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NOVEL EXPERIMENTAL STUDIES FOR COAL LIQUGEFACTION

Research is being carried out in this pr;)ject in two areas whieh are of
interest” to ongoiﬁg investigations at the Pittsburgh Energy Technology Center
(PETC). They'gre: (a) tl;ermal behavior of slurry reactors used for indirect coél
liquefaction, and (b) coal liquefaction under supercritical conditions. The current

status _qf each of these tasks is summarized in this report.



TASK I

Scope of Work

In Task 1 of this project, the use of a slurry reactor for indirect coal
liquefaction is being studied. Work is being done uéing three indireet liquefaction
routes involving synthesis gas — the Fisher-Tropsch reaction, the one-step
conversion to methanol, and the two-step conversion to methanol via methyl

formate.

Results and Highlights

Experimental work and data analysis for the two-step methanol synthesis in 2
single slurrvy reactor were continued during the guarter. Experimental work
included the effect of the Hz/CO ratio on the simultaneous reactions and
measurements of the> solubility of hydrogen and CO in methanol and methyl
formate. Reaction rates obtained experimentally for the simultaneous systeh

were compared with rates calculated from the individual reactions.

Effect of Ho/CO on Reaction Rate

The two-step methanol sSynthesis involves two reactions, and one of the
reactants in each reaction is 2 g:as The carbonylatioﬁ of methanol requires CO aﬁd
the hydrogenolysic of methyl formate reéuires He. The ratio of Hy to CO is’
therefore a very important oberatingparame_ter, fecting the relative rates of the
two reactions and the total methanol production rate. [t may also é.ffect -the
selectivity of the two reactions. |

Two runs were made, one at a temperature of 121°C and the other at 140°C.

All - reaction conditions were constant except for the Hy/CC ratio. The

experimental procedure” was the same as described in previous reports, and




important operating conditions are listed in Table 1-1. During each run the ratio
was changed in a random order to confound the effeet of reactant ratio and

catalyst aging, and an average of 8 hours was used for each measurement.

TABLE 1-1
Operating Conditions for Runs

to Determine Effect of Hy/CO Ratio

Run # T P "CH30K G-89 Feed Gas Flow Rate
© (psig) (g) ® (ec/min)
1 121 930 5 15 330

2 140 900 15 20 : 330

The reactibn rates are shown in_ Figure l—'l;_.and ’a.,_r.e corrected for catalyst
aging. The maximpm correction w"asf"S%.: The .sldpeéfét each run are essentially
the same and-indi;.:ate that higher methanol :proiiuct_ion was obtained at lower
Ho/CO ratio.. This i'es;.llt was:unexpected. In the quarterly report for Octobér—
PDecember 19_86,".': was shown that by assuming the simultaneous .reéctiod kinetic
expression eould be. obtained by co mbi_ning‘-‘the kinetic>expressio:ns for the ir;dividual
reactions as follows: _ '
4.494107 &xp (- %) Cearar 5 Cuegrt Poo P

) _ 2
Ymeon - 1 + 0.096 P

M0
o

At the operating conditions used, it can be shown that the optimal Hy/CO ratio

should be 2.5 if the eqguation applies. The faet that the observed optimal rate is

4
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much Jower implies that the equation must be modified when the two reactions are
carried out:zmultaneously.

Furthgr evidence that there is an interaction between the two reactions is
shown in Figure 1-2. . This shows the measured rate for the simultaneous reaction
divided by the calculated fate from the hydrogenolysis rate equation (equation 2 in
the quarterly report for October-Deeember 1986) at the same conditions plotted
versus time. At time zero. before any. agmg effect -has:takenpla e,-uh wrate d5=:
approximately twice the caleulated rate at 140°C, 1.6 times the calculated rate at
160°C ar;d 0.8 times the caleulated rate at 1809C. It appears that there is a
synergistic eifeet when the two reactions take place simultaneously at 140°C and

1609C. Work is continuing to analyze these data.

Solubility Measurements

Solubility measurements were made for CO and Hy in both pure methanol and
pure methyl formate. The data are needed because the reaction takes place in the
liquid phase, and liguid concentrations are needed. to pfoperly correlate the data
for changing liquid eomposition. The data for the individual reactions were largely
taken for essentially pure methanol (carbonylation) or for essentially pure formate
{hydrogenolysis). -

The solubilities were measured by a bateh absorption technique similar to
that used by Shah (I). The liquid was degassed and then heated to the experimental
temperature. With the stirrer off, gas was added until the desired pressure was
reached. The stirrer was then turned on, and the decrease in pressure noted after
the system came to equilibrium.

