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EXI~UTIVE 

In the third quarter of the Air Products am~ C~micals, Inc./~ni~ 

Sm~s ~ of m~xgy co~act, "~-el Fismer~ro~m Slurry 

Catalysts and Pm3cess ~ for Select/ve Transportation Fuel 

Product/on", %~rk continued on the two major tasks: Task 2 -- De~elo~emt 

~J.pr~ed ~ Ca~ly~ Compositions and Task 3 -- Klurry Rsact~ 

Kinetic St'xlies. Within Task 2, wsrk was acem~lish~ in stuayi~ the 

effect of ~talyst act/vat/on procedure on activity a~ select/vit7 of the 

Co2(C0)8/Zr[C~r)4/AI203 camposition. A_~t_ivation with pure B 2 

gave a > 100% increase in both bulk and specific activity in gas phase 

tests at 220"C compared to the standard syngas activation. Hc~v~, the 

activity e n ~  ~s s~nm~at less at higher run temperatures. To 

establish a reference for the cobalt ~l-based ~atalysts, a catalyst 

~as pre;ered amd gas ptmse ~-~d in which c~lt -~rate was used as the 

cobalt s~rce aad ~ ~ zirc~ated ~ .  Sy.~s area p~re ~2 

activation were also com~ far this catalyst. A C~2(CO)8/Zr(OP=}4/ 

effect of m~al loadi~ o~. catalyst perforate. ~aitial am~l~sis of 

these catalysts has bern carried out usimg X-ray l~x~oe/ecurca 

CX~S> a~aE2 chris=I/cir. ~= catal1~cs sere scree.~ i~ 

~e sh=ry ~ react0zs. Taese i~.1~ the tita~i~ ~ co2(c~) s 

on alumina catalyst, the Co2(CO)8/Zr((3~r) 4 on alum6ma ~t/on having a 

higher Co/~ ~ig~c ra t io  of 1.15, a~ the l~ssi~ Ixa~ote~ 

compositio~ of FeCo3[C0)12 on alumina. ~e fourth slurr~ screeniz~ 

was d~me to examine the effect of pure ~2 activati(m ~ t~e perf~ of 

ba..ses::2~se (~2(CO)8/Xr((3ET)4 on alumina ~luLlyst.  

The perfa~m.=~ of cobalt car~Qyl-besea catalysts was .ever directly 

compared to that of catalysts prepared ~ m~re com~enticnal, 

mm~R=~nyl adm~it ~ .  To ~tarmine this reference point, a 

catalyst ~s prei~lred using cobalt Ilitrate ~ zirc~ated alumina with the 



- C 0 ~  ~ p ~  D~A -- I~E ~ P~BLICATX~N - 

same metals 10adin~ as the cobalt carbonyl basecase. Gas phase tes~tug 

using ~ s~xK~%rd syngas activation shuws~ th~. it %~s 30% less a~ive 

than the carbc~yl derived catalyst. Selectivity ~s also changed with th~ 

nitrate derived =atalyst givi~ a more e~e= distrib~/o~ of h1~rocarbon 

products suah that larger ammmts of both methane and ~ax were produced. 

The C~(ND3)21ZrlAI203 catalyst was also gas phase tested using a pure 

activation. This procedure resulted in better performance such that 

identical specific activity to the syngas-activated catalyst ~es achieved 

with the ~2-activated catalyst at 23~C lower te~erature. The 

carbcrql-derived c~talyst activated with symgas, however, ~s still 

slightly more active at similar run conditions. Hydrogen activation of. 

the nitrate-based catalyst resulted in a hlrlrocarbo~ select/vity more like 

the c~rbo~yl-based catalyst, but with higher wax selectivity. Thus, 

c~mrlt carbc~yl provides a catalyst having g~eatez activity and better 

liquid ~mel ~a~ectivity than coaveatio~al c~It s~lt~. 

A c366 of  co.zcco 8/ co' r ,t/l z2o 3 
~=positicn was prep/red by the ~ ~ e  in o~er to ~mpara the 

stasdard sysgas activi~/~ wi~h ~ure S 2 autivitioo i, gas phase tests. 

~l~l~Jen acti~tion again provided an increase in activity. At 220°C, 

both bulk amd specific act/vity increased by greater than 100%. At 240°C, 

the increase of 27% ~ss ~ as great a~ at 260°C activities ware similar 

for both activatians. There ~s no obvious effect ~ h!~rocarbon 

selectivity in t~se gas ~ tests. It should be ~ted that in 

um~rative st.aies like ~ the slur~ reactor wLll ~ve m~re 

results aue to better co~trol'of process c~zliti~s. ' 

To stay the effect of higher cobalt metal loaai~ cn catalyst 

a 

prepared having a Co loading of 10.8% and Co/Zr ratio of 1o3. Since it 

has been shown that the Co/Zr ratio is mot ~/ghly critical, the Co/Zr 

ratio w~ increased to facilitate the preparation of such a highly loaded 

support. ~"Tds has not yet ~en tested. 

i ! 
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XPS data have been ~ on the basecase Co2cco)8/Zr(OPr)¢/ 

AI203 catalyst, bo~h as freshly prepared and after H 2 activation, as wall 

as on the Co(ND3)2-derive d catalyst in the c~/diz~ farm. For the 

carbou~l-based catalyst, the data indicate the presence of only a~/dized 

cobalt in both fresh and acti~rated samples. This suggests the f~tion 

of difficult to reduce cobalt al%~minates and zircomates or at least a 

s~rong inter-action between Co and the support. ~xoge~ 

catalyst show c~lt metal surface ar~ of 6 ~/g ur less ~d ~W~lt 

dispersio~ of 10% or l~s. This a~ees wi~h the XPS data indicating only 

ammmts of reduced cabalt. 

F~r catal~s ~re screened in the 1 li~er $1ur~ ~ re,otis 

this quarter. The results are smmmrizel beze. I~= the followi~ t~ree 

catalysts, the stanSard synthesis gas activation method ~s us~: 

• A Co2[00)8/A1203 catalyst pr(mrf~ with titanium rather tha~ zirc~mim~ 

During the initial test uond/r/cfls at 240°C, the best activity and 

~le=~vi~ f= ~ fuels, c5--c23 , ~ ~ .  so ~ 

not/ceable upun raising the temperature to 260°C and then to 280"C. 

with the ~ catal!~t, this catalyst ~s less active, ~t 

%~s superior in liquid fuels selectivity, which acaaunted for 60 wt% of 

the total h~ro~. Testing at 600 psig prove~ to be clz~rin~Ttal to 

both the ~ / v i t ~ j  and s e l ~ _ i ~ t y  o f  th is  catalyst. ~ u~fimm~ 

p r i ~  d~erva t io .s  a lx~t  the Co-bas~ catalysts.  E~n~e sc=~ni~g of 

c0~alt ca~alFsts will be ccmfime~ to pressures below 300 psig. 

• A ~aria~xm an the ~ to prm~ter ~ ratio cf the 

Co2(co)8/ZrfOPr) 4 on almm~a a~alyst, Co/Zr = 1.15, o=~gar~ with the 

sU~r~rd 0.56. As with the t/tanim~~ catalyst, the mmdmm 

selectivity of liquid fuels ~s obtained at the lowest temperature 

teste~, 240°C, and the lowest CO/S 2 feed gas ratios, where selectivit/es 

of 67-70 wit %~re d~rved. The activity of this catalyst %~s poor; 
cc~le to the w~)r(xm3ted Co2(00)8/A1203 catalyst (run #7887-67-445), 

iii 
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h~t lower than that of ~_he basecase catalyst havin~ the 0.56 Co/Zr 

rat/o. Figure ! ill~tes the diff-_fences iu specific activity 

d~served versus Co/Zr wt ratio at 240°C and 260°C for the three loadin~ 

~ariatioms tested to date. 

Q An FeCo3cco)I 2 cluster on alumina catalyst promoted with potassium. The 

activity of th~ catalyst ~s similar to that of the base~ase 

ColZr/ALIO 3 catalyst, giving similar balk and specific activities. 

