of Reactor System for Hydrocarbon Reactions	32
4.1	X-Ray Diffractograms of NaY and RuNaY at Various Stages of Preparation and Use	39
4.2	Competing Effects of Ru Distribution and Strength of Water Retention in Zeolites on Metal Dispersion	57
5.1	Variation of E with Neutralizing Cation Radius	68
5.2	Methane Selectivity vs Temperature	70
5.3	Effect of Neutalizing Cation on Olefin and Isobutane Formation	75
5.4	Variation of C_3^{-}/C_3^{-} Ratio and $i^{-}C_4^{-}$ fraction with E_a at constant Conversion	82
6.1	C ₄ -isomer Distribution from CO Hydrogenation over RuY-Zeolites at 523 K	93
6.2	Effect of Nature of Neutralizing Cations in Y-Zeolites on the Activity for Propylene Reactions at 523 K	103
6.3	Effect of Nature of Neutralizing Cations in Y-Zeolites on the Activity for 1-Butene Reactions at 523 K	107

		Page
6.4	C ₄ -Isomer Distribution from 1-Butene Reactions over Partially-Exchanged HY-Zeolites at 523 K	112
6.5	Secondary Reactions in RuNaY Prepared by Ion-Exchange	113
7.1	Effect of Si/Al Ratio on Selectivity for Methane at Constant CO Conversion	125
7.2	Effect of Si/Al Ratio on Selectivity for Olefins and Isoparaffins at Constant CO Conversion	129
7.3	Isobutane and Cis-2-Butene Formation Rates vs Time-on-Stream on HY	138
7.4	Isobutane and Cis-2-Butene Formation Rates vs Time-on-Stream on H-Mordenite	139
7.5	Reaction Scheme for CO Hydrogenation on Ru/Zeolites	142
A-1	Hydrogen Adsorption Isotherms on RuHY at 298 K (Decomposed under Vacuum)	148
A-2	CO Adsorption Isotherms on RuHY at 298 K (Decomposed under Vacuum)	149
A-3	Hydrogen Adsorption Isotherms on RuLiY at 298 K (Decomposed under Vacuum)	150
A-4	CO Adsorption Isotherms on RuLiY at 298 K (Decomposed under Vacuum)	151
A-5	Hydrogen Adsorption Isotherms on RuNaY at 298 K (Decomposed under Vacuum)	152
A-6	CO Adsorption Isotherms on RuNaY at 298 K (Decomposed under Vacuum)	153
A-7	Hydrogen Adsorption Isotherms on RuKY at 298 K (Decomposed under Vacuum)	154
A-8	CO Adsorption Isotherms on RuKY at 298 K (Decomposed under Vacuum)	155

		Page
A- 9	Hydrogen Adsorption Isotherms on RuRbY at 298 K (Decomposed under Vacuum)	156
A-10	CO Adsorption Isotherms on RuRbY at 298 K (Decomposed under Vacuum)	157
A-11	Hydrogen Adsorption Isotherms on RuCsY at 298 K (Decomposed under Vacuum)	158
A-12	CO Adsorption Isotherms on RuCsY at 298 K (Decomposed under Vacuum)	159
A-13	Hydrogen Adsorption Isotherms on RuNaX at 298 K (Decomposed under Vacuum)	160
A-14	Hydrogen Adsorption Isotherms on RuKL at 298 K (Decomposed under Vacuum)	161
A-15	CO Adsorption Isotherms on RuKL at 298 K (Decomposed under Vacuum)	162
A-16	Hydrogen Adsorption Isotherms on RuNaM at 298 K (Decomposed under Vacuum)	163
A-17	CO Adsorption Isotherms on RuNaM at 298 K (Decomposed under Vacuum)	164
A-18	Hydrogen Adsorption Isotherms on RuHY at 298 K (Decomposed in Helium)	166
A-19	CO Adsorption Isotherms on RuHY at 298 K (Decomposed in Helium)	167
A-20	Hydrogen Adsorption Isotherms on RuLiY at 298 K (Decomposed in Helium)	168
A-21	CO Adsorption Isotherms on RuLiY at 298 K (Decomposed in Helium)	169
A-22	Hydrogen Adsorption Isotherms on RuNaY at 298 K (Decomposed in Helium)	170
A-23	CO Adsorption Isotherms on RuNaY at 298 K (Decomposed in Helium)	171
A-24	Hydrogen Adsorption Isotherms on RuKY at 298 K (Decomposed in Helium)	172