The solubilities are related to the partial pressures in the gas phase by the

faet that the fugaeity in liguid and vapor must be the same
6
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iP = My sotvent %4

where oj and y; are the fugacity coefficient and mole fraction at component i in
‘the gas phase, X; is the mole fraction of component i in the liquid phase. Hj,solvent
is the Henry's constant of solute i in the solvent. P is the total pressure. This can

be solved for Henry's constant, to give

o:y:P
H 1

i, sols€nt™ X ;

‘The total gas pressure was known and was corrected for the partial pressure of
methanol or methyl formate, giving the pértial pressure of either CO or Hg. The
liquid composition was caleulated from the change of pressure after the stirrer ws
turned on. The fugaecity coefficient in the vapor was caleulated from the virial
ecuation of state (2). At least three data points were taken at each temperature,
and the average values used. At least three temperatures were used for each of
the four binary pairs. A plot of Henry's constant versus temperature is shown in

Figures 1-3 and 1-4. These results were then correlated using :

- < Ah
In Hi,so'lvent‘ A+B/T, B= R

where A and B are constants, Ah is enthalpy of solution, R is the gas constant.
The results of the correlation are shown in Table 1-2. The correlation coefficient,

r, and temperature range used are also given.




TABLE 1-2
Coefficients to be Used im tquations for Henry's Law Parameter

Hi solvent = A = B/T

ah Temperature .
System A B (kJ/moie) r Range (C)
CO-MeQH 3.07 1993 16.57 .94 120,140,160,180
£O-Mef 2.92 1721 14.31 .97 120,140,180
HoMeQH 3.66 1908 1£.87 - .99 120,140,160,180
Ho-MeF 2.14 2314 19.24 .98 120,140,160,180

Future Work

During the next quarter, analysis of the data obtained for the simultaneous
conversion of svngas to methanol via methyl formate will be continued. [n
adcition, work will be continued on the measurement of thermal effects associated

with the Fischer-Tropsch synthesis in a slurry reactor.
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TASK 2: COAL LIQUEFACTION UNDER SUPERCRITICAL CONDITIONS

Supereritical fluid extraction is an attractive process primarilynbecause the
density and :solvent power of a fluid changes dramatically with pressure at near
eritical conditions, and daring the extraction of coal, the density of a supercritical
fluid should also change the extractability of the coal. During earlier guarters a
non-reacting supercritical fluid, toluene, was studied to determine the effeet ofr
density on the coal extr?ction/reaction process. Extractions were carried out for 2
to 60 minutes at --z"educed densities between 0.5 and 2.0 and at temperatures
between 647 and 698 K. The data obtained can be explained by the hypothesis that
coal dissolution is required pre;eding liquefaction reactions and that the degree of
dissolution depends upon solvent density and tempgra‘cure. A kinetic modéi shows
that higher solvent densities result in faster conversion rates and in higher total
conversions. Two papers have resulted from this study. -

A second factor that makes supereritical extraction attre;etive 1s high mass .
transfer rates. At high pressures, mass transfer rates in a supercriticél fluid are
much higher than in a liguid, despite the fact that the supereritical fluid has liguid-
like solvent powers. “The objective of this work is to. measure mass transfer rates .
for naph’chale;;;e extraction by carbon dioxide to enable us to determine how mass _
tranéfer eoefficients vary with pressure, flow rate, and bed height, since these
parameters will influence the design of extraction or feaction processes which
utilize supex;eritical fluids. Ultimately, such measurements will be extended to
coal/supercritical fluid systems to help defipe- the flow rates liquid/solvent ratios
that would be appropriate for a supereritical system.

- In this report, the entire program for evaluating mass transfer coefficients
under supercritieal conditions is deseribed and a review of eurrent knowledge and

planned correlational approaches is given.

12



BACEGROUND

Historically, interest in supercritical fluids was Iinitially related to the
observation that such fluids were often excellent solvents. This fact was
discovered over 100 years ago by Hannayl2 and by Hannay and Hogarth.lé’l‘; Prior
to that time, it was generally thought that materials above their ecritical
temperatures would be gaseous in nature and thus poor solvents.

Studies of solubilities in supercritical fluids have been continued!9:16 and in
most instances, they concentrated on developing phase diagrams for binary
mixtures, particularly pressure-temperature projections. Vapor-riquid equilibrium
data on binary hydrocarbon systems at elevated pressure became available in the
1930's1718 and the first patent for the practical application of supercritical
extraction was made in 1943.19 Later, Maddacks,20 Tug'x'ulz1 and Bartlé et al.22
deseribed the extraction of components of low volatility from coal liquids using
supercritical toluene. Barton and Fenske?3 suggested using C11 and C19 paraffinic
fractions to desalinate sea water. Hubert and Vitzhu24 studied on the removal of
nicotine from tobacco leaves, of éaffeine from green coffee beans, and the
separation of a hop extract from commercial hops, in all cases using supercritical
carbon dixoide. Modell et al.25:26 discussed the regeneration of activated carbon
by the use of supercritical carbon dioxide.