Liqu/d fuels salect/vity ~as better than that of the basecase catalyst. 

At 240"C and 260°C, the C5-C23 selectivity was 70 wt% b~t dropped to 60 

wt% at 280°C. Although this catalyst oonta/ned iron, the water-gas 

shift activity w~s no better than the h~secase catalyst. 

A fourth catalyst, Co2(c0) 8 on z/zomm~ ~im~a, with a~=ox~ately the 

Co/Z~ weight ratio of 0.65, ~s activatea using l~ze H 2 for 

a ~ im~r~eme,t iu both a~ivity ~ se/~-~/vity ~s o~v~. 

laitially, at 220°C, CO/~ -- 1.0 a~a 1.85 ~L/g cat/hr, the ~ activi%7 

with syathesis Sas. At higher ~m~atures, 240°C - 280°C, the 

differe~ was not as pronounced, but still a~m~rent with a 15% 

i ~ r ~ .  O~erall, a t  t ~  higher CO/S 2 r a t i o  of  2.0 and zemced 

sp~e velocity of 0.95 ~g cat/~, the rate of ~ i s  S as oenversion 

~ms ~ ~ t  ~ tm.i~zature. The selece/vity pattern showed a 

~reat~_r ~ on temperature than ~ the CO partial pressure. The 

fuels selectivity ~ s  s u b s t a n ~ !  a~ oyez 70 wt% at 2~°C; this 

Task 3 -- S!~qry Reactor Kinetic Studies 

Part of this task was a~ressea this quarter by ~ t~e 

mechanist/c ccncs~s involving olefiu reincorporation. These e~eriments 

were performed by adding I0 to 20 volume percent ethylene to the feed gas 

i 

iv 
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during ~he slurry tes ~ . of the Co2(CO)8/Zr(OPr)4/AI203 catalyst (run # 

7888-33-731, ColZr = 1.15). Hi--t/on of ethylene to ethane ~us the 

major reaction. There ~s little change o b ~  in the hydrocarbon 

selectivity. The selectivity to oxygenates, bowevez, increased from 0.2 

to 2.0 wt%, but with strictly propanol producticm. Propanol aocounted for 

i0 wt% of the oxygenate fraction cempared to less than 1.0 wt% when no 

et~lene was a~ed zo the feed. 
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1.0 ~ O N  

The future use of coal as a transportation fuel will _depend on the 

da~elopmant of an __~c~w~ and energy efficient liquefact/on process. 

The ~ ,~st ~]~anc~ processes are the direct liquefaction ru~te 

involvin~ the dissoluti~ of ~ in a solvent ~ by a 

hydrogena~ioo and the indirect route in ~hic~ coal is first gasified to 

synthesis ~as followsd by the Fischer-Tropsch reaction. The indirect 

liquefactio~ process is the only one current ly  pract ic¢~ cc~.rcially and, 

in this respect, has a firm data base of practical experience. 

The Fischer-Tropsch react/on, in wh/ch carbon mm~3xide is reduced by 

hydrogen and polymzrize~, prcnA~es h y d z ~  with a brosd range of 

~lecu/ar w ~ ,  from mWcha.e to paraffio ~xi~. This ~eates t~e 

for further a~mstrmm pro~ssiW such as h y ~ ~  a~d light o~fi, 

oligomerizati¢m to ~mize the yield of liq0/d ftlel ~ro~mct. Since the 

disccuery of the Fir, c h e _ , , - T r o ~  reacti~, extensive research has 5~. 

a~ ccntrollim~ the ~ro~ct selectivity in ¢=~er to minimize 

~m~tream refiai~ and still r~ains a prime target for imxmat/~a. 

Previous research has shows that sele~/v~ty is mainly eootzoll~ by 

c~mlyst ccm~c~tio, and process uo~/~/ms. Despite the ~st ~f~t in 

catalyst research, no zatalyst has been ae~lop~d that y~elds a ~ow 

product ~/stribution of only 9asoline ~ diesel fuel. Because of this, 

vcoar~c ~ectivity has been ~e ~ y  ~mtr~ by mnipala~ 

process co~]/~/ons. 

Since the FL~.her-'l 'rops~ r ~ . i o o  is exo'd~m~c, ~ of the 

r e ~ - - ~  beat plays a m:~x  ~ in ~ ~ s e l e c ~ . t l r .  

the  ca ta lys t  in a l i q u i d  ~aJ.um ~ f e r s  t he  best: means of beat 

transfer and temperature control. T~ms ~lurry pha~ uperation has been 

s ~  t o  ~ w  ~ ~ q u ~  p r ~  se2ec~vi~y ma~.Ly by l o ~ _ r ~  ~ e  

] ig l~  gas y i e ld .  ~ e  ~ o~ 4ata  f r ~  s lurry phase ¢ l~mt ion ,  however, 

is i/mite~ to only a few studies and significant differences have been 

repcET.ed in yi~, aatalyst life and ease of operation. Ome consistent 
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c~servatio~ is the Ic~_r gas yields and improved g~soline and diesel 

product selectivity. The i~roved tempera~nre oontrol has allowed this 

technology, to be useful ~n convert/rig carhx~ mon~id~-ricah syn~h~sis gas 

from the latest coal gasifiers. Slurry phase operation a/so appears to be 

m~re a~nable to suale~9. Much research remains to be done to fully 

determine the potential of slurry phase Fischer-Tropsc~h processing and its 

further development is an im~x)rtant part in o/r country's program to 

establish viable technology for converting coal to conventional 

~=mr~ ~ .  

Under prior comtract number DE-AC22-80PC3002! with the Department of 

E~rg7, Air ~zoducts and ~micals, I~. develc~d ~veral n~ 

slurry-phase Fischer-Tropsc_h catalyst systa~ that provided enhanced 

~_l~T/vity to liquid fuel lx~ducts. O~ group of these catalysts was 

particularly novel in that it ~as Prei~red by ~rt/~ im~tal carboayl 

clusters on alumina which had been modified by prcm,~ters. To further 

~alup and imgruve these catalyst systm~s, Air PrcdncT_~, ~/ the ran-rent 

contract to DOE, has begun a program to reprO, evaluate and 

characterize these catalysts in detail. Ezm~nati~ of the catalyst 

k/netics in the slurry ~m~se, along with fuel product characterization 

will be used to i~rcue process design. Encwledge gained fr~ these 

studies will p~ide a basis for the develo~mmt of ~vel im~oved 

catalysts a~ prO~ess ~ for the se!~'tive p=oduction of liquid 

~ o ,  fuels fram syathe~is gas. Work ac~mplishea in the thi~a 

q~un~_r is 4Mscribed in th~ re;oft. 
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2.0 

The nmjor goal of this project is to thcr~Ighly investigate the 

pre~ra~i~, c~a rac t e r i z a t i co  a~d p e r f ~  of  metal  ~ i  uluster- 

bas~ ~ys~ e= use ~- ~ ~ PL~mer~h ~ .  ~s 

this u=]er~.aadisg of catalyst behavior increases, impru~d catalysts will 

activity, lifetime and s~ leu t ive  p r ~ d u c t / ~  of  ltqu.Ld f u e l  ~ .  Th8 

obj.-tires will be addressed by the following f~ur tasks: 

Task 1 -- Develop a project work plan which presents the de~ailed 

activities to be performed in achieving the objec~ves of this pm~ec~. 

This task has been cumpleted in the first quarter. 

Task 2 -- D~el~ ~ ~  ~ ~31t and r~m/.~ ~ I  

prior work at Air Pro~r~s under ~ cQmx-6ct number ~-BZ22-OOPC3~II, 

which has ~ ~t ~ ~ ~ m ~ a i f i e d  almsinas exhibit 

slurry p~%se F ~ ~  process. New catalyst em~x~iti~ns ~esigned 

to give eshamm~ selectivity to ~ fuels will also be ~ .  

In  ~ / s  t a sk ,  c a t a l y s t s  w i l l  be e m l u a ~ d  and t e s t e d  fa r  t h e i r  

p~.e,:~-i~ ~:~ a:~ve.~ syuU~s i s  gas int.o l.iqu.ia b~L-o=azb~ f u e l .  

