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CHAPTER III
THEORIES OF DIFFUSION

The theory of diffusion in solids is well defined since a solid is a well-structured
form of amorphous materials or crystals. Diffusion in gases can be understood since
a gas is a totally random distribution of particles. However, diffusion in liquids is
difficult to describe theo;eticaﬂy because liquids exhibit properties of both gases
and solids, with some randomness and some structure. For this reason, an accurate
theory for ciiﬂ'usion in liquids has yet to be developed, although several theories
have been proposed. This section begins with a review of the following three general
classes of liquid diffusion theories; hydrodynamic theory, activated state theory, and
the kinetic theory of rough hard spheres. These approaches will then be used in

subsequent chapters to interpret the experimental results.

3.1 Hydrodynamic Theory - —~

For a single particle moving in a continuum, the Nernst-Einstein equation

relates the diffusivity to a frictional resistance coefficient C:
Dy2 = kT/¢ ' (3.1)

The coefficient ( can be calculated for a sphere from classical hydrodynamics and
is a function of the solvent viscosity 7.

For a spherical solute of diameter o; which is very large compared to the
diameter of the solvent molecule, Stokes law for viscous drag on a sphere can be

used. It has been shown (Sutherland, 1905) that

D;y = kT/{mn(0/2)] , (3.2)
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This is called the Stokes-Einstein equation and holds for the case where there is no
“slip” between the diffusing sphere and the solvent.
The other limiting case of (3.1) assumes that there would be “slip” if the

diffusing molecule is of the same order in size as the solvent. In this case,
D1z = kT/[4mn(c/2)] (3.3)

Equations (3.2) and (3.3) suggest that the product Dj;n/T is constant.

There have been several attempts to develop a rigorous hydrodynamic approach
to diffusion, but many conceptual and computational problems have been encoun-
-tered (Tyrrell and Harris, 1984). For instance, for the original Stokes-Einstein
formulation (which is based on Brownian motion theory), the solute must be many
orders of magnitude larger than the solventv. That is not always true, and in par-
ticular it is not true for the gas and alkane systems of interest in this work. Also, if A
the solute is not spherically symmetrical, then there are three resistance coefficients
¢, not just one. Although the Stokes-Einstein law has been observed to hold for
self-diffusion, Evans et al. (1981) argue that this is a fortuitous result due to the
narrow density range for which the equation has been tested. Finélly, Hildebrand
(1971) commented that the macroscopic phenomena of viscous resistance is difficult
to justify on the molecular scale, and siates that any resistance coefficient is merely
a fictitious quantity.

Nevertheless, the hydrodynamic approach is one of the oldest and has provided
the starting point for many empirical correlations, such as the Wilke-Chang and
Lusis-Ratcliff relations of chapter II (eqﬁations 2.11 and 2.12).. These are based
on the observation that, within a limited temperature range, D;2n/7T is a constant.
Other correlations such as the Sovova equation (2.9) and the Hayduk-Cheng relation

(2.1) relate D, to some empirical power of the viscosity. Although there is no
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theoretical basis for these, they follow in spirit from hydrodynamic theory, and thus

most equations relating Dy, to n are called hydrodynamic approaches.

3.2 Activated State Theory

The Eyring rate theory for diffusion is actually an extension of the absolute
rate theory for chemical reactions. In the Eyring theory, diffusion occurs when a
molecule attains a sufficiently high energy to overcome a potential barrier, then
jumps to a new equilibrium position in the liquid. By assuming that the liquid
maintains a lattice-type structure, it is possible to express the diffusion coefficient

as an exponential (Glasstone et al., 1941):

(3.4)

In this equation, A is a jump distance which is on the order of the intermolecular

distance, and AG p is the difference in Gibbs energy between the “normal” molecules -

and those in the activated state.

This approach has had success as the basis of several empirical schemes because
the diffusion coeﬁiciént is observed to follow the exponential dependence of equation
(3.4) over a fairly wide temperature range. This theory was used by Olander (1963)
and Gainer and Metzner (1965). Akgerman and Gainer (1972 a,b) used activated
state theory as the basis for equation (2.10).