Critical data for a number of possible supercritical fluid solvents are 1isted in
Table 2-1. These gases are suitable as a solvent either on their own or as
components of mixtures. Because of their low critical temperatures, several of
them ean be used to extract heat-labile substances. Particularly, supercritical
carbon dioxide is a very attractive solvent for practical applications because it is
nonflammable, nontoxic, environmentally acceptable and relatively inexpensive.
The critical temperature of carbon dioxide is only 304°K (31°C) and thus it can be

used at moderate temperature for the extraction of heat sensitive substances

13




without degradation. One good example of using superecritical carbon dioxide is

shown in selective extraction of caffeine from green coffee beans.

Table 2-1: Critical Data for Some Supercritical So]vents79

. Critical “Critical Critical

Temperature Pressure Densit
Substance K MPa g cm
Mathane 191 4.60 0.162
Ethylene 282 5.03 0.218
Chlorotrifluoro methane . 302 3.92 0.579
Carban dioxide i 304 7.38 ©0.468
Ethane 305 4.88 0.203
Propylene 365 4.62 0.233
Propane 370 4.24 0.217
Ammoni= 406 11.3 0.235
Diethyl ether 467 3.64 0.265
n. Pentane - . 470 3.37 . 0.237
Acetone 508 4.70 ©0.278
Methanol 513 8.09 0.272
Benzene 562 4.89 0.302
Toluene 592 4.11 0.292
Pyridine 620 5.63 0.312
Water 647 22.0 0.322

The supercritical fluid (SCF) 1:egion is not defined rigorously, but for the
practical considerations, the SCF region is usually defined at conditions bounded
approximately by 0;9 < Tp < 1.2 and P, > 1.0 where the SCF is very compressible as
illustrated in Figure- 2-1. For example, at a constant Ty of 1.0, increasing pressure
from P, = 0.8 to P, = 1.2 significantly increases the density from gas-like densities
to liguid-like densities. At higher reduced temperature, the pressure ‘increase
required to increase an equivalent density becomes greater. This practical
consideration sets the upper bound on temperature. At higher pressures, the

density is less sensitive to temperature changes. In the vieinity of the critical
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point, large density changes can be obtained with eit:her relatively small pressure
or temperature changes.

The effeet of SCF soivent density on solubilities is shown direetly m Figure
2-2 in the naphthalene-ethylene systern.z'z’28 Solubilities increase with inecreasing
ethylene densities along each isotherm due to increasing solvent power, and with
inereasing temperature at constant density due to increasing volatility of
naphthalene. These solvent properties vary continuously with solvent density and
thus control solvent power and enhance the seleetivity of the solvent. Also solvent
and solute can be easily separated, and we can fractionate multiple solutes by
stepwise reductions in solvent density.

In addition, SCF have better physiocochemical properties than do gases and
liquids. The order-of-magnitude comparison shown in Table 2-2 indieates that,
while SCF has liquid-like densities, its viscosities and diffusivities are intermediate
to those properties for liquids and gases. Thus SCF has the solvent power of liquids

with better mass-transfer properties.

Table 2-2: Order of Magnitude Comparison of Gas, SCF and Liquid Phases35

Phase
Property Gas SCF* Liquid
Density (kg/m3) 1 700 1000
Viscosity (Ns/M2) 10-5 10-4 10-3
Diffusion coefficient (cml/s) 10-1 10-4 10-5

* AtT.=land Pp=2

»* 103 centipoise = 1 Ns/m2

16
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DIFFUSION COEFFICIENT AND VISCOSITY

The development of mass-transfer models requires knowledge of the diffusion
coefficient of the solute, the viscosity, and the density of the fluid phase which can
be used to correlate mass transfer coefficients.

Experimental data on diffusion eoefficients in supercritical condition are
scarce. Most studies on diffusion coefficient in the high pressure had been limited
to the measurement of self diffusion cogfficients, and binary diffusion coefficients
in simple systems such as Hp-Ng, He-Np and H-Ar.32 But recently, several
experiments has been done to measure the diffusivities in systems such as
naphthalene—coz,33’34 benzene-COg and caffeine-C02.33 As a result of this
work, it has been found that the viscosities and diffusivities of supereritieal flui;s:
were strongly dependent upon pressure and temperature in the vicinitﬁ of ‘:c.he
critical point, and the ratios {Dy0)/(Dyp)° were 0.8 to 1.2:. (Dyp)° is the value
caleulated on the basis of the low density theory for a gas at the given
temperature. In the recent review article,3° diffusion ecoeffieient for the several
systems were shown as a function of reduced pressure in Figure 2-3.

‘The viscosity of compressed fluids have been sti'xdied. quite extensively. In
Figure 2-4, the typieal data of the viscosities of supereritical earbon dioxidefs
given as a function of pressure.36 ;&t the low pressure, the viscosities of earbon
dioxide are essentially independent of pressure, but above the eritical pressure, the

viseosities increase rapidly with pressure.