Cat~ll, s ~  w i l l  be s u ~ / e d  by a cu, ,bination a f  ~ in s t i r r e d  and 

fixed-bed reactors and will be evaluate~ ~ the basis cf activity, 

selectivity, s~bility and aging. In aadinio~, catalysts will be 

ChaZ-dcterizea by surface and bulk analyses. 
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• Imprc~-in~ product selectivity for liquid fuels and reducing the 

yield of methane 

Developi~ catalys~ systems active at high C0:S l ratios 

• Incorporating ~ter-~/as shift activity, either directly in the 

~lyst or utilizing a mixture of catalysts in the slurry 

Task 3 --The b~selim~ catal~ uomRusiti~s ~.riwd frum both cobalt 

and m~thenium carbonyl clusters will be used to establish baseline slurry 

F~-Trcgsc-h rate constants and activation energies. Then the more 

active and selective slurry catalyst co~:~sitions, identifi~ under Task 

2, will also be used in deriving slurr~ FT kinetic parameters. An 

existLng backmixed CSER mzdel will be used in fitting the kinetic 

Rat-embers. The kinetic parameters obtaim~ will then be input to a 

three-ghase bubble column omputer model in order to predict conversions 

an~ space time yields in cum~_rcial scale bubble column units under a 

range of ~rating co, diticms. 

An ~ will he made to determine kinetic expressioms that 

~ - ~  the rate of foz~atic~ of indi~ prcnJ/cts cr product 

f~actions. This will be used to predict space -time yields cf individual 

prcnk~= ccmpocmnts or fuel fractions in a ccmrercial scale bubble coltmn. 

Finally, mmchanistic comcepts will he e~mmix~, such as ~lefin 

~ t i ~  into growi~ chains, by ~ smU am~nts of olefJas to 

the feed and ~ the effect on product selectivities. 

Task 4 -- In this task, h!~rocar5o, proauct fracti~s, ac:umdat~ 

from some of the longer slurr~ tests of the ~%=r~ea ~talysts, will he 

~KI~ under ~mstant prozess ~x~litions and subjected to a series of 

tests to evaluate their properties as specificat/o~ fuel. 
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3.0 RESULTS A~D DiSCOSSION 

3.1 Task 1 -- Project Work Plan 

This task ~s completed and reported on in the first quarter. 

3.2 Task 2 -- ~ of Improved Supported Catalyst ~'~iei~ 

{a) Catalyst Pre~aration 

( i )  Co(~O3!21Zr(OP'z)4/A,1203 (batch #8466-2) 

A =re ~av~tio~1 Wepar~d~ of the co/zr/al2o 3 

catalyst %~s examine~ by us~ CQ{~3) 2 as the cobalt ~ 

place of CO2(CO) 8. The source of ~ ~ m  was still 

Zr(Ci~) 4 but it was foumd that in solu~ {L~s[~am~l) the 

material ~ be ~ ~ t s ~ e  the dry ~ with 

the s - ~  fasbic., ~ the s ~ r t .  A~.er imBreg,ating 

alumina with Zr(C~c)4/isoproga ~ solution, the m~arial ~s 

air ~rie~ for 2 days then dried at 120"C for 3 I ~ .  ~ WRS 

them impregnated to incipient wetness with agueous Co(E~)2, 

dried uvernight at room t~Exn-a~Jre, then at 120=C for 1 hour 

and finally at 300=C for 6 hours, all in air. Elmmmtal 

analysis of the resulting oxidized materi~ gave the followimg 

results: 

ca uat  

Wt % CO 4.3 4.2 

Wt % Zr 7.5 7.i 

CO/ZE 0.57 0.59 
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A pre~rati~ of the h~mse Co/Z=/A.1203 em~osition ~s 
scaled up by 70% from the previous large scale pr~aration 

{batch # 7864-I010-3TI). This 366 g batch %~s the largest 

prepared to date and was made by the standard procedure. The 

~mpositio~ ~btained for this verf large scale pr~p was quit~ 

~ l e  to that of t..he, pz'm,"i~:xs large scale 

preparat/on as shown by the foll~ eiemautal analysis: 

Batch~6~4 Batch 7864-1010-371 

Wt % Co 4.0 3.8 

Wt % Zr 6.4 6.8 

Co/Zr 0.63 0.56 

This ~s further support far goud reproducibility in the 

pre~mticn of these catalysts both dnri~ scale-~ and. 
different preparers. 

As part of the effort to es~ntue the effect of metal 

loadi~ on catal~t performance, a large hatch C387 g) of 

c.o2cm o/ cc  -=   2o 3  J.ng 

following ~ l~xli~s were ~ b ~  by e l ~  a~l~is- 

Calculated Found 

Wt % Co I0.0 10.8 

Wt % ~r 8.4 8.5 

Co/Zr 1.2 1.3 
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The Zr loadLng was not increased in the same proportion as the 

Co loading to facilitate the preparation of this high loading 

catalyst. 

All of the catalysts gas 12tase te~ed this quarter were 

~/vated using either the previously described syncs ~ e  {see 

October - December 1984 Quarterly R~ort) or a l~tre E 2 procedure as 

described in Sectic~ 4.1b. S~.ific run conditions did vary some~mt 

and are ~x:um~nted accordingly. Gas phase perforn~nce data is 

~ i ~  in T~ble i. 

first t%~ quarters of this cumtr~ but mo ~ .  referaDL~ 

point had ~ es*~I~l~.~ for the c~o~Kl, cobalt 

n i ~ ~  catal~ts. This ~ point ~as 

~ l ~  prepared ~ 0o(~3) 2 in place of ~(CID)8. 

sy~as and pure B 2 aotivation ~xC,=~ w~re e~ned f~ this 

catalyst and the re~its ~e as follows: 

(a) Run | 7977-52-2 r Bai~h # 8466-2 

this run, the cobalt ~ ~ ~  ~ ~  

state as it was initially charg~ to the reactor. 

Testing w~ carried uut at 240-280°C, 300 p6ig, i:I 

CO/~ and Iii0 G~'V. ~ct~vity ~as minimal at 240°C add 

too little pruduct was generated to ~ a nmss balaDce. 

At 260°C, bo~mver, bulk ~_ivity was 23 mol ~mgas/kg 
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cat/b/ with symgas conversion of 36%. This is slightly 

less active t~mn the cobalt carbonyl derived ca~-~alysts 

runn/m~ at 240°C. At 280°C, the bulk activity incTeased 

tO 39 ~I syngas/kg cat/hr with total C0 + H 2 conversi~ 

o~ 59%. AiT/x~h the activity may have been ic~_r than 

the carbonyl catalyst, the" selectivity ~as quite 

ccmgarable a~d surprisingly ~ms inde~_~dent of run 

tm~erature. 

(b) Run # 8413-i-2 r Batc/h # 8466-2 

A pure h~rogen autlvation was then emminea on the 

same batch of cabalt nitrate-derived catalyst. Ryarogen 

at 3000 hr "I ~s~ a~ 0 psig was passea ov~ the cata11~t 

as it was heated to 300°C and - ~ t ~  there fcr 16 

h~=s. Suhse~ently, the te.l~.zmt'ure was ~ t.o the  

desired re~i~ ~ture, ~=bon mmx=iae was 

introduced to give I:I C0~ 2 at I000 ~ and total 

pressaze was i~creased to 300 psig. 

The gas phase results showed that B 2 activit_ion did 

impr~e the activity. In Table 130, the resuits o b ~  

frum the nitrate-derived catal~t using both act/ration 

p r ~  are cm~ered with the tess/is fram a 

~l-derive~ cu~osition a~ci~ with slmg~. 

'Zc~2tical specific activity to the s~eate~ 

catalyst was achieved with the E2-treated catal1~s¢ at 23 ° 

lower temperature. The ~ activatea catalyst even 

bulk activity of 9 tool syngas/kg cat/hr and 13% syngas 

ccoversion at 220°C. Using The stamdazd s!mgas 

activat/on, no activity ~s observed even at 240°C. The 

co,salt ~l-deri~ed catalyst activated with syngas, 

, w~s still slightly ~re active than the 

8 
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~2-trate~, ~ t  nitrate-based catalyst at similar run 

coalitions. 