However, Tyrrell and Harris (1984), Hildebrand (1971), and Alder and Hilde-
brand (1973) point out some conceptual difficulties with this approach. There is
evidence to suggest that the potential field encountered by molecules is almost
uniform, rather than there being a potential difference between activated and un-

activated molecules. In addition, the activation energies observed are rather low,

—
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on the order of 10 kJ/mol. This means that a large percentage of molecules are
in the activated state at any one time. This violates one feature of activated state
theory which is that the proportion of molecules in the activated state should be
small. Tyrrell and Harris (1984) caution that the value of the observed activation
energies not be given too much physical significance.

There is also experimental evidence suggesting that the physical basis for ac-
tivated state theory may not be correct. Sun and Chen (1985b) have observed a
deviation from the exponential behavior for the diffusion of aromatic hydrocarbons
in cvclohexane. These deviations occurred near the cyclohexane critical tempera-
ture, in the range between above 473 K. Ruby et ¢l (1973) have calculated jurnl‘a
distances for an iron isotope in solution with a li(jujd, and have found that the av-
erage jump distance is very small, much less than a molecular diameter. Molecular
dynamics simulations of diffusion confirm this (Clifford and Dickinson, 1977).

Practically there are some difficulties with using equation (3.4). One needs
both the activation energy AGp and the distance A, yet there are no reliable
methods for estimating these. At present, the activated approach seems best suited

to extrapolation of data and not for prediction of D, from first principles.

3.3 Rough Hard Sphere Theory

The rough hard sphere (RHS) approach to diffusion (and other transport
properties) is one specific result in the broad field of kinetic theory. The generic
approach to kinetic theory is to consider the Hamiltonian equations for a collection
of a large number of molecules, and to calculate their positions and momenta
as a function of tims. From the time behavior of the ensemble, the transport

properties can be calculated. To perform such calculations one must know the -
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mass, shape, and size of the particles, and the dynamics of the interactions and
collisions between particles. Analytical calculations are impossible except when a
number of simplifying assumptions are made. Usually, one must resort to computer
solutions but even these are intractable except for small numbers of particles (~
1000) and with highly idealized assumptions.

In this section we will present the theory behind the RHS approach to diffusion.
It will become evident that a number of the assumptions made will be physically
unlikely for the alkane and gas systems studied. However, more realistic approaches
have not yet been fully developed. In lieu of a perfect theory, one must use the
available approaches as a basis for interpretation. Despite its limitations, RHS
theory has been shown to be useful in interpreting diffusion data in a number of
systems. Also, the physical approach to RHS theory, while imperfect, is perhaps
more sound than those for hydrodynamic or activated state approaches. '

In compact form, the RHS mutual diffusion coefficient is obtained as the

product of four terms:

1
9(012)

The terms are listed in chronological order of their development and represent the

Dy, = DRHS = pHSG. . C(oy,02,my,my, V) - A (3.5)

progressive development of theory beginning with diffusion in gases and concluding
with diﬁ'usion in liquids. We discuss each of the four terms separately so that
the increasing complexity of the phenomena described by each term will become
apparent.

The first term D5C is the mutual diffusion coefficient for a dilute (low density)
collection of hard spheres, i.e the hard sphere gas. The equation for DHSG was
' derived by Chapman and Enskog (Chapman and Cowling, 1970) with the following

assumptions:
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1. Molecules are spherically symmetrical and smooth (there is no exchange
of angular momentum during collision). |

2. The gas is “dilute”; that is, the mean free path is large compared to the
diameters of thé molecules,

3. Only two-body collisions occur; multiple interactions are negligible.

4. The collisions between molecules are perfectly elastic and instantaneous.

5. There are no force fields affecting the molecules on their flight between
collisions.

6. Molecular chaos prevails; ‘there is no correlation between positions and
velocity vectors of molecules.

Under thesé conditions the mutual diffusion coefficient for a hard sphere gas is

(Chapman and Cowling, 1970):

pise 8 [KT (m 4 ma)) (3.6)
12 8no?, |2r  mim, -

where n is the number density (molecules/volume), 012 = (o3 +02)/2 is the collision
(average) diameter of the solute and solvent molecules, and m; and m; are the
molecular masses.