18
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MODELS FOR FLOW SYSTEM IN A PACKED BED

The packed bed reactor is applicable in many operations, such as extraction,
adsorption, leaching, ion exchange and catalytic processes. Therefore, mass-
transfer coefficients in packed beds is the focus of the current research. First
models for determining mass transfer from our experiments (past 38) will be
de§eloped and then these coefficients will be correlated.

The simplest flow model for the packed bed is the ideal plug flow model with
no longitudinal mixing but complete radial mixing. Although no actual reactors can
be fﬁlly represented by an ideal model, the plug flow model can be used in a
number of packed bed reactors which behave close to the ideal.

However, flow behavior of most of the actual packed bed reactors deviates
from ideal conditions. The deviation may be caused by nonuniform veloeity profile,
velog:i’ty fluctuation due to molecular or turbulent diffusion, by short-circuiting,
by-passing and channeling of fluid, and by the presence of stagnant regions of fh{id :
caused by the reactor shépe and internals. Many flow models considering the
nonideality of the flow pattern in packed reactor have been proposed.37-41 Among
them, the cell model or compartment model40;¢1 is one of the most widely used
. models owing to its advantages over other models as decribed below. We used
these two models (ideal plug flow model and cell model) to get mass-transfer

coefficients and estimate nonideality.

The Ideal Plug Flow Model

Flow patterns in packed bed reactors with small ratios of the tube and
particle diameter to length can be closely apprdximated by plug flow. The

measurement of mass-transfer coefficients is based upon the following equation:



AN, = d(Voy,) = k (¥, - ¥5)dA = k_(ys - ¥,)acSdL (z-1)
A 4 yYa = Ya y\Ya = Yal3s

Here,

1 (2-2)

where V' is molal flow rate of inert component in moles per unit time. Therefore,

p dvy dp (2-3)
d(Voy,.} = vid{( Y=y ——— =V ——— -
From equations (2-1) and (2-2)
y L .
A,out d_yA ) kyaS }dL (2-4)°
. * o - 4
yAs.m:O (1 - .YA) (.YA - .YA) GMy 0

where éMy is the average molal mass velocity of the gas in moles per unit area per

unit time. For dilute gas (i.e., 1 - ya = 1),

(2-5)

y
A,out dyA ) (kyas
Jo

L
0 .yA'.YA T

My

By integration and rearrangement,

N
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Axial Dispersion in a Packed Bed

Several models have been used to analyze and correlate experimental data on
mixing in a packed bed. .They introduced radial and/or axial diffusion coefficients
Ey and/or Ey, independent of solute concentration, to take into account the mixing
effect in the radial and/or axial directions respectively, for packed beds. Th;se
diffusion coefficients can be realted to flow parameters, fluid propert'ies and the
geometry of the bed and the packing.

In a packed bed catalytic reactor, a chemical reaction takes place in a bed
and heat flows through the tube wall and therefore, the radial heat and mass
transfer are not negligible. However, radial dispersion can usually be neglected
compared with axial dispersion when the ratio of column diameter to length is
small and the flow is in the turbulent regime. Many investigators have found that
the mixing effect in packed beds could be well described in an axial dispersion
coefficient E, alone even though there was some radial dispersion effect.

Dankwerts4l first published the results on axial dispersion in a packed bed.
Wen and Fan42? summarized the results of previous investigations on the axial
rdispersion of liquids {Figure 2-5) and gases (Figure 2-6) in packed beds and have
daveloped empirieal correlations (shown below) based on about 500 data points for
liquids and gases, respectively. The axial Peclet number P 5 is defined as dpu/E,-
These equations can be used to determine the axial diffusion coefficient E; for

1iquids and gases, respectively.
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Liquids:

ePe,a = 0.2 + 0.11 Re0-48 2-7)
Gases:
1 __ 0.3, 0.5 (2-8)
Pesa °Re 1 ¢ 3 8(Resc)™?

for 0.008 < Re < 400 and 0.28 < Se < 2.2

The general correlation of existing data of the axial dispersion coefficient for
liquids and gases respectively43 is snown in Figure 2-7. The dashed lines represent

the molecular-diffusion asymptotes, for Pe = (Re)(Se)T./c. The lines shown are for

T, = /2 and ¢ = 0.4. In the case of gases, Pg 5 remains approximately constant,
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decreasing little from its value of 2 until molecular diffusion is important at Re
around 1.0. Molecular diffusion in liquids, however, is 5o slow that E; increases as
Re is reduced below 500. But as Re is decreased from 300 to 10, P¢ 5 remains
approximately propertional to Re indicating that E, is roughly constant in this
region. The corrsetion of Pg 5 with Re is greatly dependent on the magnitude of
the molecular diffusion coefficient Dy, that is, Schmidt number Se¢ = n/oDy.

Even though no experimental data on axial dispersion have been published for
supercritical fluids, we can approximate its effect as described below. For
supercritical systems, the value of the Schmidt number, around 10, is intermediate
to the values for gases (Sc = 1.0) and liquids (Se = 1000). By comparing the order ol
magnituce of Schmidt number for gases, supercritical fluids and liquids, we can
assume that the value of Pg o for SCF is so close to the value of Pg 5 for gas and is
approximately equal to 2.0 when Re is greater than 1.0.