The nitrate-derived catalyst, activatsd by either 

prauedure, showed increased wax select/vity which ~as as 

high as 20 wt% for the. 240°C run. This nmy be due to 

la rger  c~it particle sizes cbta/ned by using CoC1~03)2, 

~bich i s  less reac~:ive than Co2(CO) ~ w i th  the P.!20 3 defect 
sites and, thus, not as prone to r~mLin hi~zly dispersed. 

The ~ d/stribution reflected a ts 'oical  

Schulz-Flory -w~ni~. 

~ 3  ~ i ~ _ i c Q  ~as pre i~re~  t o  fur ther  c c ~ i r ~  the  

~ i ~ i ~  of  ~ e  ~ e p a r a t i c .  ~ b~t  raze  

i ~ c ~ c a n u l y  t o  o ~ r e  the  ~ d a r d  ~ ac t iv -~ i~n  with pure 

a ~ i v a ~ .  ~ a c ~ i v a ~  ~ a c c e  ~ i ~  n e a t  s 2 a t  0 
p s i g ,  300°C and 3000 hr - 1  ~ fo r  16 ho~rs .  

(a) Z~.m# 84~-12-4 r ZZa'tc~#8466-.4 

t h i s  t e s t ,  the ,'~tal"3~-t ~ ~t.%val:ed wi'c.l~ 

previous  C o 2 C C O ) ~  cmtal]~-ts. R~_ 240"C, C~/H 2 = 1.0 

and I000 hr  - I  G~V, t he  bulk ~ . i v i t y  ~ av~-age a t  21 

mcls s l m ~ s / k g  c a t / h r  with a s l m ~ s  conversion of  48%. 

s ~ _ ~ i c  a c t i v i t y  a p ~ a r e d  s c ~ n a t  l~w a t  0 .z6  

co/H~ Colmd.a. Liquid fuel (C5..~) s~_l~_ivit'y ~ 

~ 2 p i ~  a t  60 ,qc@. All the r e s u l t s ,  ~n,-1,,a,~ng th~se a t  

2200C and 260°C, are  s L ~ a r i z e d  in  Table 1. 
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(b) ~ # 8413-20-4 r Batch # 8466-4 

A charge of fresh catalyst from the s~me batch ~Bs 

~_hen tested after activating with p~re B 2 as described 

able. Hydrogen activatio~ resulted in higher a:tivity, 

especially at lower run tesperatures (220 ° a~d 240°). At 

260°C, the difference was minimal and slightly higher 

conversions w~re d~erved fur the syngas a.~tivated 

catalyst but this ~s probably a result of the Ic~_r space 

velocity used for this test. At 220°C, both bulk and 

specific activity more than donbled. At 240°C, the 

increase in activity ~s less but still significant at 

27%. There ~as .o significaQt difference in hydrocarbon 

selectivity ~ the two activatio, proce~zes. 

(c) slurry Phase Testiw 

Four catalysts were test~ in the 1 liter slurry phase reactors 

this quarter. In each case, a + saries of ~ting o~rlitions was 

invest/gated to determine the ogcimum for activity aria hydrocarbon 

selectivity. The followir~ three catalysts ~re test~ folluwing the 

synthesis gas activatio~ method ~ ~ a  in the ~ gas 

phase reactor= 

• t i ~ . a . i ~  p r ~  Co2cco) 8 m al~i~ in ~ ~ tba 

zirconium proffer 

• z / r c ~ i u m  prom~.ed Co2(CO) 8 on ~ with a metals ratio, 

Co/Zr, of 1.15 to comgare with the sta~Sazd ratio of 0.56. 

• FeCo3(c0)I2 on alumina p ~  wlth po~sssiusu 

A forth catalyst, Co2cc0) 8 on zirco, ated alumina, with 

approximately the standard Co/Zr w~ight ratio of 0.65 was activated 
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with ~ for c~arison to synthesis gas activat/on. Representative 

data frc~. these tests aloDg with previous test resul~s of the 

catalysts tested in quarters 1 and 2 are summarized in Table 2. The 

details of each of this quarter's catalyst t~-ts are given below. 

( i )  Co2(cO)8/Ti(fK~r.)4/AI~3 - 7888-1-589 

The test of Co2(CD) 8 on alumina prc~uted with titanium was 

completed this quarter. The major objective of this test was 

detainee the effe~ of titani~ ~ ~ ~ a~/viry -~ 

hydrocarbon selectivity. The details of the preparat/on ~nd 

activation are given in section 4.1. 

The a~ivity, c~v~si~ ~d ~le~civity ~ta of the ma~Jr 

s~ple points a~ s~mrized in T~le 3. ' ; ~  ind~vidaal aass  

~a l~ne~ o f  t h i s  s c r ~  t e s t  are ~ i n  Tables 4-33 and 

illustran~ in Figures 2-41. 

The first five nmss balances ~re ~ at 240°C, with 

variations in the CO/E 2 ratio of l.O to 2.0, spaoe v~locities 

of 0.9 and 1.8 RL/g cat/hr, an~ pressuzes of 300 an~ 600 psig. 

T~ t~t ms initia~d at CO~ 2 = 0.98, 300 ~g ~a 1.8 SL/g : 

cat/hr (sample 4, Tabl~ 4-5, Figure 2}. q~e bulk activity of 

24.9 tool syngas/kg cat/hr was c ~ l e  to the z~ted 

catalyst ac~ivitT {Run #7595-60-C48.4]. ~he specific activity, 

~ ,  uas low at 0.22 mo.ls CO/m~l Co/rain om%~d with, for 

example, the Ru3(cO)I 2 o~ z i rcooated alumina (Run # 

7887-36-478). The selectivity fur ~ fuels, C5-C23 , ~s 

high at 63.8 wt% of the total ~rccart~ms. 

The CO/B 2 ratio wes next raised to 1.5 in an attract to 

the ~er ~ ~ the heavier -~,~ ~_ight 

region (smile 6, Tables 6-7, Figure 3). The results uere 

promising with an increase in the C5-C2 3 selectivity to 68.1 

11 



- ~ KEENTIALIX P~ABLE DATA -- N~E ;CR POBLICKTION - 

wt%, hut with a nearly 40% ~crease in hulk activity to 17.7 

tool syngas/kg cat/hr. The activity further fell to 13.7 tool 

syngas/kg cat/hr at CO/S 2 = 2.0 with no ap~ent improvement in 

fuels sel~tivity (sample 9, Tabl~ 8-9, Figure 4). The 

~es~mai~ ~crease in specific activity to 0.14 tools C0/mol 

Co/rain indicates poor ~ter-gas shift activity at high CO/~ 

feed ratios. 

The space velocity ~s then lowered to 0.9 hV~/g cat/hr 

maintaining the CO/~ at 2.0, and pres~re at 300 psig (sample 

12, Tables i0-ii, Figure 5). The effect o a  ~ e  hydrocarbon 

selectivity %~s negligible. The overall couversion increased 

by 43% with eqlivalent ir~reases i~ the ~ and CO conversions. 

The usage ratio continued to be poor at 0.6. 

The operati~ pressure was next raised to 600 psig a ~  the 

CO/S 2 ra t i o  loeered to  1.6 (sample 15, Tables 12-13, Figure 6~. 
A substantial increase in  m~thame sele~e/vity to  11.3 wt% 
o~m~ with a c o r r ~  ~crease in fuels ~_lectivity. A 

23% decre~e in overall uo.persion was also ob~ve~. 

The next five test conditions ~-re tom,meted at 260°1C-. At 

CO/~ = 2.0, 0.9 NL/g cat/hr, and 300 psig (sample 17, Tables 

14-15, Figure 7) a 16% inurease in ~tivity to ii.I ~DI 

~/k~ cat/hr over sample 12 at 240°C (other 0~erating 

uoo~/tions the same) was d0served. The se lec t i v i t y  to l i qu id  

fuels, C5-C23, returoed to the 65 wt% level of sao~le 12, but 
wi th s t i l l  a high m~haoe se lect iv i ty .  