As the density of the fluid increases, the assumptions of molecular chaos and
binary collisions break down for real molecules. Enskog retained the assumption
of perfectly elastic collisions, however, and for the model fluid this means that
multi-body interactions are still negligibly probable since the collisions occur
instantaneously. Enskog relaxed the assumption of uncorrelated positions of the
molecules, but retained the assumptions for velocities. He showed analytically that
(Chapman and Cowling, 1970)

" nDjy 1

(nDESC),  g(o12) S




where nD;; is the number density times the diffusivity at moderate density, while
(nD13)o is the same quantity at low (gas-like) density, and g{c;3) is the radial .
distribution function for hard spheres evaluated at the contact distance. The effect
of g(o12) is to correct the dilute gas diffusivity for the increased frequency of collision
in the denser gas.

The function ¢g(o;2) can then be thought of (in this context) as a correction
. term relating diffusivity in dilute gas to that in moderately dense gas (the distinction
between dilute and moderately dense being unimportant to the present discussion).
The radial distribution function depends on the composition and molar volume of
the mixture and on the diameters of the constituent molecules. For an infinitely
dilute solution, g{oj;) can be calculated as follows (Evans et al. 1981; Alder et al.,

1974):
_ 1 3¢o, a1
g(o12) = 1-¢ + (1= €)%(o; + 03) + 2(1 = €)%02

where ¢ is the packing factor for hard sphere assemblies. For the infinitely dilute

(3.8)

case (n; = 0)
777120'3

6

This expression is based on the Percus—Yevick equation of state for hard spheres

£ = '(3.9)

(Leibowitz, 1964). It may not be valid for values of ¢y /03 far from unity.

At liquid densities, 1t is found that the assumption of uncorrelated velocities
breaks down completely. The diffusion coefficients calculated from the first two
terms of equation (3.5) were found to differ widely from experimental values and
from those calculated from computer simulation (Dymon‘d, 1972; Alder et al.,
1970). The deviation from Chapman-Enskog theory is due to two phenomena,
backscattering and vortex motion. At high densities (greater than 1.5 to 2 times the

critical density p.) and for low solute to solvent mass ratios, the diffusion coefficient
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is decreased by backscattering, or the multiple successive collision of the solute
with its neighbor molecules. The solute is temporarily trapped in a “cage” for a
time corresponding to several collisions before it can move on. The phen'ornena
of backscattering has been found from computer simulations to increase with
decreasing mass ratio mj/m,. At somewhat lower liquid densities (p < 1.5p.) and
for higher solute to solvent mass ratios, it has been shown (Alder and Wainwright,
1970) that a wortez of neighbor mole¢ules forms around the diffusing molecule,
acting to increase its velocity (and diffusion coefficient) above that predicted by
Chapman-Enskog theory.

The term C(UI’ oy, mi,mg, V) in equation (3.5) corrects the Enskog theory in
the region of liquid densities for backscattering and vortex formation. The correc-
tion cannot be obtained analytically; rather, computer calculations are performed
- to obtain the actual diffusivity, and the results are expressed as a ratio of the actual

(computer) diffusivity DHS o the Enskog diffusivity. The factor.C is defined thus:
DHS

(DHESG/g(012))
The extreme complexity of the calculations prohibits using the computer to

C(olao2am13m'2,v) = (310)

calculate a diffusivity for every system of interest. Rather, the few available results
are given as a function of 01 /02, m;/m2, and V/V,, where V; is the close-packed
hard sphere volume o
Vo =Nol/V2 (3.11)
Chen (1981) recently compiled and graphed the machine calculations from Alder
et al. (1974), Herman and Alder (1972), Shelton (1981), and Alder et al., (1970).
Czworniak et al. (1975) expressed C as a polynomial function of m; /mg,01/03, and
€. It should be noted that the accuracy of the calculations by Alder et al.(1974)

has been questioned by Esteal et al. (1983) based on their more recent calculations.
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In collisions between polyatomic molecules, it is possible that kinetic and
rotational energy can be exchanged, violating the smoothness assumption of Enskog
theory. Chandler (1975) has discussed this phenomenon and has shown that a
roughness factor A (the fourth term in equation 3.5) should be introduced to account
for this. The effect of coupling between rotational and kinetic energy is to reduce
the diffusion coefficient, so