Eramers and Alberda%? first discussec an analogy between a packed bed and
a series of mixing vessels. By an analogy between the mechanism of imperfect
mixing and Einstein's kinetic diffusion model, Carberry37 showed that the number

of perfect mixing tanks, n is given by:

pobu L lea (2-9)
Zw_a dp 2
As E; ~ = for n = 1.0, then for a small number of mixers less than 10:44
n-1<ktu (2-10)
ZEa
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These equations are used for determining the number of perfeet mixers to be

- used in the eell model below.

Mass—Tfansfer Coefficient from the Cell Model

The cell model is a generalization of 2 class of models such as the completely
mixed tanks-in-series model and the back-flow mixed tanks-in-series model. The
common characteristic o% this model is that the basic mixing unit is a completely
mixed or stirred tank. This maodel has been employed extensively from early days
of chemical engineering to the present.20,41,45-48  This cell model has the
following practiéal advantages over other models:

i. The transition mﬁcing behavior of such model can be presented by a set
of linear first-order ordinary differential equatioms instead of partial
differential equations.

2.  The steady-state reaction in such a model can be represented be a set
of finite difference equations rather than differential equations. ~* ~

Since complete mixing is assumed in a ce]l:, the mole fraction of a solute in
out-going stream from the ith cell is y;. If the bed is viewed as a series of n
perfecet mixing cells each having surface area of pellets Ar/n and constant mass-
transfer coefficient ky, then for the steady-state mass-transfer the material

balance around the first cell gives
ke(Ap/n)(y* - y1) = V(@1 - ¥o) (2-11)

Finally, we can obtain the following expression for .n cells by using the

similarity for each cell (its derivation is not given here)
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*
nV Yy -y -
kyaS - S_LT [(__;___g)l/n - 1] (2-12)
y -,

—4'

As mentioned above, we can assume that the value of Pg 5 for SCF is
approximately equal to 2.0 wheri'l Re is greater than 1.0. Then, the number of
perfect mixers in a packed bed can be determined by equation (2-9) or (2-10)
depending upon tie number of layers of the pellets in a packed bed (L/dp). Finally,
- the mass-transfer coefficient under supercritical conditions can be obtained by

equation (2-6) and/or (2-12) using the plug flow and/or cell models, respectively.

MASS-TRANSFER CORRELATIONS

After mass-transfer coefficients under supercritical 7 conditions are
determined, they need to be correlated as a function of the significant independent
variables. Data on the rate of transfer between beds or particles and a flowing
fluid are needed in the design of many industrial devices used for extraetion,
adsorption, leaching, ion exchange and chromatography. Numerous studies for
packed beds have been carried out with the object of measuring mass-transfer
coefficients and correlating the results under standard conditions, usually at 1 atm
and 259C. As far as we know, no data have been published on the mass-transfer
coefficients under supercritical conditions. As several researchers pointed
out,10:11 ynder supereritical conditions we expect correlations for mass-transfer
coeffieients to differ from those for mass-transfer coefficients ol solid-gas or
solid-liquid systems t;nder standa-d conditions.

In general, mass-transfer between a fluid and a packed bed of solid can be

deseribed by correlations of the following form by the similarity to the




relationships obtained for heat transfer:

Sh = f(Re,Se,Gr) (2-13)°

where Sh, Re, Se, and Gr are respectively the Sherwood number, Reynolds,
Sehmidt, and Grashof numbers for the mass-transfer. Such a relationship has been
obtained theoretically by Eckert4® from a consideration of the boundary
conditions.

Below we describe several existing correlations, developed under non-
supereritical conditions, which may serve as guides for the correlations to be

developed in this work.

Natural Convection

Recently, Debenedetti and Reid?0 pointed out that, in the case of
supereritieal fluids, buoyant effects had to be considered because supercritical
fluids showed extremely small kinematic viscosities as a result of their high
densitites and low viscosities. The ecomparison of the properties of é.ir, water, and
mercury was given in Figure 2-8 to show fhe relative impqrtance of buoyant forces
at constant Reynolds number. From the last column in Figure 2—§, we can find that
the effeet of buoyant forces is more than two orders of mag-nitdde higher in
supercritieal fluid than in normal ﬁquids.

For transfer under natural eonvection condition, where the Reynolds number

is unimportant, general expression reduces to

Sh = g{Se,Gr) (2-14)
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For large Sehmidt number (usually liquid system) Karabeal et al.51 proposed
~the following typical form of relationship for this natural convection eondition by

the use of asymptotic relations.

Sh = 0.46(GrSe)1/4 (2-15)
for laminar natural convection

Sh = 0.112(GrSe)1/3 (2-16)
for turbulent natural convection.