The space velocity ~s hen ~ to 1.81 ~/g cat/hr 

(sample 20, Tables 16-17, Figure 8). Compared with the lower 

te~rature results at the same CO/~ ratio, space velocity, 

and total pressure, the bulk act/vity was 17% higher at 16.0 

=DI syagas/kg cat/h~, with the same total fuels s e l e c t i v i t y  o f  

12 
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55 wt%. The increase L-. methane selectivity to 13 ~% from 8 

wt% indicates a redistribution of products to the ligl~er 

uDlecular waight region with increasing temperature. 

At 1.81 NL/g cat/hr, the C0/~ 2 ratio was nmxt l~rad to 

1.5 (sample 22, Tables 18-19, Figure 9). The ~ activity 

increased to 17.8 tool syn~/kg cat/hr with a slight increase 

in methane select/vity to 14.5 wt%. In ~eneral, the ~erall 

hydrocarbc~ distribution d/d not clmnge. The effect of 

doubling the ~ressure to 600 psig ~s tested next. 

At 258°C, CO~ = 1.4, 600 psig and 1.87 NL/g cat/hr 

[sample 24, Tables 20-21, Figure i0), the bulk act/vity ~as 23% 

higher than at the similar cond/ticms at 300 psig. The 

yield fell to 61 from 65 wt% with a ~Lsttibutlcm cf 

into the lighter molecular waight r~inn. An ~ at 

~ i ~  ~ ~ by red~ t~ spece ~i~ to 

0.96 I~L/g cat/hr failed {sample 26, Tables 22-23, FiXate ii). 

The increase in mz~%m%r/on act/vity ~ with a 

corresp~ reduction in fuels selectivity. 

D~inS the next three mess balance days, the-tmuperam=e 

~s ~ at 280°C (samples 31, 33, and 35, Tables 24-29, 
Figures 12-14). At this point it %ms dmrious tha~ the catalyst 

bad deact/vatea since activities lower than at 260"C w~re 

observed. Thin ~s ~ ccofirm~ ~en t~ ~rati~ points 

fro= the ~iuo/~ of tree run w e r e  r ~  to ch~.k for 

reproclucibility {samples 37 add 41, Tablas 3~-33, Figures 

15-16). Sample 37 ~ms 50% less active than sample 20, aod 

~ample 41 ~s 117% less active than sample 9. The methane 

~.lectivity was 16 wt% and 22 wt%, respectively. 

15 
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The screeni~ test of C~(O0) 8 on zireonated alumina with 

a metals loading of 5.07% Co and 4.39% Zr (preactivated) was 

uumpleted this quarter. The mjor objective of this test was 

to determine the effect of the Co/Zr weight ratio loadin~ on 

catalyst activity ar~ selectivity. The following three tests, 

with varying Co/Zr ratios w~re then cum~xable: 

mm ~o. wt% co ~% zr co/___~ 

7595-60-C48.4 3.81 6.84 0.56 

7887-67-445 4.71 0 

7888-33-731 5.07 4.39 1.15 

The synthesis gas activation method used and the details 

of the catalyst pref~ration are i~cluded in Section 4.1. The 

a~dvity, ~mm_rsion m~ sal~'t!--it7 &~a of the mjor sample 

p~ints are sum~ized in Table 34. The indiviaual mass 

are listed in Tables 35-66 and ili%~strated in ~igures 

17-30. 

The test was initiated at 240°C withJthe folluwlug four 

CO~ feed ratios and ~ velo~ty ehan~s: 

8 1.01 1.76 

i0 I. 69 i. 69 

12 2.00 1.72 

16 1.95 0.86 

The highest liquid fuels selectivity of 70 wt% C5-C23 ~s 

obtained at the sample 8 conditions (Tables 35-36, Figure 17). 

The bulk activity, huw~er, %~s only m~liocre at 15.3 tools 

syngas/kg cat/hr. The CO~ 2 ratio ~s increased to reduce 

14 
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methanation activity (samples I0 and 12, Tables 37-40, Figures 

18 and 19). The major result was a threefold increase in %~ax 

~vity to 12.6 wt% C24+ , with only a 26% rec%uc~,ion in 

methane selec%ivity to 8.8 wt%. This trend was accompauied by 

a ~ decrease in bulk ~ivit7 to 8.7 mol ~/k~ 

cat/hr. 

The shifting of products to the heavier molecs/ar waight 

region continued at a ~ space velocity of 0.86 ~/g cat/hr 

(sample 16, Tables 41-42, Figure 20). An apprcximate!y 4% 

reduction in liquid fuels selectivity was ubserved. The 

overall conversion ~s 16% lower than expected ~ halving the 

space ve loc i t y .  The usage r a t i o  ~ no in~cv~e.-~t in  

water-gas shift activity with values in the .0 .3-0.5 range for 

the above fesl ratius. 

The following six process co~ticos %~re next tested at 

260"C: 

21 1.94 0.86 

24 0.98 " 0.86 

28 0.98 1.73 

33 1.46 1.73 

36 0.98 i. 41 

39 0.98 0.71 

A 65% iscrease in balk ~T/vity to 12.4 tools ~ / ~  

cat/hr ~ms obtained at the sample 21 c~naitions as a result of 

the 20°C increase in temperature (Tables 43-44, Figure 21). No 

appreciable ~ in hydrocarb~ ~lectivity w~s ~em~l. At 

the same space velocity, the C0~ 2 ratio was next r ~  to 

0.98 [sample 24, Tables 45-46, Figure 22). A 35% increase in 
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~ivity aocompanie~ hut a 75% increase in ~thane 

selectivity ~s observed. 

The space velocity was next returned to 1.73 NL/g cat/hr 

(sample 28, Tables 47-48, Figure 23). An 80% increase in bulk 

activity ~s observed with a specific activity of 0.16 m~l 

CO/tool Co/rain. The change in hydrocarbon d/stribution was 

negligible compared with sample 24. 

The C0/~ ratio was next increase~ to 1.46 to try to 

reduce mehhanatic~ activity (sample 33, Tables 49-50, Figure 

24). The selectivity to liquid fuels returned to the high 68 

wt% cbserve~ previously, ~it the methane selectivity remained 

high at 14.9 wt%. Because of poor ~ter-gas shift activity, 

~/~ ~r. 

The results of samples 36 and 39 (Tables 51-54, Figures 

25-26) were good indicators of the effect of space velocity oo 

product selectivity. At a space velocity af 1.41 NL/g cat/hr 

the methane selectivity was 16.6 wt% and the ~ax selectivity 

~s 8.0 wt%. ~ the spac~-valocity ~s halved, a definite 

tremd ~ shifting pr(x~ucts to the heavier m~lecular weight 

region ~s observed. The ~x selectivity nearly doubled to 

15.6 w~%. It iS w:mT_h noting that the bulk activity was half 

that of sample 36, 12.7 mml ~/kg cat/hr. No appreuiabl~ 

deactivation was apparent at this point. 

~e next set of cooditions which %~re investigated were at 

280°C: 
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44 0.96 0.71 

47 i. 94 0.70 

52 1.95 1.40 

A i0% ~ e  in activity was cbserve~ f= sas~le 44 

(Tables 55-56, Figure 27). This was ac~ed by a 76% 

increase in m~hase selectivity a~ a ~ L ' ~ e ~ : , ~ d i ~  ~ in  

licDiid ~els selectivity to 49 .i wt%. Increasing ~ CO/H 2 

ratio to 1.95 improved liquid fuels selectivity by 10% to 54 

wt% (sample 47, Tables 57-58, Figure 28), but this was 

sabstantially lower than the 70 ~% selectivity observed at the 

initial cuoditicms at 240°C. When the space velccity %~s next 

raised to 1.40 l~..,/g (~./hr, an 8% increase in fuels selectivity 

was observed (sample 52, Tables 59-60, Figure 29), but at the 

expense of a 24.4 w~% methane selectivity. 0nly a 44% i~zease 

in bulk activi.~y resulted upon doubling the slmce veloc i t 'y .  