		Page
A-25	CO Adsorption Isotherms on RuKY at 298 K (Decomposed in Helium)	173
A-26	Hydrogen Adsorption Isotherms on RuRbY at 298 K (Decomposed in Helium)	174
A-27	CO Adsorption Isotherms on RuRbY at 298 K (Decomposed in Helium)	175
A-28	Hydrogen Adsorption Isotherms on RuCsY at 298 K (Decomposed in Helium)	176
A-29	CO Adsorption Isotherms on RuCsY at 298 K (Decomposed in Helium)	177
A-30	Hydrogen Adsorption Isotherms on RuNaX at 298 K (Decomposed in Helium)	178
A-31	CO Adsorption Isotherms on RuNaX at 298 K (Decomposed in Helium)	179
A-32	Hydrogen Adsorption Isotherms on RuKL at 298 K (Decomposed in Helium)	180
A-33	CO Adsorption Isotherms on RuKL at 298 K (Decomposed in Helium)	181
A-34	Hydrogen Adsorption Isotherms on RuNaM at 298 K (Decomposed in Helium)	182
A-35	CO Adsorption Isotherms on RuNaM at 298 K (Decomposed in Helium)	183
A-36	Hydrogen Adsorption Isotherms on Ru/SiO ₂ at 298 K (Decomposed in Helium)	184
C-1	Arrhenius Plots for CO Hydrogenation on RuHY	198
C-2	Arrhenius Plots for CO Hydrogenation on RuLiy	199
C-3	Arrhenius Plots for CO Hydrogenation on RuNaY	200
C-4	Arrhenius Plots for CO Hydrogenation on RuKY	201
C~5	Arrhenius Plots for CO Hydrogenation on RuRby	202

		Page
C-6	Arrhenius Plots for CO Hydrogenation on RuCsY	203
C-7	Arrhenius Plots for CO Hydrogenation on Ru/SiO ₂	204
C-8	Arrhenius Plots for CO Hydrogenation on RuNaX	205
C-9	Arrhenius Plots for CO Hydrogenation on RuKL	206
C-10	Arrhenius Plots for CO Hydrogenation on RuNaM	207

LIST OF TABLES

Table No.	_ 4	Page
4.1	Unit Cell Composition of the Dehydrated Zeolites	38
4.2	Characteristics of RuY-Zeolite Catalysts Based on H ₂ Chemisorption	42
4.3	CO Chemisorption Results for RuY-Zeolites	43
4.4	Characteristics based on H ₂ Chemisorption for Ru/Zeolites with Various Si/Al Ratios	44
4.5	CO Chemisorption Results for Ru/Zeolites with Various Si/Al Ratios	45
4.6	Catalyst Characteristics from H ₂ and CO Chemisorption	51
5.1	Catalytic Properties of Ru Catalysts at 523 K	61
5.2	Physical Parameters for the Various Cationic Y-Zeolites	62
5.3	Product Distribution at 523 K	71
5.4	Cation Effect on Selectivity at Constant CO Conversion	76
6.1	Elemental Analysis Results	90
6.2	Effect of Acidity on Olefin and Isobutane Selectivities	95
6.3	Butene Isomerization on Non-Acidic Alkali Zeolites	98
6.4	Propylene Reaction on HY and Partially- Exchanged HY-Zeolites	100
6.5	1-Butene Reaction on HY and Partially- Exchanged HY-Zeolites	101
6.6	Low Temperature Butene Isomerization	102

		Page
7.1	Catalytic Properties of Ru/Zeolites for CO Hydrogenation	121
7.2	Effect of Zeolite Type on Selectivities for Olefins and Isoparaffins	128
7.3	Effect of Acidity on Selectivity at Constant CO Conversion	130
7.4	Activity and Selectivity of the Alkali Form of the Zeolites for 1-Butene Reaction	135
A-1	Summary of Chemisorption Results (Catalysts Decomposed under Vacuum)	165
A-2	Summary of Chemisorption Results (Catalysts Decomposed in Helium)	185
B-1	Catalytic Properties of RuHY for CO Hydrogenation	187
B-2	Catalytic Properties of RuLiY for CO Hydrogenation	188
B-3	Catalytic Properties of RuNaY for CO Hydrogenation	189
B-4	Catalytic Properties of RuKY for CO Hydrogenation	190
B-5	Catalytic Properties of RuRbY for CO Hydrogenation	191
B-6	Catalytic Properties of RuCsY for CO Hydrogenation	192
B-7	Catalytic Properties of Ru/SiO ₂ for CO Hydrogenation	193
B-8	Catalytic Properties of RuNaX for CO Hydrogenation	194
B-9	Catalytic Properties of RuKL for CO Hydrogenation	195
B-10	Catalytic Properties of RuNaM for CO Hydrogenation	196