If natural convection is dominant, the correlations like those above are likely

‘to be appropriate for modeling the .mass-transfer coeffieient data. Its main

_ difference is that it is independent of Reynolds number Re.

Foreed Convection

Under foreced conveetion econditions, where the Grashof number Iis

unimportant, the general expression becomes
Sh = h(Re,S¢) - (2-17) °

The most convenient method of correlating mass-transfer data under forced
conveetion conditions is to plot the jg factor as a function of Reynolds number as
suggested by Colburn® and Chilton and Colburn® who, from theoretical

consideration of flow and from dimensional analysis, defined jg as follows:



sh Egﬁav(_g_)z/a (2-18)
uDv

ST v Bl

In calculating the Sehmidt number, /oDy, the viscosity a_nd density of carbon
dioxide will be used since the amount of naphthalene in carbon dioixde has a
negligible effect on these properties.

The funetional dependence of j§ on Reynolds number Re has been the subject
of study by many investigators. A variety of equations have been proposed to
represent their experimental data. Many of these correlations also employ the bed
porosity ¢ as an additional correlating parameter. The porosity is the ratio of the

void volume between pellets to the total bed volume. Two typieal correlations for

solid-gas and solid-liquid systems are as follows:

1. Solid - Gas System:52

ejg = 0.357 Re™0-359 3< Re < 2000 (2-19)

2. Solid-Liquid Syste m:8

eig = 0.25 Re"0-31 55 < Re < 1500 (2-20)

ejq = 1.09 Re~2/3 0.0016 < Re < 55 " (2-21)

Other proposed correlations of mass-transfer data are shown in Rable 2-4.51

Combined Natural and Forced Convection

In the intermediate region where natural and forced convection happer
simultaneously, neither the “leynolds number nor the Grashof number can be
neglected. Garner and Grafton93 suggested that the transfers due to the two

processes are simply additive. Karabelas et al.9l proposed the following
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eorrelations using an asymptotic method which are shown in Figure 2-8.

Sh = [£0.46(Grsc) /%8 + (4.58 pel/3,611/6 (2-22)

for 1 in, and 1/2 in, speheres (GrSe < 1.31x10%)

1/3}2 0.565C1/3}2]1/2 (2.23)

Sh = [{0.112(GrSc) + {2.39 Re

For 3 in, sphere (GrSe = 3.2x109)
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Table 2-4:

Correlations of mass-transfer data

51

Reference Type of packing Corrclatian Re RYS
8l Spherical and Jo= 168K < 40 0-61-0-62
cyhindrical palicts -~
Ja= O-9BYRe" ¢ #> 350
%) Sume us above Ju= V-B2Ro% <3S ~ 0-a15
sl Granular solid SiSc™% = 04SR"> < 10- ~ o
$18¢> = 0-20R W > SU
o4 Spheres and Sylinden Ja = VISIRe ™ Reg > 620 ~ U-6]
Ja= 2 44Re Y Re, < 620
“s Spherical und fluke Ja = -GS Re=w»7 < 120 1200- S0
shaped purticles Ja = U-S8TR v = > 120
66 Purous spherical log j, = 0-7o83 0-10,000 T
punticles souked in an —0-915 lug Re~+ 0-0817 and
aqueous sulttion {log Re]? LU
.
R § Ro -0 R
1 Pellets of succinic S1Sc = 197 [—"] =L < 200 150-13.000
A € €
and salicyhic acids
~828¢
SiSc-v™ = 0-29 [%’] 5‘5 > 200
. _ 15— . .
™ Various punticle Ja= __50(6‘ £ Re-1§-1m wide range wide range
Reometrics
-7
ST
66 21
69 Spheres Ja= 146 [—] (1—ep* 56 > 100 wide runge
dp “ap
-1
j‘=|7[£] () — e z—c< 10
up "
93 Porous spheres . Ja= 10R~" < 50 low
Ja = 1-30Re~* > 150
1 Benzoic ucid Ja ™ 1'ABR >N 1-70 — 1000
granules A
i . . Re ¢ R
7 Various particle types Ja=S87 :] 1< T < 30 0-6-10.000
I .
= 1.7-,[18_:] 30 < |f-'¢< 1o
73 Spherical particles Ja = 0-667Re™ 20-200
725
T4 Porous spheres Ja= i—rg:?-“_:_—ﬁ 13-2136 0-606
. e - 0- .
7 Fixed and fuidized e = 0010+ — 283 __ > wide runge
’ beds of sphere R =083
N WM 14§ +]
15 Fiaed and fuidized R
f particles with £J-‘-————mﬂ—-—- Re, > S0 i :
hcd.a uf partic “,‘l T Re =190 Cn wide range
YaNous geumclnes
. . . . ’ Re ]~ Re
0 Spherical paniicies 515" = 2-40 iy 008 < — < 128 ~ oo
[ 3
-3l
SISce s = 0442 [{—’] 125 < 2 ¢ s000
£
m Pun"c?ua >.phcric;d and (G 1 T A
cylindrical Je =228 | —— wide range 0-60
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EXPERIMENTAL