~e rp--~-A~ of this test was devoted to aeterminlng the 

effect of ethyle.e ~a~i~n on h1~kocarbon selectivity. 

c l u s t e r  ~ with K with a m e t a l s  loading  o f  0.78% Fe:  

2.44% Co: 0.02t  K (preagt.i.v-at~) ~ s . c o s P l e t e d .  T ~  ,,=:~¢: 

ob jec t ive  o f  t tKs  t e s t  ~ to  d e t e m i n e  i f  t . ~  K pccmoted, 

mixed Fe/Co c l u s t e r  c a t a l y s t  has any advantage in e i t h e r  

a c t i v i t y  vr  s e l e c t i v i t y  over t h e  urzpr, mr,.ed Fe/Co ~mtalys t  

test,,,~ ~ y  (Rim # 8385-..22-677). 

~e synthesis gas activation method was the same as that 

used for the ~we ~o catalysts. This, along with the derails 

of the preparation, are presented in Sectio~ 4.1. The 

activity, c~nversion and selectivity data of the major sample 

17 
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points of this screening test are ~ized in Table 67. The 

individual mass balances are I/ste~ ~2 Tables 68-94 and 

illustrated in Figures 31-45. 

The test %~s initiated at 240"C with the foll~ng four 

CO~ 2 feed ratio and space velocity changes: 

S~ple ~__~ • ~L/q cat/br 

3 1.01 1°6 

6 1.52 1.6 

8 2.01 1°6 

i0 2.02 0.7 

T~ general =end during these first ~ree test eo~/~ 

(~m~les 3,6 and 8, Tables 68-73, Figures 31-33) ~s a decrease 

in activity with i ~ e a ~  O0/S 2 ra~/o az~ i~Tease in the 
selectivity of I/quid fuels from 58.0 t o  62.8 wt%. The 

selec~/vity to m~ne, as ~ ,  sbuwed a similar tre~, 

i.e., a reducti~ from 14.0 to 9.8 w~%. When the space 

velocitT %~s reduced to 0.7 NL/g cat/hr for sample I0 (Tables 

74-75, Figure 34), the prc~lucts shifted to the heavier 

m~l~ waight region, hut with a redl~ction in liquid fuels 

selectivity to 62.7 wt%. The next five- test cow, ticks were 

c~nArted at 260°C: 

coA~ ~/~ cat/br, 
11 2.02 @.7 

12 2.03 1.6 

15 1.52 1.6 

17 1.01 1.5 

20 1.00 0.7 

Sample 11, at the same CO~ 2 ratio and space velocity as 

sample i0, ~ an 86% increase in activity (Tables 76-77, 

!g 
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Figure 35). The 11% increase in fuels selectivity to 69.3% was 

a result of the shift in ~x products into this range. This 

general tre~ co.tinu~d when the space velocity was raised to 

1.6 I~.,/g cat/hr (sample 12, Tables 78-79, Figure 36). At these 

ccud/ticms, the fue/s yield ~Is the highest at over 70 wt~, 

camparable only to that of Ru3(CO)I2/Zr/AI20 3 (Run # 

7887-36-478 ). 

As the CO/H 2 ratio wQs reduced to 1.5 and then to 1.0 in 

the next t~ samples 15 and 17 (Tables 8.3-83, Figures 37-38], 

the selectivity to methane increased from i0.0 to 16.7 wt%. 

When the space velocity was next r~luc~ to 0.7 bEJg ~r, 

the fuels selectivity increased once more to 66.2 w~% (~m~le 

20, Tables 84-85, Figure 39). 

The following five c%~rating c~mditioms were cQmducted at 

280°C: 

sannle  ~ ~ / q  ca~'hr 
1.00 0.7 

24 2.02 0.7 

27 1.01 1.5 

29 2.03 1.5 

33* 1.96 1.5 

*625 psig 

A 37% increase in bulk activity to 19.1 tool syngas/kg 

catInr wes ob~uned f~ sample 22 (Tables 86-87, Pigure 40). A 

s l . i g ~  s h i f t  in ~ d i s t r i b u t i o n  p c o ~ ' q d  a ,--thane 

$ e l e c ~ v i ~  of 15.3 w~%, but with no appreciable change in 

fuels selectivity c ~  with smmp!e 2~-at 260"C. b~en the 

CO~ ratio ~is raised to 2.02 (sample 24, Tables 88-89, Figure 

41), a 5% imcrease in fuels selectivity to 70.I wt% was 

19 
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observed. Unfortunately, a drastic 67% reduction in activity_ 

%~s also the result. 

In the next two samples the space velocity %ms raised to 

1.5 lq4'g cat/hr (samples 27 and 29, Tables 90-93, Figures 

42-43). Once again, the effect of the C0/~ ratio on activity 

and selectivity was observed At C0/~ = 1.01, the methane 

selectivity %ms 19.1%~% and the activity 27.3 mml syngas/kg 

cat/hr. When the ratio was raised to 2.03, both the activity 

and methane @o_lectivity fell to 17.5 I~! sync/as/kg cat/hr and 

13.9 wt%, respectiuely. The selectivity to fuels improved to 

64.7% with an increase in the C0/B 2 ratio, but not to the level 

observed at 260"C. 

To determine the effect ¢~ high pressure c~eration, the 

total system pressure was raised to 625 psig Csample 33, Tables 

94-95, ~igure 44). A 43% reduction in a~_ivity ~s observed 

ana a ~ reduction in total f~zls selectivity. This again 

verified the negative effect of higfi pressure op~ation cn both 

the activity and selectivity of these caealysts. 

; For a final check on catalyst performance, the process 

conditions were returned to 240oC, CO~ = 1.0 and 1.5 NL/g 

cat/hr (sample 36, Tables 96-97, Figure 45). The activity, %~s 

4.1 ccmpared with the original 11.3 tool sln~as/~3 cat/hr of 

sample 3. This urns probably due to the ~_ration at 625 psig. 

3 - 8 3-i-4 

The objective of this test %~s to try to improve catalyst 

~vity ~ ~i~ a s 2 redi~:i~ ~ ~ ~e usml ~me~is 

gas au-tivation procedure. T~ metals loadings of this 

catalyst, 5.06 wt% Co and 7.82 wt% Zr, ~s similar to ~hat of 

the basecase catalyst (Run # 7595-60-C48.4). 

20 
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A ~escript/on of the activation and method of preparatioa 

are detailed in Section 4.1. The activity, conversion and 

selectivity data of t2~e ~ajor sample points of this screening 

test are summarized in Table 98. The individual mmss balances 

are listed in Tables 99-129 and illustrated in Figures 46-62. 

Process cooditions at a lo~_r than usual t~%~.rature level 

of 220°C were tested initially ~ae to tale high a.~civity 

d~./ved in the gas phase test: 

2 1.00 1.85 

4 1.48 1.86 

7 1.43 0.95 

As suspecte~, even at 120°C, it ~ms apparent that the 

~-ti~ ~ i~r~ catalyst activity 

az-~mt~cally. Compared with similar test ~,a~+i,,~ f~ the 

basecase catalyst (7595-60-C48.4), the bulk activity of sm~le 

2 (Tables 99-100, Figure 46) wins 80% higher. Also, the methazw 

selectivity %~G 28~ lower at 10.6 Vc% and the total 

fuels selectivity ~as 13% greater at 62.i wt%. With an 

incrQase i n  the  CO/B 2 ra~.o aad ~ o .  i n  ~ vel~ity 

(smmple 4 and 7, Tables 101-104, Figures 47-483, the tremd 

~d ~ ~. 