0<A<I » (3.12)

A is a constant essentially independent of density and temperature. Values of 0.54
and 0.59 for A have been found to explain intradiffusion in carbon tetrachloride
(Chandler, 1975) and tetramethylsilane (Parkhurst and Jonas, 1975), respectively.
Baleiko and Davis (1974) calculated 4 for rough spherés from geometric consider-
ations and concluded that, theoretically, 0.71 < A< 1. Evans et al. (1981) fitted
several sets of diffusion data using values of A equal to either 1, 0.78, of 0.7, de-
pending on the constituents of the sysfem. Bertucci and Flygare (1_975) simila.rly '
fitted data and found values of A between 0.44 and 0.552. |

To sumrnarize, the rough hard sphere theory for liquids is a modification of
the hard sphere theory for gases. The hard sphere theory for gases was developed
by assuming molecules are spherical and inelastic, and collide much like billiard
balls, with only bimolecular collisions occuring. Although the theory matches data
well for diffusion in low pressure gases, ‘the theory breaks down for dense gases and
liquids since some of the basic assumptions are no longer valid.

The hard sphere theory equation has been scaled using the radial distribution
function g(o12), which accounts for the increased frequency of collisions in a dense
gas or liquid. The rough hard sphere theory was then developed by applying two

additional correctional terms, C and A, which account for correlated molecular
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velocities and the exchange of rotational energy which occurs when ‘rough’ molecules
collide. Since the behavior of g(oy5), A, and C is not well understood, recent
research has attempted to represent these groups in terms of well-known fluid
properties. |

It has been found (Dymond, 1974) that the molecular dynamics calculations of

the group C/g(o,) for self diffusion can be fit to a straight line as follows:

Vv 1 Vv
7 .C(az,m27v/%).m =a[-1-/_; -b] (3.13)

where V is the molar volume of the liquid mixture at the temperature and pressure
of the system, Vj is defined by equation (3.11), and a is a different constant for
each solvent. Using least squares regression, Dymond (1974) found the constant b
to be 1.384. This constant was found to be independent_of the solvent properties.
Dymond (1974) developed the following expression, which, ‘when written for rough

hard spheres, takes the form:

10°Drus = A - 2.527(RT/M)Y2V723 |V — 1.384V,] meters?/sec (3.14)

where Dpps is the diffusion coefficient for rough hard spheres and A is the
molecular weight of the liquid.
Chen et al. (1982)' tested the hypothesis that the following general form of

Equation 3.14 would also apply to mutual diffusion at infinite dilution;
D%, /T = B(V — Vp) (3.15)

In this equation § is the slope of sz/\/f versus V and Vp is the intercept where
diffusion goes to zero. Chen plotted data for several solutes in the solvents Cg, Cig,

and C;; at temperatures up to 160°C and found that D2, //T versus the solvent
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molar volume, V, was highly linear in every case. Expressions for 7 and Vp were
not given. For infinite dilution coeflicients, ‘the_ constant f is expected to depend on
both the solute and the solvent, and Vp is expected to depend on only the solvent.

Equation (3.15) will provide the starting point for analysis of the experimental
data. Rough hard sphere theory predicts that D/v/T should form a straight line
when plotted versus rﬁola.r volume. It is worth noting that a similar linear behavior
was observed and discussed by Batchinski (1913) and later by Hildebrand (1971).
Both reasoned that viscosity (and diffusivity) should be a function of the free volume
‘within the fluid, where the ffee volume is the difference between the mola.f volume
V at the prevailing conditions and a limiting hard core volume V,, which 1s analgous
" to Vp in equation (3.15). Batchinski (1913) plotted viscosity n versus molar volume
for 87 liquids and observed straight lines for non-associated liquids. Hildebrand
(1971) did the same for other liquids with the same result, and noted that the
value \Vo was very close to 0.31 V, for m'ost liquids, where V. is the liquid ecritical .
volume. Hildebrand then extended the reaéoning to diffusion, and for a limited
number of data was able to show a linear relation between diffusivity and molar
volume. Although Hildebrand's explanation of the linear relationship was based on
intuitive arguments, it is seen that the Rough Hard Sphere (RHS) theory provides

a more theoretical explanation.