The schematiec diagram of the experimental apparatus used in this study is
shown in Figure 2-10. Liquid earbon dioxide is pumped into the system via a high-
pressure Milton-Roy liquid pump. Pressure is controlled by using a back pressure
regulator and pressure fluctuation is dampened with an on-line surge tank. The
system consists of a preheater which allows the solvent to reach the desired
temperature and the extraction vessel 171 em? in volume, 14.6 cm in length and
3.87 in diamefer. The extraction vessel is packed with naphthalene pellets which
have been made from pure naphthalene using a die. The height of the packing in
the bed can be changed by using inert packing at the bottom and the top of the bed.
The inert packing material being used is giass beads with size similar to that of the
pellets. Another advantage in using the inert pellets is to get rid of end effects in
the packed bed being used as the extractor. Pressure at the inlet of extractor is
measured. using a pressure transducer. The temperature of the extractor is
measured at the inlet.

The fluid mixture coming out of the extractor is depressurized to
atmospheric pressure by passing it through a heated metering valve and a back
pressure regulator. The instantaneous flow rate of the gas leaving the extraector is
measured using a rotameter and the total amount of gas flow is measured with a
calibrated wet-test meter. )

The mass of precipitated solid is found as described below. With this value
and total amount of gas flow through wet-test meter, the mole fraction of solids in
the supercritieal fluid can be readily determined. The temperature and pressure in
wet-test meter are also measured.

The sample collectors are high pressure bombs which are kept at room

temperature by two 200 watt resistance heaters. Each vessel contains toluene
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which will help dissolve the extract (naphthalene) from the carbon dioxide. These
vessels are operated at 300 to 400 psi where the solubility of the solid in the carbon
dioxide is at a minimum. The second vessel is redundant and is used to guarantee
that all of the extract is collected and to reduce entrainment losses. No
naphthalene weas found in these vessels during current experiments. To determine
tﬁe amount of extract collected, the amount of toluene (with dissolved extract) is
weighed. A sample of the toluene-extract solution is then injected into a gas
chromatograph to determine what portion of the solution is extract. Finally, the
. bypass, from valve 12 to:16, is designed to insure steady-state flow through the
extraction vessel 11.

The whole apparatus is rated for a pressure of 5000 psi. Al measured
temperatures and pressures are recorded on a data logger at regular time intervals.
The parameters that are being studied are:

- Effect of flow rate on solubility of naphthalene in carbon';]ioxide at

different pressures and temperatures.

- Effeet of bed height on the mass-transfer coefficient under .

supercritical conditions.

- Effect of flow rate on the mass-transfer coefficient under supereritical

conditions.

- Effect of pressure on the mass-transfer coefficient under supercritical

conditions. |
The experimenta.l conditions are as follows:
System: Naphthalene - Carbon Dioxide
Pellet Characteristics:
Material: Naphthalene

Shape: Cylindrical
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Size: Length (mm) = 4.76
| Diameter (mm) = .76

Height of Bed (mm): 4.76 - 19.04
Temperature of Bed (OK): 308, 318, 328
‘Pressure (psi): 1470, 2205, 2940, 3875
Flow Rates (STD. liter/min at 0°C and 1 atm): 4 - 30
Reynolds Number: 10 < Re < 250
Schmidt Numbéﬁ 3 <Se <12

Grashof Number: 1.69x106 < Gr < 2.13x107

PLANS

This work is divided into two major parts. The first part is to measure mass-
transfer coefficients, while the second one is eoncerned with establishing the mass-
transfer correlations under supercritical eondition;.

Mass-transfer c;oefficients in packed beds under standard conditions have
been measured using various flow models. Hov;ever, no study has yet been carried
out to estimate the mass-transfer coeffieient under supereritrical conditions and no
mass-transfer correlations under these conditions have been developed.

Eor this fundamenia! mass-transfer study under supercritical conditions,
naphtﬁalene—COz systems have been chosen due to convenience of getting the
values of transport properties such as binary diffusion coeffieient, viscosity and
density of earbon dioixde from the literaturs. Experiments are being carried out to
investigate the effect of the flow rate of COg on solubility of naphthalene in COg.
The effect of flow rate on COg, temperature, and pressure on mass-transfer
coefficients will be determined using the plug flow model and cell model. Then,

these mass-transfer coefficient data will be used to developed mass-transfer
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correlations analogous to those shown in the previous section which would be useful
in designing separation units. Finally, these correlations for solid-supercritical
fluid will be compared with mass-transfer correlations for solid-gas and/or solid-
liquid systems, depending upon three different flow conditions, respectively

(natural, forced, and combined natural and forced convection).

Results

Work for Current Period (April 1 - Jure 30)

In the schematic diagram of Figure 2-10 the sample tanks were replaced by
new ones to get more accurate results by collecting all toluene including dissolved
napthalene in sample tanks.