The following four process csnditinns tested were next 

conducted at 240°C: 

I0 1.43 0.95 

13 1.88 0.94 

21 
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17 1.99 1.87 

20 0.99 1.86 

A 38% increase in activity %~s chserved for sample i0 

(Tables 105-106, Figure 49). Interestingly, the liqu/d fuels 

selectivity increased from 64.0 to 67.2 wt% with a reduction in 

methane selectivity to 7.8 wt%. The C0/~ ratio was then 

ra/sed to 1.88 (sample 13, Tables 187-108; Figure 50). The 

major ~ffect was the reduct/on in %~x seleC~vity, ~4 +, to 8.3 

wt% from 11.7 wt%. The next two samples, at double the space 

velocity (samples 17 and 20, Tables 109-112, Figures 51-52), 

ver'i'Fied t he  t r eods  which were observed with t he  

synthesis gas activated catalysts, But appeared to he more 

proaolmced when the ~ activati~ ~ %~s used. Figure 53 

i L 1 a s t r a ~  t h i s  t : r e ~  in  decreas ing ~ ac--CJ.vity with 

CO~ ratio a~ the %%D space velocities stuaied. The maximum 

fuels selectivity obtained at 240°C %ms high at 69.3 wt%. 

The performance of this catalyst %ms next investigated at 

2600C at the foll~ring couaitions: 

25 0.99 1.86 

29 1.48 1.87 

32 1.44 0.95 

34 1.87 0.94 

, ~ . ~ ,  m: the ~ CO/e 2 r a t i o ,  the ~ ~-t.i~:U-y 

coosiderable at 38.5 tool ~/kg cat/hr (sample 25, 

Tables 113-114, Figure 54]. The s~?/fic activit-/ %ms the 

highest, 0.32 tool CO/m~l Co/rain, of the Co based catalysts 

tested to date. The Ru3(C0)12 catalyst tested in the last 

quarter (Run # 7887-36-478) had better specific act/vity, hut 

not ~ik activity. The hydr~ distribution w~s more in 
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favor of fuels, production with over 70 wt% selectivity. The 

three remaining samples at 260°C followed a similar trend in 

bulk act/vity with space velocity and CO/~ 2 ratio changes as at 

the prcwious t~D temQeratJ/res studied as sh~% in Figure 53 

(samples 29-34, Tables 115-120, Figures 55-57). 

Finally, the temperature v~s raised to 280°C for tests at 

the foll~n~ co~dit~s: 

oo/B 2 ~.,/g (~tA= 

38 1.88 0.94 

40 1.43 0.95 

43 1.48 1.86 

47 1.95 1.85 

The data f ~  the ~ ~ in bulk activity, but 

this ~ ~as sot ~ ~ as ~ l r e v l ~  
~ture ira=eases (smOKes 38-47, Tables 121-128, Figures 

58-61). The tre~ in selectivity is wall i11ustra~a in Figure 
62~ the ~vit7 to liguid fuels ~s o~damm at 260°C, 

~ e ~ i ~  of t~ ~/a 2 =~io ~ ~ vek=ity. 

A check of ~ibil/ty of t~ n~alts of the i.itial 

test ~mditio~ was attempt~l Csm~le 50, Table 129]. The 

accuracy of this smile, bo~r, was szspect since the product 

~lectlvity ~ .~ uuifor~ Ga~ in t~ CcCI0 r~i~ ~=e 

ira~-g bad ~m%~ling. The bulk activity ~ms 3.8 

~th ~.6 m~ s~s/kg cat/~ ~ ~ 2. 

Cd) C a m l r ,  t C b a r a c t ~ ' ~  ~t.~.~ 

~ ~m~ i,~y XPS data have t~m obta/a~ on the large batch of 

prepar~ and after H 2 achivat/~. XPS aualysis has also been 

23 



- CONTAINS KEENrIALLY P ~  DATA -- ~ FOR I~JBLICATION - 

perfo.nred on the oxidized, ~ t  nitrate-derived Co/Zr(OPr)4/AI203 

composition (batch # 8466-2). The carbonyl derived catalyst exhibits 

birdin~ energies correspondin~ to complete ox/dation of Co ° to Co 2+ 

due to reaction of the carbonyl with the alumina or zircooium. This 

agrees with the published literature. This Co 2+ reue/rm oxidized 

after B 2 activation and may be due to formation .of not-reducible 

cobalt aluminates or zixconates at the elevated activat/on 

temperature. The nitrate derived material shows binding energies for 

price of o 1203  3o4. 
spectra are shown in Figure 63. 

B.E.T. surface area and hydrogen chemisorption data have been 

obtaine~ for the three catalysts prepared this quarter. The data are 

summarized in Table 131. Total surface area of the fresh catalysts 

changed very little from that of the support (217 ~/g for Catapal ® 

7-al~ after calcining at 50O"C for 3 hours). Hydrogen 

cb~isorption sbow~ the metal sari-ace areas and dispersions to be 

qui~e low. T~_re ~s ,n difference in hydrogen cbemi~on 

the cobalt carbcmyl and cobalt nitrate catal~sts, hut the cobalt 

carbo~yl catalyst with a higher Co loading showed slightly larger 

metal surface area and dispersion. ~ ~as opposite oE what would 

he ~ ,  that is as metal ~ i~re~es ~ i ~  should 

~crease .  The E 2 ¢he~sor~don also a~eared to  be act ivated since 

hydrogen uptake increased wi th temperature. This phenamauum has been 

d3served by others and reported in the literature. The observed 

chemisorpt3.on bebaviar suggests a strcz~ interaction with the suplxE~ 

o r  an  o v e r ~ a r  effect .  The chemisorgr_ion r ~  are in  agreement 

with the XPS data showing that o,ly small amounts of cobalt w~re 
reauced. 

24 



- CONTAINS PCEENrIALLY PKT'~I~ABLE D~XA -- NOr KR P~LIC.~2ION - 

3.3 _mask 3 -- Slurry Reactor K/netic Studies 

Mechanistic concepts ~_re ex~mdned this quarter by. st .udyir~ the 

effects of addi~ e~hylene to the feed. It has be~n postulated that light 

olefins, produced in the F-T synthesis, may be reincorporated into the 

surface carbon chain growth process, thus allowing for variations in 

selectivity. These experimmnts w~re perf_ormsd at the end of the screening 

test of the Co2(CO)~Zr(OPr)4/Al203 catalyst (Rnn # 7888-33-731), by 

adding i0 and 20 volum~ perc~t ethylene to the feed. T~ following four 

test condiric~ ware conducta~ at 260°C: 

Sample P, psiq vol% ~gg uat/hr 

56 308 44/46/I0 i. 41 

59 302 39/41/20 1.41 

62 300 40/40/20 0.71 

65 300 51/49/0 O. 70 

66 550 40/40/20 i. 40 

The major result of ~ i0 a=d 20 volu~e ~r~st et~lene 

samples 56, 59 and 62 (Tables 61-63) ~s the ~ ( m  of ethane. The 

rates of uKygeuate pr~lucticm also increased, from 0.2 to 2.4 wt% of the 

product yie~, ~t with the majority of this fraction being 

prqpanol. NO e~idence of olefin r ~  ~ms observed. 

The process o~linio~s ~ next ~ to ~ of sample 39, CO/~ 

= 0.98, 0.7 N~/g cat/hr, to determine the ectent of catalyst ~%ctivatium 

before the hi~ ~esmEe ~;ecati~ with ethyle.e a~/t/zm was invest/gated 

(sample 65, Tables 64-65, Figure 30). A 40% re~uct/on in ~ activity 

%mls cbse1~ed with ~thane selectivity at over 20 wt% compared with the 

14.3 wt% of sample 39. Once more, the ,~jor product with ethyleme 

~¢Iditica and 550 psig ~ms ethane (sample 66, Table 66). A 23% increase in 

gasoline fuels, C5-CII, was observed, but this %~s due ms/nly to a general 

shift in proaucts into the heavier molecular we/gbt region which is 
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expected at high pressure. C am~ared with sample 59, the c~.genat~s 

selectivity- increased from 1.49 to 2.06 wt%., again with mainly propanol 

production. 

b y  
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4.0 D~ERIRE~%L 

4.1 Task 2 -- Deval .o~re-.t of Improved Supported Catalyst Conpcs. itions 

Ca) Catalyst Pre~-ation 

The catalysts prepared this quarter all had calcined 7- 

alumina as the suppurt. Calcination and handling procedures w~_re 

described in the first quarterly report. 

C,i) Co¢NO )3~ZrCOPr)m/A120 3 (~"~...(::a'l # 8466-2) 

To establish a referemce catalyst, a more ccuventional 

pr~aration of the Co/Zr/Al~3 ¢ c ~ o s i t i o .  ~ ~ by 

using Co(ND3) 2 as the oubalZ source in place of Co2(C0) 8. 

zirccmium ~ was still used bat it ~as found, t.hat i~ 

s~lutioD the ~ial cuuld be handled is the Imbie.t lab 

atmusphere without mc~.iceable h~olysis. A solution (210 cc 

total volume) of 59.6 g of Z r ( ( ~ r )  4 in  ~ ~ ~ t o  

174.2 g of calcined Catapal • SB ~-alumina in tx~ partious with 

thcrongh ~ to give i~ipiest wetness. T~e i=E=~=a~ 

alu=ina was ~ toary in aubiest air for tw~ aays and t~n 

for three hours at 120°C in air. Cmbalt nitrate (44.1 g) %~s 

dissolved in deionized w~t~r to give 200 cc of solut/om which 

w~ i.~reg.ate8 into the ziru~atad al~a in one port/u.. 

This material ~s allm~d to dry ~r./~t at ~ ~  

then at 120°C fo~ o~ hour and ~s finally calc/ned in air at 

3O0°C for six boars to give 211 g of catalyst. Elamental 

analysis of this material gave 4.2% Co and 7.1% Zr (Co/Zr 

weigb~ r a t i o  = 0.59). 
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(ii) c.o,2¢~) s/zr¢o~) ~/~o 3 

Ca) Batch # 8466-4 

This batch ~s a 70% scale-up of the previous large 

scale preparat/cn of the basecase (batch # 7864-i010-371) 

Co/Zr/AL203 ocmposition. Standard inert atmosphere 

h~,a~,g tecbn/ques ware used in pr~ring this catalyst; 

exposure to exygen ~d m~isture was prevented throughout 

this preparation. 250 g of alumina ~s impregnated in one 

portion with a 300 cc solution of Zr(0Pr)4, 84.2 g, in 

bexane. After mixing thoroughly by shaking the Elask, the 

hexane %~s evaporated off in vacuo with slight warming in 

a 40-50°C bath." To load the cobalt, a two step addition 

of 40.0 g of Co2(co)8 in hexane ~as use~. The first 

portion was a 350 cc vol~ folluw~d by a 300 cc seuond 

port/on. After each polos ha~ane ~s removed in vauuo 

as before. After ccuplete removal of the solvent, 366 g 

of br~h-black catalyst was obtained a~ analyzed as 

4.0% Co and 6.4% Zr (Co/ZE waight ratio = 0.63). 

(b) Batch # 8466-9 

To examine the effect of metal ~ on catalyst 

W~ormme ~ ColZrl~ easy= ~s pr~red wi~ an 

increased Co and Zr loading using the standard 

imprecation proce~re. Zr(Cer)4, 127.5 g, ~as dissolved 

in bexane to ~ve 210 cc of solutioQ, which was ~ with 

172.5 g of alumina in the dry box. The sealed flask 

c c ~  the i~pregnated alumina ~ms remnved from the 

dry b~c so that the solvent could be eraporated off ~ the 

vacuum line. Balf of the 123.4 g of Co2(<D)8 was 

dissolved in 300 cc of i:i hexane/toluene and aadea to the 

zirccmated alumina. After solvent removal, the r~m~n~-~ 
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Co~(CO) 8, dissolved in 250 c:~ of toluene, was ~ .  The 

dried, black catalys~ weighed 387 g and was analyzed as 

10.8 % Co and 8.5% Zr {Co/Zr weight ratio = 1.3). 

Cb) ~ Phase Scr~ 

A deta/led description of the gas phase ~ reactmr and 

procsdure can be four~ in the Project Work Plan. The catalyst charge 

was i0 cc for each test. Generally, only reactor temperature and CO 

to H 2 feed ra~£o ~zre varied while pres~are and space velocity were 

kept at 300 psig and i000 h -I (v/v), respectively, for all the_ runs. 

The ~]mgas act/vat/on procedure has be~ ~escribed previously in the 

first quarter report. Fur t~ of this quarter's tests, a ~ H 2 

activatioQ ~S used as fol]xm~: ~ at 3000 hr -I and 0 psig ~s 

passed c~er the catalyst as it ~ heated to 300°C at 3m/rain and 

main~i-ed there for 16 ~rs. T~e temperature was then re~ced to 

the desired re~V/o, ~ e ,  CO w~s i~z~%x~a to gi~ 1-1 CO/S 2 

at i000 hr -I and finally the total pressure ~ increased to 380 

psig. 

cc) Slur~ Phase Tests 

ci~ __C~cco~±ccPr~Jm93 - 7~8-I-s89 

This catalyst ~s activated in the gas phase reactor using 

a 20% i:i C0/H 2 in N 2 at 175 psig and 500 hr -I GR~V. The 

temperature was raiseQ in 1O°C stages fran 220 to 280"C. After 

=x~/sg mx~x ~, the acti~ ~tL1s~t ~s saurri~ in 

@ e ~  Fi_gcher paraffin oil (catalog # 0-122) and 

transferred to the reactor under a N 2 atmosphere. The final 

loading was 488 mls of a 22.3 wt% slurry coutaining 91.1 gins of 

a-~civated catalyst. The eleme,tal a~alysis before activation 

was: 
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Wt~ 

Co 3.49 

Ti 8.65 

cii~ c.o~ZrCa~r~ :/~3 - 7~88-33-731 

This catalyst was activated and slurried in the same 

manner as the catalyst above. The final reactor loacling was 

452 mls of a 23.4 wt% slurry containing 96.0 gins of activated 

catalyst. The elemental analysis prior to activation ~s: 

Wt% 

Co 5.07 

Zr 4.39 

c - 

This catalyst %ms activated and slurried in the same 

~snner as des=ribed above. ~he final reactor loading was 444 

mls of a 20.6 wt% slurry comtainimg 88.1 gins of activate~ 

catalyst. The elemental analysis be fo re  a c t i v a t i o n  was: 

Fe 0.78 

Co 2.44 

K 0.02 

This cata l l ,  s t  w~s gas phase a c ~ v a t e a  us ing  H 2. The fresh 

catalyst, 107.5 gins, %~s loaded into the 150 cc tubular reactor 

Ca~tely 110 cc cata lyst ,  bed volume). TI~_ reautor ~s 

heated at ambient pressure to 300°C at a rate o£ l°C/min ar~ a 

space velocity of 0.56 NL/g cat/hr ~. The temperature was 
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maintained at 300°C for 15 hours with full ~2 flow. After 

cocling urger N2, the actlvated catalyst ~s slurried in 

~m~enated Fischer paraffin oil ana transferred to t_be 

reactor under a N 2 atmos;~ere. The final loa~ing ~ms 470 mls 

of a 16.9 ~r~% slurry containing 75.96 gins of activated 

catalyst. The elemental analysis after activation was: 

Wt% 

Cc 5.06 

zr 7.82 

(d) Catalyst Characterizatioo 

XPS data ~as ~tai~M m a Physical Electroo/cs 560 XPS/~ 

~ t .  Catalyst samples were reduc~ in the I0 cc fixed bed 

reactor and transferred to the sample holaer in a dry box. ~2 

c~uisorptinn esperi~Rnts were o~duct~ ~ a Sicc~Iritics Cbm~%~b 

2800 using catalyst rumples precei~ in the 10 oc reactor. A~er 

transfer of the samples to the ~ o n  sample tubes, the/ were 

treatad with H 2 at 300°C and 1 ai:~mI:z~i:~e prior to data aquisition. 
B.E.T. s u r f a c e  a r e a s  were  o b ~ . i n e d  u s i n g  a Micromerit/cs D i g i s a r b  

2500.  
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5.0 

The skilled technical assistance of P. A. Dotty, G. W. Long, M. Ix~ie 

and L. E. Schaffer is gratefully acknuwledged. 
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