After revising our system, we operated it eontinuously for 2 minutes at 35°C
and 100 atm for several flow rates of carbon dioxdde. The reéultant data of mass
transfer coefficients are obtained for different flow rate and are shown in Table
2-3. (

In Figure 2-11, we showed the relationship between mass transfer coeffi;:ient
kg vs. mass velocity G. Figure 2-12 is a plot of mass transfer factor jg vs.
" Reynolds number Re Re = (p dp Ug)/u- In both graphs, more dataa is needed to
determine the true correlations. A wider range of the experimental conditions will

be studied in the next two quarters.
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TABLD 2-5

Results for Mass Transfer Coefficients aﬁd g vs. Re Correlations at 350Cand 100 atm

Superficial :
Run Flow Rate Exit mole Mass Veloeity, Mass Transfer Mass Transfer Reynolds
No. (»/min) at (°C Fraction, y G ) Coeffieient, kg TFactor Number,
latm x 108 x 102 . xlod a Re
24.158 3.0344 6.84 N ’ 1,782 0.4393 " 55.77
(8 .
21,922 3.1736 8.2 1725 0.4685 50.61
19.324 3.4816 . 548 1744 0.5373 44,81
17,798 - 3.6258 _ §.06 1,710 1.5719 41.09
156.8175 3.8862 4.49 1.895 ‘ 0.6376 36.51
14.009 4,3038 3.98 ; 1L.779 0.7563 32.34
12,922 4.3182 3.87 . 1,652 0.7603 29.83
10,906 ' 4.8020 3.10 ] 1.688 0.9201 25.18

9.539 5.0142 ‘ 2.72 1,605 0.9999 22.02

7.815 5.5023 2,23 1592 - 1.2099 18.04




kg [gmole/cm sec mole—fraction] X 10°

H
H

FIGURE 2-11:

N < :
1 4 T T 1

G [gr mass/em sec] X 10°

10

Correlation between kg and G at 35°C and 100 atm
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Comparison of our data with those of ordinary systems such as COg(g)-
naphthalene4 and wa‘cer—napl‘ﬁche.lene55 under standard conditions (usually 1 atm
and 259C) is shown in Figure 2-13. [t shows that the mass-transfer rates under
supercritical conditions were high (same order-of-magnitude as COg(g)-naphthalene
system), and their numerical values lay in between those of solid-gas and solid-

liquid as expected.
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Figure 2-13: Comparison of supereritical condition
with G-S and L~S system
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NOMENCLATURE

a

ag
Ap

System parameter in Peng-Robinson equation of state

Surface area of pellets per unit volume of extractor [em2/em3)
Surface area of single particle [cm?2]

Total surface area of pellets in extractor [em?2]

System parameter in Peng-Robinson equation of state
Concentration of solute [gmole/cm3]

Diameter of sphere possessing the same surface area as a piece of
packing [em]

Molecular diffusivity [emZ/sec]

Axial dispersion coefficient [em2/sec]

Radial dispersion coefficient [emZ/sec]

Fugacity of component i in solid phase [atm]
Fugacity of component i in vapor phase [atm]
Gravitational acceleration [em/s

Mass veloeity [g/cmzsecJ

Average molal mass velocity [gmole/cmzsec]
Molal mass veloeity [gmole/cm2sec]
Grashof number = d3gpao/u 2

Mass transfer factor = ShRe~1Se-1/3

Mass transfer coefficient = kyC [em/sec)

_Binary interaction parameter

Mass transfer coefficient [gmole/cm2sec mole-fraction]

Total height of bed [cm]

Average molecular weight [g/gmole]




Re

Se

Sh

« g
OIS

at

Number of perfect mixers

Molal flux of solute [gmole/em?Zsec]

Total pressure [atm]

Critical pressure [atm]

Peclet number = ugdp/Dy

Axial peeclet number = udy/Ey

Saturation (Vapor) pressure of pure solid [atm]
Gas constant = 0.08205 [atm liter/gmole 9K]
Reynolds number = pdpug/u

Cross section area of packed bed [em?2]
Schmidt number = 1/pDy

Sherwood number = kodp/Dy

Absolute temperature

Critical temperature [OK]

Reduced temperature

Tortuosity of bed

Interstitial veloeity [em/sec]

Superfieial veloeity [em/sec]

Total molal flow rate [gmole/sec] -

Molal flow rate of inert component [gmole/sec]
Mole fraction of component A

Equilibrium mole fraction of component of A

Mole fraction of component A in stream outgoing from ith eell .

Compressibility factor
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Greek Letters

3 : Void fraction

div : Fugacity coefficient of component i in vapor phase

o : Fugacity coefficient of component i in solid phase at saturaction
pressure P§

v$ : Activity coefficient at infinite dilution

B :  Viscosity [g/cm sec]

o : Density [g/em3)
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